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mclust is a contributed R package for model-based clustering, classification, and density estima-
tion based on finite normal mixture modeling. It provides functions for parameter estimation via
the EM algorithm for normal mixture models with a variety of covariance structures, and func-
tions for simulation from these models. Also included are functions that combine model-based
hierarchical clustering, EM for mixture estimation and the Bayesian Information Criterion (BIC)
in comprehensive strategies for clustering, density estimation and discriminant analysis. There
is additional functionality for displaying and visualizing the models along with clustering, clas-
sification, and density estimation results. Several features of the software have been changed in
this version, in particular the functionality for discriminant analysis and density estimation has
been largely expanded. mclust is licensed under the GPL and distributed through CRAN; see
http://cran.r-project.org/web/packages/mclust/index.html.
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1 Overview

The mclust software [12, 14] currently includes the following features:
» Normal mixture modeling via EM for ten parameterized covariance structures;
» Simulation from parameterized Gaussian mixtures;
» Model-based clustering (covariance parameterization and number of clusters selected via BIC);
o Model-based hierarchical clustering for four covariance structures;
+ Discriminant analysis based on finite mixture modeling (EDDA, MclustDA);
» Density estimation;

« Displays, including uncertainty plots, random projections, contour and perspective plots,
classification plots, density curves in one and two dimensions;

o Combining Gaussian mixture components for clustering;
« Dimension reduction methods for model-based clustering and classification.

This manuscript describes Version 4 of mclust for R, with added functionality for displaying and vi-
sualizing the models along with clustering, classification, and density estimation results. A number
of other aspects of the software have been changed as well, to reflect evolution in its use, in partic-
ular the functionality for discriminant analysis and density estimation has been largely expanded.
A comprehensive treatment of the methods used in mclust can be found in [13, 17, 31, 3].

mclust is licensed under the GPL and is available as the contributed package for the R language.
It can be obtained from CRAN at http://cran.r-project.org/web/packages/mclust/index.html.
Follow the instructions for installing R packages on your machine, and then do

> library(mclust)

inside the R console to use the software. Throughout this manual it will be assumed that these
steps have been taken before running the examples.

Several contributed R packages have functions that require mclust including clustvarsel, fpc,
prabclus, msir, and the Bioconductor package spotSegmentation [15]. A couple of tutorials on
mclust have also been published [16, 18].

2 Model-Based Cluster Analysis

mclust provides functionality for cluster analysis combining model-based hierarchical clustering
(section 5), EM for Gaussian mixture models (section 3), and BIC (section 4).

2.1 Basic Cluster Analysis Example using Mclust

As an illustration, consider the bivariate faithful dataset (included in the R language distribution)
shown in Figure 1.

The following command performs a cluster analysis of the faithful dataset, and prints a
summary of the results:
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Figure 1: The bivariate faithful dataset.

> faithfulMclust <- Mclust(faithful)
> summary (faithfulMclust)

Mclust EEE (elliposidal, equal volume, shape and orientation) model with 3 components:

log.likelihood n df BIC
-1126.4 272 11 -2314.4

Clustering table:
1 2 3
130 97 45

In this case, the best model according to BIC is an equal-covariance model with 3 components or
clusters. A more detailed summary including the estimated parameters can be obtained with the
following code:

> summary(faithfulMclust, parameters = TRUE)

Mclust EEE (elliposidal, equal volume, shape and orientation) model with 3 components:

log.likelihood n df BIC



-1126.4 272 11 -2314.4

Clustering table:
1 2 3
130 97 45

Mixing probabilities:
1 2 3
0.46190 0.35646 0.18164

Means:

(,1] (,2] (,3]
eruptions 4.4761 2.0378 3.8199
waiting  80.8922 54.4935 77.6711

Variances:
L,,1]

eruptions waiting
eruptions 0.07728 0.4765
waiting 0.47650 33.7485
[,,2]

eruptions waiting
eruptions 0.07728 0.4765
waiting 0.47650 33.7485
[,,3]

eruptions waiting
eruptions 0.07728 0.4765
waiting 0.47650 33.7485

The clustering results can be displayed as follows:

> plot(faithfulMclust)

The corresponding plots are shown in Figure 2.

The covariance structures defining the models available in mclust are summarized in Table 1;
these models are explained in more detail in appendix A.1.

The input to function Mclust includes the number of mixture components and the covariance
structures to consider. By default, Mclust compares BIC values for parameters optimized for up to
nine components and all ten covariance structures currently available in the mclust software. The
output includes the parameters of the maximum-BIC model (where the maximum is taken over all
of the models and numbers of components considered), and the corresponding classification and
uncertainty.

The object produced by Mclust is a list with a components describing the estimated model.
The names of these components can be displayed as follows:

> names (faithfulMclust)

[1] "eall" "modelName" np" ngn

[5] IIGII IIBICII Ilbicll llloglikll

[9] "df" "parameters" "classification" "uncertainty"
[13] non

and they are described in detail in the Mclust help file.
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Figure 2: Plots associated with the function Mclust for the faithful dataset with the default argu-
ments. Clockwise from upper left: BIC, classification, uncertainty, density. The ellipses superimposed on
the classification and uncertainty plots correspond to the covariances of the components.

2.2 mclustBIC and its summary function

To do further analysis on the same dataset, for example to see the results for a different set of
models and/or different numbers of components, Mclust could be rerun. However this approach
could involve unnecessary repetition of computations and could also take considerable time when
the dataset is large or the process is to be repeated many times. An alternative approach is to split
the analysis into several parts using function mclustBIC.

For the faithful dataset, the following sequence of commands produces the same clustering
result as the call to Mclust.

> faithfulBIC <- mclustBIC(faithful)
> faithfulSummary <- summary(faithfulBIC, data =
> faithfulSummary

faithful)



Table 1: Parameterizations of the covariance matrix 3 currently available in mclust for hierarchical clus-
tering (HC) and/or EM for multidimensional data. (‘e’ indicates availability).

identifier Model HC | EM | Distribution | Volume  Shape Orientation
E o e | (univariate) | equal

v . e | (univariate) | variable

EII A ° ° Spherical equal equal NA

VII A I ° . Spherical | variable  equal NA

EEI A ° Diagonal equal equal  coordinate axes
VEI ALA . Diagonal variable  equal  coordinate axes
EVI AAp ° Diagonal equal  variable coordinate axes
VVI e Ag ° Diagonal variable variable coordinate axes
EEE ADADT ° ° Ellipsoidal equal equal equal

EEV )\DkAD,z ° Ellipsoidal equal equal variable
VEV )\kaADg ° Ellipsoidal | variable  equal variable
VvV )\kaAkDg ° ° Ellipsoidal | variable variable variable

classification table:
1 2 3
130 97 45

best BIC values:
EEE, 3 EEE,4 VvV, 2
-2314.4 -2320.2 -2322.2

Although the method used for printing is different,

faithfulSummary is nearly identical to the object faithfulMclust computed in the previous
section, the difference being that it does not include the "BIC" component giving the table of BIC
values, which comprise the object faithfulBIC computed by mclustBIC:

> faithfulBIC

BIC:

EII VII EEI VEI EVI VVI EEE EEV VEV VVV
1 -4024.7 -4024.7 -3055.8 -3055.8 -3055.8 -3055.8 -2607.6 -2607.6 -2607.6 -2607.6
2 -3453.0 -3458.3 -2354.6 -2350.6 -2352.6 -2346.1 -2325.2 -2329.1 -2325.4 -2322.2
3 -3377.7 -3336.5 -2323.0 -2332.7 -2332.2 -2342.4 -2314.4 -2339.0 -2329.4 -2333.9
4 -3230.2 -3245.7 -2323.7 -2331.8 -2334.8 -2343.1 -2320.2 -2336.8 -2342.5 -2359.2
5 -3149.4 -3128.2 -2337.7 -2348.3 -2355.9 -2374.3 -2337.0 -2356.2 -2366.2 -2385.3
6 -3081.4 -3067.6 -2338.1 -2363.1 -2357.7 -2372.7 -2347.3 -2371.7 -2387.4 -2399.0
7 -2990.3 -2998.5 -2356.5 -2370.1 -2375.9 -2393.1 -2361.2 -2393.0 -2384.2 -2426.5
8 -2978.1 -2991.9 -2371.8 NA -2396.0 NA -2376.9 -2385.8 -2404.9 -2435.0
9 -2899.8 -2921.0 -2388.6 NA -2399.1 NA -2393.7 -2418.3 -2428.4 -2447.3

The missing values correspond to models and numbers of clusters for which parameter values
could not be fit (using the default initialization). For multivariate data, the default initialization
for all models uses the classification from hierarchical clustering based on an unconstrained model.
For univariate data, the default is to classify the data by quantile for initialization.

The summary method for mclustBIC allows specification of the models and numbers of clusters
over which the best model is to be chosen, allowing models other than the maximum BIC model



to be extracted and analyzed.

The plot method for mclustBIC allows specification of the models and numbers of clusters,
arguments to the legend function, as well as setting limits on the vertical axis. For example, the
following shows the maximum BIC values in more detail than the default:

> plot(faithfulBIC, G = 1:7, ylim = c(-2500,-2300), legendArgs = list(x = "bottomright", ncol = 5))

The resulting plot is shown in Figure 3.
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Figure 3: BIC plot for the faithful dataset, with vertical axes adjusted to display the maximum values.

2.3 Extended Cluster Analysis Example

As an example of an extended analysis, consider the wreath data shown in Figure 4. There are 1000
bivariate observations simulated from a 14-component model in which the component covariance
matrices are of equal size and shape, but differ in orientation.

> data(wreath)
> plot(wreath, pch = 20, cex = 0.5)

The BIC values can be obtained with a call to mclustBIC and then plotted:

> wreathBIC <- mclustBIC(wreath)
> plot(wreathBIC, legendArgs = list(x = "topleft"))

Refering to the BIC plot (shown on the left in Figure 5), the maximum BIC appears to be outside
the range of the default values for the number of components in mclustBIC (and Mclust).

More components (for example, up to 20) can be considered in the analysis without recomputing
previous results:

> wreathBIC <- mclustBIC(wreath, G = 1:20, x = wreathBIC)
> plot(wreathBIC, G = 10:20, legendArgs = list(x = "bottomright"))
> summary (wreathBIC, wreath)
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Figure 4: The bivariate wreath dataset, which consists of 1000 observations simulated from a 14-component
normal mixture in which the component covariance matrices are of equal size and shape, but differ in
orientation.

classification table:
1 2 3 4 5 6 7 8 910 11 12 13 14
74 69 63 74 68 70 71 66 83 77 66 77 61 81

best BIC values:
EEV,14 EEV,15 EEV,16
-10903 -10926 -10953

The BIC plot is shown on the right in Figure 5. Using summary to obtain the best model according to
BIC, a 14-component EEV model is chosen, which is in agreement with how the data was simulated.

> wreathModel <- summary(wreathBIC, data = wreath)
> wreathModel

classification table:
1 2 3 4 5 6 7 8 910 11 12 13 14
74 69 63 74 68 70 71 66 83 77 66 77 61 81

best BIC values:
EEV,14 EEV,15 EEV,16
-10903 -10926 -10953

The model for the wreath dataset is shown in Figure 6.
The summary function can also be used to restrict the set of models and/or numbers of clusters
over which the best model is chosen according to BIC. For example, the following commands

10
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Figure 5: BIC for wreath dataset. LEFT: BIC for all models and up to 9 components (the default in
mclustBIC and Mclust). RIGHT: BIC for 10:20 components, all models. There is a clear peak for all models
at 14 components.

produce the best spherical model for the wreath data:

> wreathSphericalModel <- summary(wreathBIC, data = wreath,
modelNames = c("EII", "VII"))
> wreathSphericalModel

classification table:
1 2 3 4 5 6 7 8 910 11 12 13 14
75 69 63 74 68 70 71 65 83 77 66 77 61 81

best BIC values:
EII,14 EII,15 EII,16
-11176 -11197 -11207

2.4 Clustering Univariate Data

Cluster analysis for univariate data can be carried out as for two and higher dimensions. As an
example, we use the precip dataset (included in the R language distribution):

> precipMclust <- Mclust(precip)
> summary (precipMclust, parameters = TRUE)

Mclust V (univariate, unequal variance) model with 2 components:

log.likelihood n df BIC
-275.47 70 5 -572.19

Clustering table:

11
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Figure 6: The 14-component EEV (equal size and shape) model obtained for the wreath dataset.The ellipses
superimposed on the plot correspond to the covariances of the components.

1 2
13 57

Mixing probabilities:
1 2
0.18181 0.81819

Means:
1 2
12.806 39.792

Variances:
1 2
16.891 90.189

> plot(precipMclust, legendArgs = list(x = "bottomleft"))

Figure 7 shows the BIC, classification, uncertainty, and density for this example.

2.5 Regularizing with a Prior

mclust allows to specify a prior distribution to regularize the fit to the data [17]. We illustrate the
use of a prior on the trees dataset (included in the R language distribution), for which a pairs plot

12
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Figure 7: Model-based clustering of the univariate R dataset precip. Clockwise from upper left: BIC,
classification, uncertainty, and density from Mclust applied to the simulated univariate example. In the
classification plot, all of the data is displayed at the bottom, with the separated classes shown on different
levels above.

is shown in Figure 8.
The following commands compute and plot the BIC curves for the trees dataset provided in R
with and without a prior:

> treesBIC <- mclustBIC(trees) # default (no prior)

> plot(treesBIC, legendArgs = list(x = "bottom", ncol = 2, cex = .75))

> treesBICprior <- mclustBIC(trees, prior = priorControl())

> plot(treesBICprior, legendArgs = list(x = "bottom", ncol = 2, cex = .75))

Without the prior, the BIC plot shows a number of jagged peaks, and many BIC values are
missing for some models due to failure in the EM computations caused by singularity and/or
shrinking components. With the prior, the BICs are smoother and there are fewer failures in
estimation. See Figure 9.

A function priorControl is provided in mclust for specifying the prior and its parameters.
When called with its defaults, it invokes another function called defaultPrior which can serve as
a template for specifying alternative priors. An example of the result of a call to defaultPrior is
shown below.

> defaultPrior(trees, G=2, modelName = "VVV")

13
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Figure 8: Pairs plot of trees dataset.
$shrinkage
[1] o.01
$mean
Girth Height Volume
13.248 76.000 30.171
$dof
(11 5
$scale
Girth Height Volume
Girth 6.2038 6.5411 31.428
Height 6.5411 25.5764 39.473
Volume 31.4275 39.4733 170.217

For more detail on the prior and its specification, see Section A.4.
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Figure 9: BIC without (left) and with the prior (right) for the trees dataset.

2.6 Clustering with Noise and Outliers

mclust allows model-based clustering with noise, namely outlying observations that do not belong
to any cluster. To include noise in the modeling, an initial guess of the noise observations must be
supplied via the noise component of the initialization argument in Mclust or mclustBIC. The
model for noise used in mclust is discussed in more detail in Section A.2 of the appendix, along
with some some strategies for obtaining an initial noise estimate.

In the following example, Poisson noise is added to the faithful dataset. A random initial
estimate was used for noise for the purposes of illustration. This happens to work well in this
instance, although we don’t recommend this as a general strategy.

> b <- apply( faithful, 2, range)
> nNoise <- 500
> set.seed(0)
> poissonNoise <- apply(b, 2, function(x, n)
runif(n, min = min(x)-.1, max = max(x)+.1), n = nNoise)
faithfulNdata <- rbind(faithful, poissonNoise)
set.seed(0)
> faithfulNoiseInit <- sample(c(TRUE,FALSE),size=nrow(faithful)+nNoise,
replace=TRUE,prob=c(3,1))
> faithfulNbic <- mclustBIC(faithfulNdata,
initialization = list(noise = faithfulNoiselInit))
> faithfulNsummary <- summary(faithfulNbic, faithfulNdata)
> faithfulNsummary

VvV Vv

classification table:
0 1 2
532 141 99

best BIC values:
EVI,2 VVI,2 EEI,2
-7982.0 -7982.9 -7992.8

The results are shown in Figure 10. The classification and BIC plots were obtained with the
following commands.

15



> plot(faithful)
> points(poissonNoise, pch =

> mclust2Dplot (faithfulNdata, classification=faithfulNsummary$classification,

20, cex = 0.3, col = "lightgrey")

parameters=faithfulNsummary$parameters)

> plot(faithfulNbic, legendArgs = list(x = "bottomleft", horiz = TRUE,

cex

0.75))
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Figure 10: Cluster analysis of the faithful dataset with added Poisson noise. Upper Left: The 272
observations of the faithful dataset (circles) with 500 Poisson noise points (small dots). Upper Right:

mclust classification starting with

Number of components

random noise estimate. Lower: BIC.

2.7 Further Considerations in Cluster Analysis

Clustering can be affected by parameter settings such as convergence tolerances within the clustering
functions, although the defaults are often adequate. It is also possible do model-based clustering
starting with parameter estimates, conditional probabilities, or classifications other than those
produced by model-based hierarchical clustering. The functions provided for mixture estimation

(Section 3) and BIC (Section 4) can be used for this purpose.

Finally, it is important to take into account numerical issues in cluster analysis. The computa-
tions for estimating the model parameters break down when the covariance corresponding to one or
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more components becomes ill-conditioned (singular or nearly singular). Including a prior (Section
A.4) is often helpful in such situations. In general the modeling computations cannot proceed if
clusters contain only a few observations or if the observations they contain are very nearly colinear.
Computations may also fail when one or more mixing proportions shrink to negligible values. The
EM functions in mclust compute and monitor the conditioning of the covariances, and an error
condition is issued (unless such warnings are turned off) when the associated covariance appears to
be nearly singular, as determined by a threshold with the default value emControl () $eps.

3 EM for Mixture Models

mclust provides iterative EM (Expectation-Maximization) methods for maximum-likelihood estima-
tion in parameterized Gaussian mixture models. In the models considered here, an iteration of EM
consists of an ‘E’-step, which computes a matrix z such that z; is an estimate of the conditional
probability that observation ¢ belongs to group k given the current parameter estimates, and an
‘M’-step, which computes parameter estimates given z.

mclust functions em and me implement the EM algorithm for parameterized Gaussian mixtures.
Function em starts with the E-step; besides the data and model specification, the model parameters
(means, covariances, and mixing proportions) proportions must be provided. Function me starts
with the M-step; besides the data and model specification, the conditional probabilities z must be
provided. The output for both are the maximume-likelihood estimates of the model parameters and
z.

3.1 Individual E and M Steps

Functions estep and mstep implement the individual steps of the EM iteration. Conditional
probabilities z and the log likelihood can be recovered from parameters via estep, while parameters
can be recovered from conditional probabilities z using mstep. Below we apply mstep and estep
to the iris dataset(included in the R language distribution).

> ms <- mstep(modelName = "VVV", data
> names (ms)

[1] "modelName" ||prior|| ’lnll "dll I’G" "Z"
[7] "parameters"

iris[,-5], z = unmap(iris[,5]))

> es <- estep(modelName = "VVV", data
> names (es)

iris[,-5], parameters = ms$parameters)

[1] |lmodelNamel| ||n|| lldll IlGll |lzl| "paraﬂleters"
[7] "loglik"

In this example, the initial estimate of z for the M-step is a matrix of indicator variables correspond-
ing to a discrete classification (iris[,5]). The function unmap converts a discrete classification
into the corresponding indicator variables. mclust allows specification of a prior, for which the EM
algorithm will compute a posterior mode. See Sections 2.5 and A.4 for more details.

3.2 Uncertainty

The uncertainty in the classification associated with conditional probabilities z can be obtained by
subtracting the probability of the most likely group for each observation from 1:

> meVVViris <- me(modelName = "VVV", data = iris[,-5], z = unmap(iris[,5]))
> uncer <- 1 - apply( meVVViris$z, 1, max)
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The R function quantile applied to the uncertainty gives a measure of the quality of the classifi-
cation:

> quantile(uncer)

0% 25% 50% 75% 100%
0.0000e+00 0.0000e+00 1.9070e-08 1.3921e-03 3.3619e-01

In this case the indication is that the majority of observations are well classified. Note, however,
that when groups intersect, uncertain classifications would be expected in the overlapping regions.

When a true classification is known, the relative uncertainty of misclassified observations can
be displayed by function uncerPlot, as is done below for the iris example (see Figure 11):

> uncerPlot(z = meVVViris$z, truth = iris[,5])

It is also possible to plot an uncertainty curve for one-dimensional data (see Section 2.4) or an
uncertainty surface for bivariate data (see Section 8.1).

0.30 0.35
|

0.25
|

0.20
|

uncertainty

0.10
|

0.05
|

0.00
|

observations in order of increasing uncertainty

Figure 11: Uncertainty plot for the 3-cluster mixture model fit of the iris dataset via EM based on
unconstrained Gaussian mixtures. The vertical lines indicate misclassified observations. The plot was created
with function uncerPlot, and shows the relative uncertainty of misclassified observations.

3.3 Control Parameters

Besides the initial values and the prior, other parameters can influence the outcome of em or me.
These include:

tol Iteration convergence tolerance. The default is emControl ()$tol=c(1.e-5,./€,;), where €,
is the relative machine precision, which has the value 2.220446e-16 on IEEE compliant
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machines. The first value is the tolerance for relative convergence of the loglikelihood in the
EM algorithm, and the second value is the relative parameter convergence tolerance for the
M-step for those models that have an iterative M-step ("VEI", "VEV").

eps A tolerance for terminating iterations due to ill-conditioning, such as near singularity in
covariance matrices. The default is emControl()$eps which is set to the relative machine
precision €,,.

A function emControl is provided in mclust for setting these parameters and supplying default
values. Although these control settings are in a sense hidden by the defaults, they may have a
significant effect on results in some instances and should be taken into consideration in analysis.

4 Bayesian Information Criterion

mclust provides a function bic to compute the Bayesian Information Criterion (BIC) [29] given
the maximized loglikelihood for model, the data dimensions, and the number of components in
the model. The BIC is the value of the maximized log-likelihood with a penalty on the number
of model parameters, and allows comparison of models with differing parameterizations and/or
differing numbers of clusters. In general the larger the value of the BIC, the stronger the evidence
for the model and number of clusters (see, e.g. [13]). The following shows the BIC calculation in
mclust for the 3-cluster classification the iris dataset with the unconstrained variance model:

> meVVViris <- me(modelName = "VVV", data = iris[,-5], z = unmap(iris[,5]))
> bic(modelName = "VVV", loglik = meVVViris$loglik,
n = nrow(iris), d = ncol(iris[,-5]1), G = 3)

[1] -580.84

5 Model-Based Hierarchical Clustering

mclust provides functions hec for model-based hierarchical agglomeration, and hclass for determin-
ing the resulting classifications. Function hc implements fast methods based on the multivariate
normal classification likelihood [10]. We use the iris dataset distributed with R in our example.
Figure 12 is a pairs plot of the iris dataset in which the three species are differentiated by symbol,
obtained by the following command:

> clPairs(data = iris[,-5], classification = iris[,5])

Below we apply the hierarchical clustering algorithm for unconstrained covariances (VVV) to the
iris dataset:

> hcVVViris <- hc(modelName = "VVV", data = iris[,-5])

The classification produced by hc for various numbers of clusters can be obtained with hclass. For
example, for the classifications corresponding to 2 and 3 clusters:

> ¢l <- hclass(hcVVViris, 2:3)

The classifications can be displayed with the data using clPairs:

> clPairs(data = iris[,-5], classification = cl1[,"2"])
> clPairs(data = iris[,-5], classification = c1[,"3"])
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Figure 12: Pairs plot of the iris dataset showing classification into species.

More options for displaying clustering and classification results are discussed in Section 8. The
3-group classification can be compared with the known 3-group classification into species, which is
given in the 5th column of the iris data, using function classError:

> classError(cl[,"3"], truth = iris[,5])

$misclassified
[1] 102 107 114 115 120 122 124 127 128 134 139 143 147 150

$errorRate
[1] 0.093333

Function hc starts by default with every observation of the data in a cluster by itself, and continues
until all observations are merged into a single cluster. Arguments partition and minclus can be
used to initialize the process at a chosen nontrivial partition, and to stop it before it reaches the
final stage of merging.

Function hc for model-based hierarchical clustering based on the unconstrained (VVV) model
is used to obtain the default initial values for the model-based clustering functions Mclust and
mclustBIC.
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6 Density Estimation

The finite mixture estimation capabilities of mclust can also be viewed as a general strategy for
density estimation.
Consider the following one-dimensional case:

> densWaiting <- densityMclust(faithful$waiting)
> summary(densWaiting, parameters = TRUE)

Mclust E (univariate, equal variance) model with 2 components:

log.likelihood n df BIC
-1034 272 4 -2090.4

Clustering table:
1 2
99 173

Mixing probabilities:
1 2
0.36102 0.63898

Means:
1 2
54.619 80.094

Variances:
1 2
34.439 34.439

A two-components mixture of Gaussian variables with the same variance is selected by BIC. The
parameter estimates can be read from the summary output.
A plot of density estimate can be obtained using the corresponding plot method:

> plot(densWaiting)

The density can also be plotted together with a histogram of the observed data by using the optional
argument data:

> plot(densWaiting, data = faithful$waiting)

In the one-dimensional case two diagnostic plots [24, pp. 87-90] for density estimation are
available. The first plot is a graph of the estimated CDF vs the empirical distribution function
(see left panel of Figure 14). The estimated CDF is computed by the function cdfMclust, which
numerically integrate the density estimate over a grid of points. The second graph is a Q-Q plot
of the sample quantiles vs the quantiles computed from the estimated density (see right panel of
Figure 14). Both graphs can be obtained as follows:

> plot(densWaiting, what = "diagnostic")

A plot of BIC values as discussed in Section 2 is also available by setting what = "BIC".
Moving to higher dimensions, we may consider the bivariate faithful dataset:
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Figure 13: Density estimate (left) and density estimate with histogram of data (right) for the waiting time
to next eruption from faithful dataset.
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Figure 14: Density estimate diagnostics: plot of estimated CDF and empirical distribution function (left);
Q-Q plot of sample quantiles vs quantiles from density estimation.

> faithfulDens <- densityMclust(faithful)
For two-dimensional data the default plot produces a contour plot of density estimates:

> plot(faithfulDens)
> plot(faithfulDens, faithful, col = "grey", nlevels = 10, drawlabels = FALSE)

The two plots are shown in the top panels of Figure 15. In the second contour plot we added the
sample data and we customize some parameters. A bivariate density estimate may also be plotted
using an image plot or a perspective plot as follows:

> plot(faithfulDens, type = "image", col = topo.colors(50))
> plot(faithfulDens, type = "persp", col = grey(0.8))

The graphs are reported in the bottom panels of Figure 15.
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Figure 15: Contour, image and perspective plots of an mclust density estimate for the bivariate faithful
dataset.

Density estimation on more than two dimensions is straightforward with mclust. The only
difficulty is found when we want to plot the estimated density. mclust takes a simple route, i.e.,
it provides density (countour, image, and perspective) plots for all pairs of variables arranged in a
matrix.

Finally, we note that the function dens is provided to easily get the density of a given set of
points relative to an estimated model. See help(dens) and the examples therein.

7 Discriminant Analysis

In discriminant analysis, observations of known classification are used to classify others. mclust
provides the function MclustDA which allows several approaches to discriminant analysis. We
demonstrate some possible methods applied to the well-known iris dataset split into a training
set and test set:

> odd <- seq(from=1, to=nrow(iris), by=2)
> trainData <- iris[odd,1:4]
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> trainClass <- iris$Species[odd]

> testData <- iris[-odd,1:4]

> testClass <- iris$Species[-odd]

7.1 Discriminant Analysis Through Eigenvalue Decomposition

Bensmail and Celeux [4] proposed the use of Gaussian finite mixture modeling for discriminant
analysis in which each known class is modeled by a single Gaussian term with the same covari-
ance structure among classes. They named this procedure Eigenvalue Decomposition Discriminant
Analysis or EDDA. This method for discriminant analysis is available as an option (named EDDA)
in function MclustDA.

Consider the following model:

> irisEEE <- MclustDA(trainData, trainClass, modelType

> summary (irisEEE, parameters = TRUE)

EDDA model summary:

log.likelihood n df

-125.44 75
Classes n Mo
setosa 25

versicolor 25
virginica 25

Estimated paramete
Class = setosa
Mixing probabiliti

Means:

[,1]
Sepal.Length 5.024
Sepal.Width 3.480
Petal.Length 1.456
Petal.Width 0.228

22
del
EEE
EEE
EEE

Irs:

es:

-345.87

[ S =

= "EDDA", modelNames = "EEE")

Sepal.Length Sepal.Width Petal.Length Petal.Width

Variances:

[,,1]

Sepal.Length 0.264181
Sepal.Width 0.062448
Petal.Length 0.159355
Petal.Width 0.031413

Class = versicolor

Mixing probabilities: 1

0.062448
0.096309
0.033269
0.032224

0.159355
0.033269
0.182368
0.040917

24

0.031413
0.032224
0.040917
0.038912



Means:

[,1]
Sepal.Length 5.992
Sepal.Width 2.776
Petal.Length 4.308
Petal.Width 1.352

Variances:
L,,1]

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 0.264181 0.062448 0.159355 0.031413
Sepal.Width 0.062448 0.096309 0.033269 0.032224
Petal.Length 0.159355 0.033269 0.182368 0.040917
Petal.Width 0.031413 0.032224 0.040917 0.038912

Class = virginica
Mixing probabilities: 1

Means:

[,1]
Sepal.Length 6.504
Sepal.Width 2.936
Petal.Length 5.564
Petal.Width 2.076

Variances:
[,,1]

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 0.264181 0.062448 0.159355 0.031413
Sepal.Width 0.062448 0.096309 0.033269 0.032224
Petal.Length 0.159355 0.033269 0.182368 0.040917
Petal.Width 0.031413 0.032224 0.040917 0.038912

Training classification summary:

Predicted
Class setosa versicolor virginica
setosa 25 0 0
versicolor 0 24 1
virginica 0 1 24

Training error = 0.026667

The above model fits a separate mean vector for each class, but the same ellipsoidal covariance
matrix, which is essentially equivalent to linear discriminant analysis.

If we want to allow for different within-class covariance matrices (which is essentially equivalent
to quadratic discriminant analysis) we can use:

> irisVVV <- MclustDA(trainData, trainClass, modelType = "EDDA", modelNames = "VVV")
> summary(irisVVV, parameters = TRUE)

Gaussian finite mixture model for classification
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EDDA model summary:

log.likelihood n df

Classes
setosa
versicolor 25
virginica 25

-85.149 75 42

n Model
25 \A'AY
VAAY
VAAY

= = e

Estimated parameters:

Class

setosa

Mixing probabilities: 1

Means:

Sepal.
Sepal.
Petal.
Petal.

[,1]
Length 5.024
Width 3.480
Length 1.456
Width 0.228

Variances:

[,,1]

Sepal.
Sepal.
Petal.
Petal.

Class

Sepal
Length 0
Width 0
Length 0
Width 0

.146624
.088480
.014656
.004528

versicolor

Mixing probabilities: 1

Means:

Sepal.
Sepal.
Petal.
Petal.

[,1]
Length 5.992
Width 2.776
Length 4.308
Width 1.352

Variances:

[,,1]

Sepal.
Sepal.
Petal.
Petal.

Class

Sepal.Length
0.296736
0.079808
0.191264
0.048816

Length
Width
Length
Width

virginica

BIC

-351.63

0.08848
0.10160
0.00552
0.00576

Sepal.Width
0.079808
0.108224
0.082992
0.042848

.Length Sepal.Width Petal

0

0
0
0

.Length Petal.Width

.014656 0.004528
.005520 0.005760
.040864 0.003632
.003632 0.006016
.Length Petal.Width
.191264 0.048816
.082992 0.042848
.220736 0.069584
.069584 0.036096
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Mixing probabilities: 1

Means:

[,1]
Sepal.Length 6.504
Sepal.Width 2.936
Petal.Length 5.564
Petal.Width 2.076

Variances:
L,,1]

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 0.349184 0.019056 0.272144 0.040896
Sepal.Width 0.019056 0.079104 0.011296 0.048064
Petal.Length 0.272144 0.011296 0.285504 0.049536
Petal.Width 0.040896 0.048064 0.049536 0.074624

Training classification summary:

Predicted
Class setosa versicolor virginica
setosa 25 0 0
versicolor 0 24 1
virginica 0 0 25

Training error = 0.013333

Other possible parameterization of the covariance matrix are reported in Table 1. If the ar-
gument modelNames is not provided, the best model is chosen from among all available param-
eterizations using the BIC. Most commonly in classification problems, model selection would be
done by computing the classification error using cross-validation or, if available, a test set. mclust
provides the function cv.MclustDA for computing k-fold cross-validation error, and the function
predict.MclustDA for classifying new observations. With the above example data, we may com-
pute the three statistics and compare the results as follows:

models <- mclust.options()$emModelNames
tab <- matrix(NA, nrow = length(models), ncol = 3)
rownames (tab) <- models
colnames(tab) <- c("BIC", "10-fold CV", "Test error")
for(i in seq(models))
{
mod <- MclustDA(trainData, trainClass,
modelType = "EDDA", modelNames = models[i])
tab[i,1] <- mod$bic
tab[i,2] <- cv.MclustDA(mod, nfold = 10, verbose = FALSE)$error
pred <- predict(mod, testData)
tab[i,3] <- classError(pred$classification, testClass)$errorRate
}
> tab

vV V.V VvV VvV

BIC 10-fold CV Test error
EIT -462.26 0.053333 0.066667
VII -450.76 0.053333 0.066667
EEI -417.16 0.053333 0.040000
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VEI -401.31 0.040000  0.040000
EVI -424.79 0.040000 0.040000
VVI -398.00 0.040000 0.040000
EEE -345.87 0.026667  0.040000
EEV -347.45 0.026667 0.053333
VEV -331.30 0.040000  0.040000
VVV -351.63 0.026667  0.040000

The largest BIC is achieved by the VEV model, which is also one of the models with both the
smallest cross-validation error and test errror. Although in this case cross-validation, test error,
and BIC happen to choose the same model, for other datasets the models selected, and hence the
discriminant results, could be different.

7.2 Model-based Discriminant Analysis via MclustDA

In Section 7.1, discriminant analysis was accomplished by modeling the training data with a mixture
density having a single Gaussian component for each class. A more flexible alternative is to use
model-based clustering to fit a Gaussian mixture model as a density estimate for each class in the
training set [13].

In mclust this model can be fitted as follows:

> irisMCLUSTDA <- MclustDA(trainData, trainClass, modelType = "MclustDA")

For clarity of exposition we specified modelType = "MclustDA", but this argument can be omitted
since it is the default. Other arguments that could have been given are G, for the number of
mixture components, and modelNames, for the parameterization of class covariance matrix. If G
is not provided up to 5 components are fit for each class. If modelNames is not provided the best
model for each class is chosen from among all available parameterizations using the BIC. If provided
as single vector of values, for example

> MclustDA(trainData, trainClass, modelType = "MclustDA",
G = 1:2, modelNames = c("EII", "EEE"))

the search for the largest BIC values within each class is performed among the models EIT and EEE,
with one or two mixture components. Such arguments could also be supplied as lists, for example

> MclustDA(trainData, trainClass, modelType = "MclustDA",
G = 1list(1:3, 1:2, 1), modelNames = list("EII", "EEE", c("EEE", "VVV")))

In this case, each pair of (i) number of mixture components and (ii) model name is used in fitting
the corresponding mixture model within each class. Thus, the first class is fitted with model EII
having from one to three components, the second class with model EEE having from one to two
components, and the last class with a single component mixture chosen between models EEE and
VVV.

A fitted model can be summarized as follows:

> summary (irisMCLUSTDA)

MclustDA model summary:
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log.likelihood n df BIC
-63.55 75 53 -355.93

Classes n Model G
setosa 25 VEI 2
versicolor 25 EEV 2
virginica 25 XXX 1

Training classification summary:

Predicted
Class setosa versicolor virginica
setosa 25 0 0
versicolor 0 25 0
virginica 0 0 25

Training error = 0

In this case BIC selects the VEI model with two components for the setosa Irises, the EEV model
with two components for the versicolor Irises, and the single component with full covariance matrix
for the virginica Irises. The summary method prints also the confusion table and the error for the
training data. The latter turns out to be zero, but a more realistic estimate of the classification
error requires the evaluation of the fitted model in a cross-validated or test set.

The function cv.MclustDA can be used to obtain the k-fold cross-validation classification, error
rate, and standard error of classification:

> ¢cv = cv.MclustDA(irisMCLUSTDA, nfold = 10, verbose = FALSE)

> str(cv)

List of 3
$ classification: Factor w/ 3 levels "setosa",'"versicolor",..: 1 111111111
$ error : num 0.04
$ se : num 0.0194

Given a test data set and the corresponding classes for the observations in the test set, the test
error rate is obtained as follows:

> pred <- predict(irisMCLUSTDA, testData)
> classError(pred$classification, testClass)$errorRate

[1] 0.013333

Alternatively, the summary method could be used to obtain the test error rate:

> summary (irisMCLUSTDA, newdata = testData, newclass = testClass)

MclustDA model summary:

log.likelihood n df BIC
-63.55 75 53 -355.93

Classes n Model G
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setosa 25 VEI 2
versicolor 25 EEV 2
virginica 25 XXX 1

Training classification summary:

Predicted
Class setosa versicolor virginica
setosa 25 0 0
versicolor 0 25 0
virginica 0 0 25

Training error = 0

Test classification summary:

Predicted
Class setosa versicolor virginica
setosa 25 0 0
versicolor 0 24 1
virginica 0 0 25

Test error = 0.013333

7.3 Plotting methods

Several plots for discriminant analysis objects are available throught the plot method. Here we
illustrate a subset of them, inviting the interested reader to consult help(plot.MclustDA) for a
more comprehensive list and examples.

The default plot, corresponding to the omitted argument what = "scatterplot", is obtained
as:

> plot (irisMCLUSTDA)

and it is shown in Figure 16. This produces a scatterplot matrix for pairs of variables with points
marked according to the corresponding class, and mixture components ellipses superimposed. A
subset of variables can be selected with the argument dimens, for instance:

> plot(irisMCLUSTDA, dimens = 3:4)

A plot of data points, either from train set and from test set, marked according the known or
estimated classification is easily obtained as:

> plot(irisMCLUSTDA, what = "classification", dimens = 3:4)
> plot(irisMCLUSTDA, what = "classification", newdata = testData, dimens = 3:4)

where we selected only the third and fourth variable to plot. The resulting graphs are shown in top
panels of Figure 17.
Two other available displays are:

> plot (irisMCLUSTDA, what "train&test", newdata = testData, dimens = 3:4)
> plot(irisMCLUSTDA, what = "error", newdata = testData, newclass = testClass, dimens = 3:4)
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Figure 16: Scatterplot matrix for variables with points marked according to the corresponding class, and
with mixture components ellipses from MclustDA superimposed for the iris dataset.

In the first graph we plot both the training data and the test set with different plotting symbols and
colors, while in the second case the test set is plotted with the misclassified observation identified
by a black square. These graphs are shown in the bottom panels of Figure 17.

par(mfrow = c(2,2), mar = c(5,4,2,1))

plot (irisMCLUSTDA, what = "classification", dimens = 3:4)

plot (irisMCLUSTDA, what = "classification", newdata = testData, dimens = 3:4)

plot (irisMCLUSTDA, what = "train&test", newdata = testData, dimens = 3:4)

plot (irisMCLUSTDA, what = "error", newdata = testData, newclass = testClass, dimens = 3:4)

vV V.V Vv VvV

7.4 Classification of univariate data

To illustrate discriminant analysis on univariate data, we use simulated data from a normal mixture
consisting of two components with variance 1 centered at -9 and 9, respectively, and one component
with variance 4 centered at 0:
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Training Data: known classification Test Data: MclustDA classification
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Figure 17: Classification plots for a selected pair of variables with points marked according to the known
or estimated classification from MclustDA for the iris dataset.

> set.seed(0)
> x <= c(rnorm(300, -9), rnorm(400, 0, sd = 2), rnorm(300, 9))
> xClass <- rep(1:3, times = c(300,400,300))

We use the following simulated data as a test set:

> set.seed(1)
> y <= c(rnorm(100, -9), rnorm(100, 0, sd = 2), rnorm(100, 9))
> yClass <- rep(1:3, each = 100)

In both cases we set the seed of the random number generator so the exact example can be repro-
duced.

In discriminant analysis with EDDA (Section 7.1) we assume that each component constitutes
a separate group. We may use either leave-one-out crossvalidation or BIC for choosing between the
only two possible models for univariate data:
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> cv1EMtrain(x,labels=xClass)

E v
0.006 0.002

> bicEMtrain(x,labels=xClass)

E v
-5786.7 -5607.2

The varying variance model V was selected as the optimal model for the training set under both
criteria. The training and test errors for the data with this model are as follows:

> modV <- MclustDA(x, xClass, modelType = "EDDA", modelName = "V")
> summary (modV, newdata = y, newclass = yClass)

EDDA model summary:

log.likelihood n df BIC
-2776 1000 6 -5593.4

Classes n Model G
1 300 V1
2 400 V1
3 300 Vi

Training classification summary:

Predicted
Class 1 2 3
1 300 0 0
2 0 399 1
3 0 1 299

Training error = 0.002
Test classification summary:

Predicted
Class 1 2 3
1 100 0 0
2 0 100 0
3 0 0 100

Test error = 0

The classification and classification errors for the training data are shown in Figure 18 and have
been obtained with the following code:

> par(mfrow = c(1,3), mar = c(4,4,2,1))
> plot (modV)

> plot(modV, what = "classification")

> plot(modV, what = "error")
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Figure 18: LEFT: Densities for the univariate simulation data. There are two components with variance
1 centered at -9 and 9, respectively, and one component with variance 4 centered at 0. CENTER: Training
step classification. RIGHT: Misclassified training observations.

To illustrate the discriminant analysis via the MclustDA methodology (see Section 7.2) we
use the same simulated univariate data as above but assume that observations are grouped by
component variance:

> xClass <- rep(c(1,2,1), times = c(300,400,300))
> yClass <- rep(c(1,2,1), each = 100)

The training stage fits a two component equal-variance model to one group, and a one-component
model to the other:

> modMCLUSTDA <- MclustDA(x, xClass)
> summary (modMCLUSTDA)

MclustDA model summary:

log.likelihood n df BIC
-2863.5 1000 6 -5768.5

Classes n Model G
1 600 E 2
2 400 X1
Training classification summary:
Predicted
Class 1 2
1599 1
2 1 399

Training error = 0.002

The classification error rates are the same as we obtained for discriminant analysis via EM with
the 3-class grouping.
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8 Displays for Multidimensional Data

Once parameter values of a mixture model fit are available, projections of the data showing the
means and standard deviations of the corresponding components or clusters may be plotted. For
bivariate data, density and uncertainty surfaces may also be plotted.

8.1 Displays for Bivariate Data

The function mclust2Dplot may be used for displaying the classification, uncertainty or classi-
fication errors for mclust models of bivariate data. In the following example, classification and
uncertainty plots are produced for the faithful dataset in Figure 1.

> faithfulMclust <- Mclust(faithful)

> mclust2Dplot(data = faithful, what = "classification", identify = TRUE,
parameters = faithfulMclust$parameters, z = faithfulMclust$z)

> mclust2Dplot(data = faithful, what = "uncertainty", identify = TRUE,
parameters = faithfulMclust$parameters, z = faithfulMclust$z)

The resulting plots are displayed in Figure 19.
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Figure 19: Classification (left) and uncertainty (right) plots created with mclust2Dplot for the Mclust
model of the faithful dataset. The ellipses shown are the multivariate analogs of the standard deviations
for each mixture component. In the classification plot, points in different classes are indicated by different
symbols. In the uncertainty plot, the symbols have the following meaning: large filled symbols, 95% quantile
of uncertainty; smaller open symbols, 75-95% quantile; small dots, first three quartiles of uncertainty.

The function surfacePlot may be used for displaying the density or uncertainty for mclust
models of bivariate data. It also returns the grid coordinates and corresponding surface values.
The following example shows how to display density and uncertainty surfaces for the Mclust model
fit to the faithful dataset.

> surfacePlot(data = faithful, what = "density", type = "contour",
parameters = faithfulMclust$parameters, transformation = "sqrt")
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> surfacePlot(data = faithful, what = "uncertainty", type = "image",
parameters = faithfulMclust$parameters, transformation = "log")

The resulting plots are displayed in Figure 20.
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Figure 20: Density (left column) and uncertainty (right column) surfaces for the faithful dataset. A
square root transformation was used for the density plot, which is plotted as a contour surface. A logarithmic
transformation was used for the uncertainty plot, which is plotted as an image surface.
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8.2 Displays for Higher Dimensional Data
8.2.1 Coordinate Projections

To plot coordinate projections in mclust use the function coordProj. The example we consider is
a 3-group model for the iris dataset:

> irisBIC <- mclustBIC(iris[,-5])
> irisSummary3 <- summary(irisBIC, data = iris[,-5], G = 3)

> coordProj(data = iris[,-5], dimens = c(2,4), what = "classification",
parameters = irisSummary3$parameters, z = irisSummary3$z)

> coordProj(data = iris[,-5], dimens = c(2,4), what "uncertainty",
parameters = irisSummary3$parameters, z = irisSummary3$z)

> coordProj(data = iris[,-5], dimens = c(2,4), what
parameters = irisSummary3$parameters, z

"errors",
irisSummary3$z, truth = iris[,5])
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Figure 21: A coordinate projection of the iris dataset created with coordProj. Plots show the 3-
group model-based classification (top) with associated uncertainty (bottom, left) and classification errors
(bottom,right).

These plots are displayed in Figure 21.
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8.2.2 Random Projections

To plot random projections in mclust use the function randProj. Again we consider is a 3-group
model for the iris dataset:

> randProj(data = iris[,-5], seed = 43, what = "classification",
parameters = irisSummary3$parameters, z = irisSummary3$z)

> randProj(data = iris[,-5], seed = 79, what = "classification",
parameters = irisSummary3$parameters, z = irisSummary3$z)

> randProj(data = iris[,-5], seed = 201, what = "classification",
parameters = irisSummary3$parameters, z = irisSummary3$z)

These plots are displayed in Figure 22.
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Figure 22: Some random projections of the iris dataset created with randProj. Plots show the 3-group
classification from model-based clustering with three different seeds.
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8.3 Dimension reduction for model-based clustering and classification

New functionality has been added to mclust package for data projection on a dimension reduced
subspace [31]. This dimension reduction method allows the visualization of the clustering or clas-
sification structure obtained from a Gaussian finite mixture model.

8.3.1 Clustering

Consider the following clustering scenario:

> MCLUST = Mclust(iris[,1:41])

> MCLUST

'Mclust' model object:

best model: ellipsoidal, equal shape (VEV) with 2 components

Once a mixture model has been fitted, we may want to look at a plot in a reduced subspace which
capture most of the clustering structure contained in the data. The function MclustDR allows to
estimate the basis of such subspace:

> DR = MclustDR(MCLUST)
> summary (DR)

Mixture model type: Mclust

Estimated basis vectors:

Dir1l Dir2 Dir3 Dir4
Sepal.Length 0.18224 -0.23497 0.53649 0.030665
Sepal.Width 0.73764 0.16437 -0.36366 0.902191
Petal.Length -0.60349 -0.27048 -0.49512 0.274447
Petal.Width -0.24183 0.91903 0.57861 -0.331346

Dirl Dir2 Dir3 Dird
Eigenvalues 0.85068 0.34586 0.064915 0.030269
Cum. % 65.85600 92.63125 97.656678 100.000000

The directions which span the reduced subspace are defined as a set of linear combinations of
the original features, ordered by importance as quantified by the associated eigenvalues. In the
example, the first two directions account for most of the clustering structure as shown in Figure 23.
The graph is obtained with the following code:

> plot (DR, what = "evalues")

The main contribution to the first direction is from differences in cluster means, while for the second
direction is from differences in cluster variances.

A scatterplot matrix of data projected onto the estimated subspace is shown in Figure 24 and
it is obtained as follows:

> plot(DR)

Figure 25 contains examples of bivariate plots. The left graph is a bivariate contour plot of
mixture components densities:
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Figure 23: Plot of eigenvalues from MclustDR applied to a clustering model for the iris dataset.

> plot (DR, what = "contour")

while the graph on the right is a scatterplot with uncertainty boundaries:

> plot (DR, what = "boundaries")

where the uncertainty is shown using a greyscale with darker regions indicating higher uncertainty.
Both plot projects the data onto the first two directions, i.e., using the default argument dimens
= c(1,2). Setting this argument to any other pair of values produces a projection along different
directions.

Marginal distributions along selected directions can be obtained as follows:

1
2)

> plot (DR, what = "density", dimens
> plot (DR, what = "density", dimens

and they are shown in Figure 26.
Many other graphs can be obtained by specifying the argument what. The interested reader
may consult help(plot.MclustDR) for a comprehensive list and examples.

8.3.2 Classification

The method illustrated for clustering can also be applied to a classification scenario, except that
now we must take into account that known classes can be made of one or more mixture components.
For example, consider the banknote dataset contained in mclust:

> data(banknote)
> MCLUSTDA = MclustDA(data = banknote[,-1], class = banknote$Status)
> summary (MCLUSTDA)

Gaussian finite mixture model for classification
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Figure 24

MclustDA mode

0.6

0.4

0.2
|

Dir2

1 summary:

log.likelihood n df
-652.97 200 68 -1666.2

Classes
counterfeit
genuine

n Model G
100 EEE 3
100 XXX 1

BIC

Training classification summary:

Class
counterfeit
genuine

Training erro

> DR = Mclust
> summary (DR)

Predicted

counterfeit genuine

100
0

r=20

DR (MCLUSTDA)

0
100

Dir1

Mixture model type: MclustDA
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Figure 25: Contour plot of mixture densities (left) and uncertainty boundaries (right) from MclustDR for
the iris dataset.
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Figure 26: Marginal mixture densities for the first two directions from MclustDR for the iris dataset.

Estimated basis vectors:

Dirl Dir2 Dir3 Dir4 Dirb Dir6

Length  -0.094293 -0.32902 -0.0043289 -0.385202 0.703088 0.551233
Left -0.318248 -0.40252 -0.8638528 0.700590 0.492784 -0.036375
Right 0.223543 -0.12154 0.2911526 -0.587057 0.018105 -0.811847
Bottom 0.621442 0.47022 -0.0486602 -0.010436 0.111424 0.093691
Top 0.553684 0.28743 -0.2984504 -0.116710 -0.496313 0.153537
Diagonal -0.383536 0.64127 -0.2784408 -0.049267 -0.061325 -0.058068
Dirl Dir2 Dir3 Dird Dirb Dir6

Eigenvalues 0.87532 0.60038 0.17223 0.066972 0.02501 1.8745e-03
Cum. % 50.25411 84.72339 94.61147 98.456517 99.89238 1.0000e+02
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A pairs plot of the data projected along the first three directions is obtained with code:

> plot (DR, what = "pairs", dim = 1:3)
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Figure 27: Pairs plot for the first three dimensions from MclustDR for the banknote dataset.

A bivariate contour plot of mixture components densities for each class and the classification
boundaries are given by:

"contour")
"boundaries")

> plot (DR, what
> plot (DR, what

9 Combining Gaussian Mixture Components for Clustering

In traditional model-based clustering, each cluster corresponds to a single mixture component.
However, it may be desirable in some situations to model a single cluster using several mixture
components. The function clustCombi provides a means for obtaining models with clusters repre-
sented by multiple mixture components.

Consider the following simulated dataset from a bivariate Gaussian mixture distribution:

> data(Baudry_etal_2010_JCGS_examples)
> MCLUST <- Mclust(ex4.1)
> MCLUST
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Figure 28: Contour plot of mixture densities for each class (left) and classification boundaries (right) from
MclustDR for the banknote dataset.

'Mclust' model object:
best model: ellipsoidal, equal volume and shape (EEV) with 6 components

The function clustCombi combines the mixture components hierarchically according to an entropy
criterion, following the methodology in [3]. The solutions with numbers of classes between the
number of components selected by BIC and one are returned:

> CLUSTCOMBI <- clustCombi(ex4.1, MCLUST)
> CLUSTCOMBI

EM/BIC Solution

Number of components: 6
Model name: EEV

Component num.1:

proportion: 0.12

mean: 7.92 -0.02
Component num.2:

proportion: 0.20

mean: 8.07 4.98
Component num.3:

proportion: 0.19

mean: 1.01 4.96
Component num.4:

proportion: 0.19

mean: 1.11 5.12
Component num.5:

proportion: 0.22

mean: -0.02 0.06
Component num.6:

proportion: 0.08

o

o
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mean: 8.10 0.17

Combining steps

Step | Classes combined at this step | Classes labels after this step
_______ | —————— | ——————

0 | - l1 2 3 4 5 6

1 | 3 & 4 /1 2 3 5 6

2 | 1 & 6 1 2 3 5

3 | 3 & 5 l1 2 3

4 | 1 & 2 1 3

5 | 1 & 3 |1

Classification for K classes: output$classification[[K]]
Combining matrix (K classes -> (K-1) classes): output$combiM[[K]]

The output shows the the components proportions and means of the fitted Gaussian mixture model,
followed by the informations about the combining steps.

BIC solution ( 6 clusters) Combined solution with 5 clusters Combined solution with 4 clusters

X2

X2

X1 X1 X1

Figure 29: Solutions from combining mixture components for the ex4.1 dataset.

The plot method displays the hierarchy of combined solutions and then some “entropy plots”
which may help a user to select the optimal number of clusters:

> plot (CLUSTCOMBI, ex4.1)
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The graphs are shown in Figure 29 and 30, with the entropy plots which suggests a four-clusters
solution.

Entropy plot
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Figure 30: Entropy plots for combining mixture components for the ex4.1 dataset.
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10 Simulation from Mixture Densities

Given the parameters for a mixture model, data can be simulated from that model for evaluation
and verification. The function sim allows simulation from mixture models generated by mclust
functions. Besides the model, sim allows a seed as input for reproducibility. As an example,
below we simulate two different datasets of the same size as the faithful dataset from the model
produced by Mclust for the faithful dataset:

faithfulMclust <- Mclust(faithful)

> sim0 <- sim( modelName = faithfulMclust$modelName,
parameters = faithfulMclust$parameters,
n = nrow(faithful), seed = 0)

> siml <- sim(modelName = faithfulMclust$modelName,

parameters = faithfulMclust$parameters,

n = nrow(faithful), seed = 1)

\

The results can be plotted as follows:

> xlim <- range(c(faithfull,1],sim0[,2],sim1[,2]))
ylim <- range(c(faithfull,2],sim0[,3],sim1[,3]))
mclust2Dplot (data=faithful, parameters = faithfulMclust$parameters,
classification = faithfulMclust$classification, xlim = xlim, ylim = ylim)

> mclust2Dplot(data=simO[,-1], parameters = faithfulMclust$parameters,

classification = simO[,1], xlim = x1lim, ylim = ylim)
> mclust2Dplot(data=siml[,-1], parameters = faithfulMclust$parameters,

classification = simi[,1], xlim = x1lim, ylim = ylim)

vV Vv

The plots are shown in Figure 31. Note that sim produces a dataset in which the first column is
the classification.

11 Extensions

11.1 Large Datasets

Mclust and mclustBIC include a provision for using a subsample of the data in the hierarchical
clustering phase before applying EM to the full data set, in order to extend the method to larger
datasets. Some other methods for handling such cases are discussed in [34, 19]. The following
example uses a random sample of size 100 in the initial hierarchical clustering phase of EMclust
applied to the iris data:

> nrow(iris)

[1] 150

> S <- sample(l:nrow(iris), size = 100)

> Mclust(iris[,-5], initialization = list(subset = S))

'Mclust' model object:
best model: ellipsoidal, equal shape (VEV) with 3 components

For very large data sets, the capabilities of mclust can be easily used for classification. First,
a discriminant analysis with the methodology implemented in MclustDA can be performed on a
subset of the data. Then the remaining data points can then be classified (in reasonable sized
blocks) using the predict method as described in section 7.
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Figure 31: Data simulated from a model of the faithful dataset. The top hand figure is the faithful
dataset, and the bottom figures are datasets of the same size simulated from the Mclust model for the
faithful dataset. The ellipse defined by the covariance matrices of the model is shown on all of the plots.

11.2 High-Dimensional Data

Models in which the orientation is allowed to vary between clusters (EEV, VEV, EVV, VVV), have O(d?)
parameters per cluster, where d is the dimension of the data. For this reason, mclust may not work
well or may otherwise be inefficient for these models when applied to high-dimensional data. It may
still be possible to analyze such data with mclust by restriction to models with fewer parameters
(e.g. spherical or diagonal models), or else by applying a dimension-reduction technique such as
principal components.

Some of the more parsimonious models (e.g. spherical, diagonal, or fixed covariance) can be
applied to datasets in which the number of observations is smaller than the data dimension.

11.3 Missing Data

At present, mclust has no direct provision for handling missing values in data. However, a function
imputeData has been added to the mclust package for creating datasets with missing data imputa-
tions using the mix package. Here we illustrate the use of the imputeData to fill in missing values
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in the continuous portion of the stlouis dataset provided with the mix package (we remove the
first 3 categorical variables, since mclust is intended for continuous variables).

> library(mix)

> data(stlouis)

> dim(stlouis)

[1] 69 7
> head(stlouis)
G D1 D2 R1L Vi R2 V2

4001 1 NA 1 110 NA NA 150

4004 1 1 2 118 165 NA 130

4005 1 2 NA 116 145 114 125

4006 1 NA NA NA NA 126 NA

4008 1 1 NA 118 140 118 123
1

4009 1 NA NA NA 120 105 138

> stlimp <- imputeData( stlouis[,-(1:3)])
Steps of EM:

1...2...3...4...5...6...7...8...9...10...11...12...13...14...15...16...17...18...19...20...21..

Steps of Data Augmentation:

1...2...3...4...5...6...7...8...9...10...11...12...13...14...15...16...17...18...19...20...21..

Note that the values obtained for the missing entries will vary depending on the random number
seed set in function imputeData, chosen randomly by default. It is usually desirable to combine
multiple imputations in analyses involving missing data. See [23] for details and references on
multiple imputation.

Another function imputePairs has been added to the mclust package for visualizing missing
data imputations:
> imputePairs(stlouis[,-(1:3)], stlimp)

A pairs plot showing the imputed values is displayed in Figure 32.

12 Function Summary
12.1 Hierarchical Clustering

hc Merge sequences for model-based hierarchical clustering.
hclass Classifications corresponding to hc results.

12.2 Parameterized Gaussian Mixture Models

em EM algorithm (starting with E-step).
me EM algorithm (starting with M-step).
me.weighted EM algorithm with weights (starting with M-step)
estep E-step of the EM algorithm.
mstep M-step of the EM algorithm.
mvn One-component fit.

12.3 Density Computation for Parameterized Gaussian Mixtures

cdens Component density (without mixing proportions).
dens Mixture density.
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Figure 32: Example of missing data imputations obtained via the mix package for the continuous variables
in the stlouis dataset. The closed black circles correspond to nonmissing data, while the open red circles
correspond to imputed missing values.
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12.4 Model-based Clustering

mclustBIC BIC computation; clusters and models through summary.
Mclust Model-based clustering.
clustCombi Combining Gaussian mixture components for clustering.

12.5 Model-based Density Estimation

densityMclust Density estimation via Mclust.

12.6 Discriminant Analysis
Class Densities as Mixture Components:

cviEMtrain Training via leave-one-out crossvalidation.
bicEMtrain Training via BIC.
estep E-step of the EM algorithm.
mstep M-step of the EM algorithm.
MclustDA Model-based classification using modelType = "EDDA".

Parameterized Gaussian Mixture for Class Densities (MclustDA):

MclustDA Model-based classification using default argument modelType = "MclustDA".
predict.MclustDA MclustDA classification.
cv.MclustDA k-fold cross-validation for MclustDA.

12.7 Bayesian Regularization

priorControl specify a prior distribution.
defaultPrior default prior distribution.

12.8 Support for Modeling and Classification

mclust.options set or retrieve mclust options.
mclustModel specify an mclust model.
mclustModelNames description for an mclust model.
mclustVariance template for (co)variance specification of an mclust model.
emControl specify parameters affecting EM.
map Convert conditional probabilities to a classification.
unmap Convert a classification to indicator variables.
bic BIC for parameterized Gaussian mixture models.
sim Simulate data from a parameterized Gaussian mixture model.
mapClass Mapping between two classifications.
classError Classification error.
adjustedRandIndex Adjusted Rand Index.
sigma2decomp Convert mixture covariances to decomposition form.
decomp2sigma Convert decomposition form to mixture covariances.
nVarParams Number of variance parameters.
imputeData Missing data imputation using the mix package.
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12.9 Plotting Functions

Univariate Data

mclustiDplot Classification, uncertainty, density and/or classification errors.
plot.densityMclust Plot method associated with the densityMclust function.

Bivariate Data

mclust2Dplot Classification, uncertainty, and/or classification errors.
surfacePlot Contour, image, or perspective plot of either density or uncertainty.

More than Two Dimensions

Classification, uncertainty, and/or classification errors:

coordProj Coordinate projections.
randProj Random projections.
MclustDR Dimension reduction for model-based clustering and classification.

12.9.1 Other Plotting Functions

clPairs Pairs plot showing classification.
imputePairs Pairs plot to show missing data imputations.
uncerPlot Relative uncertainty of misclassified observations.
plot.Mclust Plots associated with Mclust results.
plot.mclustBIC BIC plot associated with mclustBIC results.
plot.mclustDA Plots associated with mclustDA results.
plot.mclustDR Plots associated with mclustDR results.
plot.clustCombi Plots associated with clustCombi results.
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A Appendix

A.1 Clustering Models

mclust usually assumes a normal or Gaussian mixture model

n G
11D 7 ow(xi | s Z),

=1 k=1

where where x represents the data, G is the number of components, 7 is the probabilty that an
observation belongs to the kth component (73 > 0; Zszl 7, = 1) , and

or(x | i, i) = (2m) 73 |S| 72 exp {_;(Xi — ) "8 (xi - Mk)} : (1)

The exception is for model-based hierarchical clustering, for which the model used is the classifica-
tion likelihood with a parameterized normal distribution assumed for each class:

[T ¢e.(xi | 116, %),

i=1

where the ¢; are labels indicating a unique classification of each observation: ¢; = k if x; belongs
to the kth component.

The components or clusters in both these models are ellipsoidal, centered at the means py. The
covariances Y determine their other geometric features. Each covariance matrix is parameterized
by eigenvalue decomposition in the form

Yy = M Dy Ax D},

where Dy, is the orthogonal matrix of eigenvectors, A is a diagonal matrix whose elements are
proportional to the eigenvalues of ¥, and Ay is a scalar (Banfield and Raftery 1993). The orien-
tation of the principal components of ¥j, is determined by Dy, while A; determines the shape of
the density contours; A specifies the volume of the corresponding ellipsoid, which is proportional
to A |Ay|, where d is the data dimension. Characteristics (orientation, volume and shape) of dis-
tributions are usually estimated from the data, and can be allowed to vary between clusters, or
constrained to be the same for all clusters [27, 2, 8]. This parameterization includes but is not
restricted to well-known variance models that are associated with various criterion for hierarchical
clustering, such as equal-volume spherical variance (Xj = AI) for the sum of squares criterion [33],
constant variance [20], and unconstrained variance [30].

In one dimension, there are just two models: E for equal variance and V for varying variance.
In more than one dimension, the model identifiers code geometric characteristics of the model.
For example, EVI denotes a model in which the volumes of all clusters are equal (E), the shapes
of the clusters may vary (V), and the orientation is the identity (I). Clusters in this model have
diagonal covariances with orientation parallel to the coordinate axes. Parameters associated with
characteristics designated by E or V are determined from the data. Table 1 shows the various
multivariate model options currently available in mclust for hierarchical clustering (denoted HC)
and EM. These are a subset of the parameterizations discussed in [8], which gives details of the EM
algorithm for maximum likelihood estimation for these models.
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A.2 Modeling Noise and Outliers

mclust uses a mixture model which has a single term representing noise as a first order Poisson

process to handle noisy data:
n

G
11 % + ) meon(xi | 6k) | (2)
i=1 k=1
in which V is the hypervolume of the data region, and 73 > 0; ZkG:() T = 1. This model has been
used successfully in a number of applications [2, 9, 6, 7].

The basic model-based clustering method needs to be modified when the data contains noise.
First, a good initial noise estimate must be obtained. Some possible methods for denoising include a
Voronoi method [1], a nearest-neighbor method [5], and robust covariance estimation [32]. The func-
tion NNclean in the contributed R package prabclus is an implementation of the nearest-neighbor
method. The function cov.nnve in the contributed R package covRobust is an implementation of
robust covariance estimation. Next, hierarchical clustering is applied to the denoised data. Finally,
EM based on the Gaussian model with the added noise term (2) is applied to the entire data set,
with the data removed in the denoising process as the initial noise estimate.

A.3 Model Selection via BIC

Several measures have been proposed for choosing the clustering model (parameterization and
number of clusters); see, e.g., Chapter 6 of [26]. We use the Bayesian Information Criterion (BIC)
approximation to the Bayes factor [29], which adds a penalty to the loglikelihood based on the
number of parameters, and has performed well in a number of applications (e.g. [11, 13]). The BIC
has the form

BIC = 2 loglik ,,(x, 07) — (# params) ., log(n), (3)
where loglik,,(x, #}) is the maximized loglikelihood for the model and data, (# params),, is the
number of independent parameters to be estimated in the model M, and n is the number of
observations in the data.

A.4 Adding a Prior to the Model

By default, mclust does not use a prior for modeling. However, users can optionally specify a
conjugate prior of the type described in this section. For univariate data, we use a normal prior on
the mean (conditional on the variance):

plo® ~ N(up,o®/wp)

_1 K
2 P 2
o (0F) 2 eXp{—TU2 (1= pp) }
and an inverse gamma prior on the variance:

0? ~ inverseGamma(vp/2,52/2)

x (02) exp{— 92’ } ®)

202

(4)

For multivariate data, we use a normal prior on the mean (conditional on the covariance matrix):
plX ~ N(pp,X/kp)

x \Z]*% exp{—%trace [(“_MP)T w1 (M_NP)}}; (6)
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and an inverse Wishart prior on the covariance matrix:

¥ ~ inverseWishart(vp, Ap)

vp+d+1 1 (7)
x X7 2 exp{—Qtrace [E_lA;I]}.

The hyperparameters up, kp, and vy are called the mean, shrinkage and degrees of freedom, re-
spectively. Parameters ¢2 (a scalar) and Ap (a matrix) are the scale of the prior distribution in
the univariate and multivariate cases, respectively. These priors are called conjugate priors for the
normal distribution because the posterior can be expressed as the product of a normal distribution
and an inverse gamma or Wishart distribution. With the prior, a modified version of the BIC,
in which the MLE is replaced by the MAP, is used to choose the number of clusters. Details on
model-based clustering with a prior can be found in [17].

Functions priorControl and defaultPrior are provided in mclust for specifying a prior. When
called with defaults, the following choices are made for the prior hyperparameters:

up = the mean of the data.

f{/p — .0]. _
The posterior mean Tk + Kpite

Kp + Nk
each group in the data. The value we used was determined by experimentation; values close

to and bigger than 1 caused large perturbations in the modeling in cases where there were no
missing BIC values without the prior. The value .01 resulted in BIC curves that appeared to
be smooth extensions of their counterparts without the prior.

can be viewed as adding k» observations with value pup to

vp=d+2
Analogously to the univariate case, the marginal prior distribution of u is a t distribution
centered at pp with v — d + 1 degrees of freedom. The mean of this distribution is pp
provided that v» > d, and it has a finite covariance matrix provided vp > d + 1 (see, e. g.
Schafer 1997). We chose the smallest integer value for the degrees of freedom that gives a
finite covariance matrix.

gf, = sum(dlagglgi(data)))/ d (for univariate models, and multivariate spherical or diagonal mod-

els)

The average of the diagonal elements of the empirical covariance matrix of the data divided
by the square of the number of components to the 1/d power. This is roughly equivalent to
partitioning the range of the data into GG intervals of fairly equal size.

% (for multivariate ellipsoidal models)

The empirical covariance matrix of the data divided by the square of the number of compo-
nents to the 1/d power.
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