
exascaleproject.org

In Situ Visualization and Analysis with
Hank Childs, University of Oregon

Matthew Larsen, Lawrence Livermore National Laboratory
Cyrus Harrison, Lawrence Livermore National Laboratory

Kenneth Moreland, Sandia National Laboratories
David Rogers, Los Alamos National Laboratory

2

Big Picture

• is a library for in situ visualization and analysis
– Made by the developers of ParaView and VisIt
– Will include pathways to both of those tools in 2019

• Emphasis on:
– “Flyweight” approach (both API and runtime)
– Exascale architectures (both many-core architectures and distributed memory parallel)

3

Visualization and Analysis for HPC: Current Status

• Developed popular, open source tools
(ParaView, VisIt) based on the
Visualization ToolKit library (VTK)
– Widespread usage in DOE and >1 million

downloads worldwide
– Hundreds of person years of effort

• Three major problems for exascale:
1) Many-core architectures (as current

VTK-based investments are primarily
only MPI parallelism)

2) I/O limitations will require in situ
processing

3) Artifacts created will require new
methods of analysis and vis

ASCR highlight slide for VTK-based tools.

ECP VTK-m project is focused on problem #1.
ECP ALPINE is focused on problem #2.

ECP ALPINE and ATDM Cinema impact #3.
Our approaches are complementary and coordinated.

4

ALPINE

ECP DAV is an integrated workflow
Apps

Cinema

Traditional
Algorithms

Rendering

New
Algorithms

Output/ArtifactsIn situ
Infrastructure

In situ
Algorithms

Rover

Traditional
Output

…

VisIt
Libsim

ParaView
Catalyst

Post
Processing

ParaView

VisIt

…

VTKm

5

This tutorial

• 2 hours:
– Overview
– How to use? (get hands dirty / walk out with understanding on how to integrate)
– Examples of advanced usage (what it can do)

• 1 hour: other ECP vis technologies (can interact with Ascent or work standalone)
– Cinema
– VTK-m
– In situ algorithms

6

Tutorial Team

Contributor

Hank Childs Matthew Larsen Cyrus Harrison Kenneth Moreland David Rogers

Affiliation

ECP
Projects

ALPINE Deputy PI,
VTK-m

ALPINE, Rover ALPINE VTK-m PI Cinema Co-PI

Software
Projects

VisIt, VTK-m,
Ascent

Ascent, VTK-m,
Conduit, VisIt

VisIt, Ascent,
Conduit

VTK-m, ParaView,
Ice-T

Cinema, ParaView

7

This tutorial

• 2 hours: Ascent
– Overview
– How to use? (get hands dirty / walk out with understanding on how to integrate)
– Examples of advanced usage (what it can do)

• 1 hour: other ECP vis technologies
– Cinema
– VTK-m
– In situ algorithms

8

There are multiple flavors of in situ processing (1/2)

• Ascent follows a traditional “tightly coupled” / “in line” in situ
approach:
– It is a library that you link into your simulation code
– It uses the same resources that your simulation uses
– It is designed for execution to alternate between your simulation and

visualization/analysis
• This approach can be used to simplify data ownership issues
• But Ascent can also make a copy of your data

• Ascent focuses on flyweight processing:
– It does not need to make a copy of your data for its own purposes
– It has minimal dependencies on other software (i.e., small binary size)

9

There are multiple flavors of in situ processing (2/2)

= design decision made by

10

Ascent is designed for the exascale.

• In situ processing:
– Will be important part of exascale
– Need both traditional algorithms and new algorithms
– New algorithms:

• No human in the loop
• Data reduction

• Architectures:
– Utilizing VTK-m for shared memory parallelism
– Handles distributed memory parallelism via MPI

11

Ascent is an easy to use flyweight in-situ visualization and
analysis library for HPC simulations

Project Info:
• Website + Docs: http://ascent-dav.org

• GitHub Repo: https://github.com/Alpine-DAV/ascent

• Email Help: help@ascent-dav.org
• Supported Languages: C++, Python, C, Fortran
• License: BSD Style

• Builds with Spack https://spack.io/
Example in-situ rendering

created using Ascent

http://ascent-dav.org/
https://github.com/Alpine-DAV/ascent
mailto:help@ascent-dav.org
https://spack.io/

12

Ascent focuses on ease of use and efficient in-situ execution

Ascent Delivers
• An easy to use API

– Designed to enable three use cases
• Making Pictures
• Transforming Data
• Capturing Data

– Leverages Conduit (http://software.llnl.gov/conduit)
• Underpins support for C, C++, Fortran, and Python
• Simplifies handoff of mesh-based simulation data
• Convention for specifying data called “Blueprint”

• A flyweight design
– Efficient distributed-memory + many-core execution

• Leverages MPI, VTK-m (http://m.vtk.org/)
– Lower memory requirements then current tools
– Less dependencies than current tools (ex: no OpenGL)

http://software.llnl.gov/conduit
http://m.vtk.org/

13

Ascent is ready for common visualization use cases

ContourThreshold Slice

Clips

Iso-Volume

Pseudocolor Volume Mesh

Rendering

14

Ascent supports multiple languages and output types

• Language Bindings • Output Types

15

Ascent provides example integrations that also serve as built-in
data sources

Cloverleaf3D Lulesh Kripke Smooth Noise

16

Ascent is being developed by ECP ALPINE (2.3.4.12)

Scope & Intent R&D Themes Delivery Process Target ECP Users Support Model

Deliver in situ
visualization and

analysis algorithms and
infrastructure.

1) Automated in situ
massive data

reduction
algorithms

Regular releases of
software and

documentation, open
access to production
software from GitHub

All ECP applications.
Focused delivery for co-

design centers
applications.

Ongoing developer
support. Dedicated

email, issue tracking
portals, comprehensive

web-based
documentation, regular

tutorials.

2) Portable, scalable,
performant

infrastructure

17

We are working to provide ECP Co-Design Centers easy paths to
publish simulation mesh data to Ascent

We are developing AMReX functions to
wrap AMR Grids and Particle Containers
for use in Ascent

MFEM includes Conduit support which
wraps MFEM High-order meshes for use
in Ascent

18

Ascent Concepts

19

Ascent’s API is composed of three key concepts

• Pipelines (transform data):
– Allows users to describe how they want to transform their data

• Scenes (make pictures):
– Allows users to describe the pictures they want to create

• Extracts (capture data):
– Allows users to describe how they want capture data

20

Ascent end-to-end conceptual example

Simulation
Data

clipthreshold

Pipeline

(Transforms Data)

Extract #1
HDF5

(Captures Data)

Scene

(Renders Pictures)

ImagePictures

Extract #2
ADIOS

(Captures Data)

Conduit
Blueprint

21

Ascent’s API is composed of three key concepts

• Pipelines (transform data):
– Allows users to describe how they want to transform their data

• Scenes (make pictures):
– Allows users to describe the pictures they want to create

• Extracts (capture data):
– Allows users to describe how they want capture data

22

A pipeline is a series data transformations (i.e., filters)

• Ascent allows an arbitrary number of pipelines to be described

“Pipeline #1”

“Pipeline #2”

contour

clipthreshold

Simulation
Data

Conduit
Blueprint

23

Ascent’s API is composed of three key concepts

• Pipelines (transform data):
– Allows users to describe how they want to transform their data

• Scenes (make pictures):
– Allows users to describe the pictures they want to create

• Extracts (capture data):
– Allows users to describe how they want capture data

24

A scene is a way to render pictures

• Contains a list of plots
– E.g., volume, pseudocolor, and mesh

• Contains a list of camera parameters

contour

Volume

PseudocolorConduit
Blueprint

25

Ascent’s API is composed of three key concepts

• Pipelines (transform data):
– Allows users to describe how they want to transform their data

• Scenes (make pictures):
– Allows users to describe the pictures they want to create

• Extracts (capture data):
– Allows users to describe how they want capture data

26

Extracts capture data for use outside of Ascent

• Examples:
– Export published simulation data to HDF5, ADIOS, etc

– Export pipeline results to HDF5, ADIOS, etc.

HDF5

ADIOS

27

Currently supported extracts:

• Create Cinema databases

• Export to HDF5 files

• Publish to an embedded Python interpreter

• Publish to ADIOS (proof-of-concept)

28

This tutorial

• 2 hours: Ascent
– Overview
– How to use? (get hands dirty / walk out with understanding on how to integrate)

• Tutorial Setup
• Compiling Ascent into a simulation code
• Hello World example
• Conduit Blueprint: data model API
• Specifying actions

– Examples of advanced usage (what it can do)

• 1 hour: other ECP vis technologies

29

Tutorial Setup

30

Tutorial Setup – Building or Obtaining Ascent

• Game plan:
1. Get your hands on an Ascent install:

• Download Ascent source code and build using a script (uberenv + spack)
OR

• Use an existing install on NERSC’s Cori System
OR

• Use our Docker image

2. Test your ascent install against included example

31

Tutorial Setup – Tutorial Docs

• http://ascent-dav.org

• Click on “Tutorials”

http://ascent-dav.org/

32

Tutorial Setup – Quick Start (Build via script)
• ECP Tutorial Docs: https://ascent.readthedocs.io/en/latest/Tutorials.html

https://ascent.readthedocs.io/en/latest/Tutorials.html

33

Tutorial Setup – Quick Start (Build via script)
• Quick Start: https://ascent.readthedocs.io/en/latest/QuickStart.html

https://ascent.readthedocs.io/en/latest/QuickStart.html

34

Tutorial Setup – Running on NERSC’s Cori
• ECP Tutorial Docs: https://ascent.readthedocs.io/en/latest/Tutorials.html

https://ascent.readthedocs.io/en/latest/Tutorials.html

35

Tutorial Setup – Using Docker
• ECP Tutorial Docs: https://ascent.readthedocs.io/en/latest/Tutorials.html

https://ascent.readthedocs.io/en/latest/Tutorials.html

36

Tutorial Setup – Example Program Source Code
• ECP Tutorial Docs: https://ascent.readthedocs.io/en/latest/Tutorials.html

https://ascent.readthedocs.io/en/latest/Tutorials.html

37

Sidebar: Ascent’s Dependencies

Ascent depends on a few third party libraries:

• What are these libraries?

Libraries covered in this tutorial
§ Conduit: library for sharing data

§ (Must understand to use Ascent)

§ VTK-m: visualization library for many-core
architectures (single node)

Libraries Ascent needs
(but users don’t need to know about)

§ VTK-h: expands VTK-m with MPI
§ (h à “hybrid parallel”)

§ flow: library for data flow

§ diy: library for parallel communication

Libraries Ascent can utilize

§ HDF5: I/O library

§ MFEM: finite element discretization library

required:

optional:

built-in:

vtk-h

vtk-m

mpi

diy

Ascent

conduit

hdf5

mpi

flow

conduit

conduit vtk-hflow mfem

mfem

hypre

metis

38

Tutorial Setup – Testing Ascent with `using-with-make` example

In your install, cd into examples/ascent/using-with-make:

39

Tutorial Setup – Testing Ascent with `using-with-make` example

Run make:

40

Tutorial Setup – Testing Ascent with `using-with-make` example

Run ./ascent_render_example:

41

Tutorial Setup – Testing Ascent with `using-with-make` example

Success == the Ascent Mascot and a rendered PNG image file

42

Tutorial Setup – Testing Ascent with `using-with-make` example

Inside the `using-with-make` Makefile

43

Tutorial Setup – Final Setup Notes

• Example for CMake-based build systems:
– examples/ascent/using-with-cmake:

• Tutorial examples also build via make:
– examples/ascent/tutorial/ecp_2019

• For many more details about configuring and building Ascent, see:
– https://ascent.readthedocs.io/en/latest/BuildingAscent.html

https://ascent.readthedocs.io/en/latest/BuildingAscent.html

44

This tutorial

• 2 hours: Ascent
– Overview
– How to use? (get hands dirty / walk out with understanding on how to integrate)

• Tutorial Setup
• Compiling Ascent into a simulation code
• Hello World in Ascent
• Conduit Blueprint: data model API
• Specifying actions

– Examples of advanced usage (what it can do)

• 1 hour: other ECP vis technologies

45

Compiling Ascent Into Your Simulation Code

46

Compiling Ascent Into Your Simulation Code

47

Running the example

This code to generate this picture is covered
next in a “hello world” example

48

This tutorial

• 2 hours: Ascent
– Overview
– How to use? (get hands dirty / walk out with understanding on how to integrate)

• Tutorial Setup
• Compiling Ascent into a simulation code
• Hello World in Ascent
• Conduit Blueprint: data model API
• Specifying actions

– Examples of advanced usage (what it can do)

• 1 hour: other ECP vis technologies

49

Ascent: 4 function calls

• Open: initializes Ascent
– What device to use, etc.
– Often no arguments specified (use the default)

• Publish: share simulation data with Ascent
• Execute: give Ascent list of actions to execute
• Close: clean up

Learning Ascent requires understanding Publish and Execute.
“data” and “actions” are set up via Conduit nodes.

(Open and Close are trivial.)

50 Code: ascent_example1.cpp

The example from the previous slide: ascent_render_example.cpp

Set up simple
data set using
Conduit routine Instruct Ascent

to do a
visualization

Next up for this tutorial: understand this code!
(i.e., how to make “n_mesh”/“data” & “actions”)

51

Important Note:
Ascent Can Be Controlled In Multiple Ways

• All of the examples in this tutorial use C++
– For publishing mesh data
– For instructing Ascent to do visualization

• Other supported languages (not shown in the tutorial):
– Fortran bindings
– Python bindings

• Also JSON support
– JSON is used only for instructing Ascent to do visualization
– Workflow with JSON:

• Create binary with simulation code and Ascent. Only Ascent instruction is to use JSON.
• At runtime, direct simulation code to use appropriate JSON file.

52

This tutorial

• 2 hours: Ascent
– Overview
– How to use? (get hands dirty / walk out with understanding on how to integrate)

• Tutorial Setup
• Compiling Ascent into a simulation code
• Hello World in Ascent
• Conduit Blueprint: data model API
• Specifying actions

– Examples of advanced usage (what it can do)

• 1 hour: other ECP vis technologies

53 Code: tutorial_example1.cpp

Simple Example: ascent_render_example.cpp

The code above makes a toy mesh.
Question: how can we publish your simulation data to Ascent?

54

Conduit & Blueprint

• Conduit is a library
– Defines a model for:

• describing hierarchical data
• in C++, C, Fortran, and Python.

– Used for data coupling between packages in-core, serialization, and I/O tasks

• Blueprint is a set of hierarchical conventions to describe mesh-based
simulation data both in-memory and via files

• Relationship: data can be stored in Conduit using Blueprint
conventions

56

Conduit basics

57

• Primary object is called a “Node”

• Stores as key/value

Conduit basics

Code: conduit_example1.cpp

58

• Can store data hierarchically

• Paths look like Unix directory
structure

Conduit basics

Code: conduit_example2.cpp

59

No need to use “dir” names…

60

conduit::Node::set

• set: method for creating an array
in a conduit::Node

Code: conduit_example3.cpp

61

Conduit::Node::set is smart about STL vectors

62

For STL vectors, Conduit::Node::set can be called via the
assignment operator

(but it gets confused with non-vector arrays, i.e., pointers)

63

conduit::Node::set_external

• set_external: another method for
creating an array in a
conduit::Node
– But doesn’t allocate new memory

Method Makes copy
of your array

conduit::Node::set YES

conduit::Node::set_external NO

Code: conduit_example4.cpp

64

Shallow Vs Deep Copy

Code: conduit_example5.cpp

65

Blueprint

66

The Mesh Blueprint supports mesh constructs common in
several full featured mesh data models

Ideas were shaped by surveying projects including: ADIOS, BoxLib, Chombo, Damaris,
EAVL, Exodus, ITAPS, MFEM, SAF, SAMRAI, Silo, VisIt’s AVT, VTK, VTK-m, Xdmf.

Mesh

Coordinate Sets
Sets of points in space

Fields
Data values associated with

elements in a topology

Topologies
Collections of mesh elements
defined on a coordinate set

67

Blueprint covers a wide range of mesh descriptions

• Coordinate Sets
– 1D/2D/3D

– Cartesian, Cylindrical, Spherical

– Implicit: Uniform, Rectilinear

– Explicit

• Topologies
– Implicit: Points, Uniform, Rectilinear, Structured

– Unstructured
[Points, Lines, Quads, Tris, Tets, Hexs]

– Optional MFEM Grid Function support

– Arbitrary Polygonal and Polyhedral
(Active development)

– Unstructured heterogenous element shapes
(Planned for future)

• Fields
– Vertex or Element associated

– Multi-component field arrays

– Optional MFEM Grid Function Basis support

– Multi-dimensional field arrays
(Planned for future)

– Sparse representations for field arrays
(Planned for future)

• Domain Decomposition Info
– Basic State Info [Domain Ids]

– Domain Adjacency Info for Unstructured Meshes

– Domain Adjacency Info for Structured Meshes
(Planned for future)

– Nesting Info for Block-Structured AMR Meshes
(Active development)

68

The structure of the Blueprint is designed with
distributed-memory parallelism in mind

Domain DecompositionFull Dataset

Any info required to describe to domain decomposition, nesting, or abutment is local

69

Blueprint basics

• Set up three things for a Mesh:
– Coordinate sets (points in space)
– Topologies (elements defined on coordinate sets)
– Fields (data values on the elements)

• Specifics of how to set these up depend on the mesh type

70

Blueprint syntax (1/3)

• Basic syntax:

• THING TO SET: only 3 possible values
– “coordsets”
– “topologies”
– “fields”

• VAR NAME: you choose the variable name, and you can have multiple variables
of each type
– Multiple coordsets
– Multiple topologies
– Multiple fields

71

Blueprint syntax (2/3)

• Basic syntax:

• Example:

• What does the example do?
– Declares that the field named temperature has an association on the elements
– (it is defined in the cell centers, not on the vertices)

Learning Blueprint means learning which keywords describe your data.
The list of keywords are available in the Blueprint documentation.

72

Blueprint syntax (3/3)

• Basic syntax:

• Variant syntax:

• This makes sense from a Conduit perspective, since Conduit stores data
hierarchically.

• Concrete example:

73

Example #1: Uniform Mesh

X=-10 X=+10
Y=-10

Y=+10

Z=-10

Z=+10

Points can be defined
implicitly.

9 points per dimension:
{ -10, -7.5, -5, -2.5, 0,

2.5, 5, 7.5, 10}

By specifying
9 points in X,
9 points in Y,
9 points in Z
à we can infer 93 points
overall

74

Example #1: uniform mesh (1 of 3): coordsets

Declare a Conduit node object called mesh Will be a 9x9x9 mesh

Using “coordsets” keyword & declare a
coordsets variable named “coords.”

Declare the coords variable has uniform
spacing using the “uniform” keyword.

Note keywords appear in both the key
(“coordsets”) and values (“uniform”)

More conventions for coordsets – “dims/i”,
“dims/j”, “origin/x”, “spacing/dx”, etc.

Code: blueprint_example1.cpp

75

Example #1: Uniform Mesh

X=-10 X=+10
Y=-10

Y=+10

Z=-10

Z=+10
9 points per dimension:
{ -10, -7.5, -5, -2.5, 0,

2.5, 5, 7.5, 10}

Points can be defined
implicitly.

By specifying
9 points in X,
9 points in Y,
9 points in Z
à we can infer 93 points

overall

As far as cells, 83 cells,
with cells in between
each grouping of 8
points.

76

Example #1: uniform mesh (2 of 3): coordsets

Conventions for topologies.
“uniform” is used again.

This is because we are now
specifying uniform topology (where

previously it was coordinates)
Coordset for this topology is “coords”

Code: blueprint_example1.cpp

77

Example #1: Uniform Mesh

X=-10 X=+10

Y=+10

Z=-10

Z=+10

Example:
field called
“alternating”
defined on vertices.
If the vertex ID is
even, then value is
0. Else value is 1.

0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 11

0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 11

0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 11

0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 11

Y=-10

78

Example #1: uniform mesh (3 of 3): fields
Set up trivial field

Using “fields” keyword to declare a
a field called “alternating.”

Declare its association is with
“vertex” (not “element”).

Declare it belong on topology “topo.”
Use “set_external” to set values.

Verify function to make sure we set it up
right

Publish data to ascent

Coming up:

Code: blueprint_example1.cpp

79

Example for setting up uniform grid (all in one slide)

Code: blueprint_example1.cpp

80

Unstructured Mesh Example (2 Tetrahedrons)

P0 =
(-1,0,0)

P3 =
(0,1,0)

P1 =
(0,-1,0)

P4 =
(1,0,0)

P2 =
(0,0,1)

Code: blueprint_example2.cpp

81

Learning the Blueprint Interface:
https://llnl-conduit.readthedocs.io/en/
latest/blueprint.html#blueprint-interface

https://llnl-conduit.readthedocs.io/en/latest/blueprint.html%23blueprint-interface

82

Learning the Blueprint Interface (tets):
https://llnl-conduit.readthedocs.io/en/
latest/blueprint_mesh.html#tets

https://llnl-conduit.readthedocs.io/en/

83

Learning the Blueprint Interface (tets):
https://llnl-conduit.readthedocs.io/en/
latest/blueprint_mesh.html#tets

• Blueprint has methods for creating all
different mesh types

• You can then examine the results and see
intended layout

https://llnl-conduit.readthedocs.io/en/

84

This tutorial

• 2 hours: Ascent
– Overview
– How to use? (get hands dirty / walk out with understanding on how to integrate)

• Tutorial Setup
• Compiling Ascent into a simulation code
• Hello World in Ascent
• Conduit Blueprint: data model API
• Specifying actions

– Examples of advanced usage (what it can do)

• 1 hour: other ECP vis technologies

85

• Pipelines (transform data):
– Allows users to describe how they want to transform their data

• Scenes (make pictures):
– Allows users to describe the pictures they want to create

• Extracts (capture data):
– Allows users to describe how they want capture data

Slide Repeat: Ascent’s API is composed of three key concepts

86

Slide Repeat: Ascent end-to-end conceptual example

Simulation
Data

clipthreshold

Pipeline

(Transforms Data)

Extract #1
HDF5

(Captures Data)

Scene

(Renders Pictures)

ImagePictures

Extract #2
ADIOS

(Captures Data)

Conduit
Blueprint

87

• Answer: very similarly to publishing data
– Create Conduit Nodes.
– Be aware of keywords for keys and values
– Connect the Conduit Nodes as “actions” for Ascent

How Does It Work?

Code: ascent_example1.cpp

88

• Answer: very similarly to publishing data
– Create Conduit Nodes.
– Be aware of keywords for keys and values
– Connect the Conduit Nodes as “actions” for Ascent

How Does It Work?

Code: ascent_example1.cpp

You can have multiple scenes.
Refer to this scene as “s1.”

Known keyword. Tells Ascent you
will be describing a plot.

You can have multiple plots. Refer
to this plot as “p1.”

Known keyword. Tells Ascent the
type of the plot.

89

• Answer: very similarly to publishing data
– Create Conduit Nodes.
– Be aware of keywords for keys and values
– Connect the Conduit Nodes as “actions” for Ascent

How Does It Work?

Code: ascent_example1.cpp

You can have multiple scenes.
Refer to this scene as “s1.”

Known keyword. Tells Ascent you
will be describing a plot.

You can have multiple plots. Refer
to this plot as “p1.”

Known keyword. Tells Ascent the
type of the plot

Tells Ascent that the “scenes” Node
is of type “scene.”

90

Very Simple Example: empty Pipeline, no Extracts, one Scene

Simulation
Data

clipthreshold

Pipeline

(Transforms Data)

Extract #1
HDF5

(Captures Data)

Scene

(Renders Pictures)

ImagePictures

Extract #2
ADIOS

(Captures Data)

Conduit
Blueprint X X

91

• So far, three types of plots:
– Pseudocolor:

• map scalars to colors
• if a volume, then only render the exterior faces of that volume

– Volume rendering:
• map scalars to color and transparency
• only works on volumes, fails on other mesh types

– Mesh:
• draws outline of each element

Scenes are composed of plots

92

Very Simple Example: no Pipeline, no Extracts, one Scene
Declare a Conduit node object called “scenes”

The first scene is called “s1.”
The first plot is called “p1.”

The name of the image to save is
associated with the

scene (“s1/image_prefix”).

Some
standard
methods
for telling
Ascent to
carry out
the
scene

The plot p1 is a pseudocolor, indicated by setting
its “type” (reserved keyword) to value

“pseudocolor” (reserved keyword).

Code: ascent_example1.cpp

93

No Pipeline, no Extracts, two Scenes
Same:

declare a Conduit node object called “scenes”

The first scene is still called “s1”,
The second scene is called “s2.”

The name of the image to save is
associated with the scene, and it

changes between the scenes as well.

s2 is distinct from s1 since it is visualizing a
different variable (variable2 vs variable1).

Didn’t
change:
some
standard
methods
for telling
Ascent to
carry out
the scene

Code: ascent_scene_example1.cpp

94

No Pipeline, no Extracts, one Scene (but two plots in that Scene)

Added a second plot, p2, with type mesh

Code: ascent_scene_example2.cpp

95

Still no Pipeline or Extracts, one Scene
but: set up multiple renders

“renders” object controls rendering
multiple renders per scene OK

includes controls for camera and image size

view1 view2

Code: ascent_scene_example3.cpp

96

More on renders

97

Still no Pipeline or Extracts, one Scene
but: set color tables

color_table/name being set
Another options: color_table/reverse

Inferno Viridis

Code: ascent_scene_example4.cpp

98

Now Let’s Consider Examples With Pipelines

Simulation
Data

clipthreshold

Pipeline

(Transforms Data)

Extract #1
HDF5

(Captures Data)

Scene

(Renders Pictures)

ImagePictures

Extract #2
ADIOS

(Captures Data)

Conduit
Blueprint X X

99

One Pipeline With One Filter,
One Scene

Code: ascent_example1.cpp

Code: ascent_pipeline_example1.cpp

Same as
previous
examples

New code
for setting

up pipelines

100

One Pipeline With One Filter,
One Scene

Code: ascent_pipeline_example1.cpp

“pl1/f1/type” à the type of the first filter (f1)
in the first pipeline (p1).

We could use any names besides p1 and f1.

“contour” is a reserved word,
and it tells Ascent to use a

Contour filter

Instantiate a new node, which will contain
parameters for the contour.

Set parameter values by setting Conduit keys
for specific keywords (“field”, “iso_values”)

Register the parameters with the pipeline

Tell the “actions” node to add our pipelines
(only one pipeline in this example)

Adding the pipeline to the actions node allows
us to refer to it later

We get a second node to set up scenes
(do not reuse the first node)

101

One Pipeline With One Filter,
One Scene: Output

Code: ascent_pipeline_example1.cpp

102

One Pipeline With Two Filters,
One Scene

Code: ascent_pipeline_example2.cpp

Set up first filter (Threshold).
Everything same as before

Set up second filter (Clip).
Important: Ascent knows there is a new filter,

since there is a new name (“f2”, not “f1”).
Also: Ascent knows it goes second because
we added it to the “pipelines” object second.

Everything same as before.
Adding a pipeline, and number of filters is

irrelevant.

103

One Pipeline With Two Filters,
One Scene: Output

Code: ascent_pipeline_example2.cpp

104

Two Pipelines, One Scene

Code: ascent_pipeline_example3.cpp

Set up pipeline 1 (pl1), then pipeline 2 (pl2).

Set up plot for
each pipeline.

105

Two Pipelines, One Scene: Output

Code: ascent_pipeline_example3.cpp

106

Supported Filters & Scenes

ContourThreshold Slice

Clips

Iso-Volume

Pseudocolor Volume Mesh

Rendering

107

More information on Filters and Pipelines:
https://ascent.readthedocs.io/en/latest/Actions/Pipelines.html

108

Now Let’s Consider Examples With Extracts

Simulation
Data

clipthreshold

Pipeline

(Transforms Data)

Extract #1
HDF5

(Captures Data)

Scene

(Renders Pictures)

ImagePictures

Extract #2
ADIOS

(Captures Data)

Conduit
Blueprint

X
X

109

• Extracts: an abstraction for capturing data.
– “data capture” à sends data outside the Ascent infrastructure

• Currently supported extracts include:
– Relay: leverages Conduit’s Relay library to do parallel I/O
– Python: use a python script with NumPy to analyze mesh data
– ADIOS: use ADIOS to send data to a separate resource
– Cinema: output a Cinema database

Extracts

110

No Pipeline, No Scene, One Extract

Specifies the extract should
use the relay output Set a parameter so the

output is named “braid.”

New action: “add_extracts”

Outputs:
File: braid.cycle_0000100.root
Directory: braid.cycle_000100
File: domain_000000.hdf5 (in directory)

Set a parameter so the
output is

HDF5 (not JSON)

Code: ascent_extract_example1.cpp

111

One Pipeline, No Scene, One Extract

Typical code for setting up a pipeline

Add a pipeline action (as per usual)

New step: declare the extract should capture
the output of the pipeline “pl1.”

Outputs:
Same HDF5 file structure as previous
slide, but the output is the isosurface,
not the original data set.

Set up extract

Code: ascent_extract_example2.cpp

Add a second action, for the extract

112

Python Extract

• Python extracts can execute arbitrary Python
code.

• The Python code uses Conduit’s python
interface to interrogate and retrieve mesh
data.

• Code is executed on each MPI rank, and
mpi4py can be used for collective
communication.

113

This tutorial

• 2 hours: Ascent
– Overview
– How to use? (get hands dirty / walk out with understanding on how to integrate)
– Examples of advanced usage (what it can do)

• 1 hour: other ECP vis technologies
– Cinema
– VTK-m
– In situ algorithms

114

LLNL ran a massive turbulent fluid mixing simulation on Sierra in
October 2018 over 16,000 GPUs

Highlights:
• The 97.8 billion element simulation ran

across 16,384 GPUs on 4,096 Sierra
Compute Nodes

• The simulation application used CUDA
via RAJA to run on the GPUs

• Time-varying evolution of the mixing
was visualized in-situ using Ascent,
also leveraging 16,384 GPUs

• Ascent leveraged VTK-m to run
visualization algorithms on the GPUs

• The last time step was exported to the
parallel file system for detailed post-
hoc visualization using VisIt

In-situ Visualization of
Mixing Layer

115

MARBL integration: blast-wave driven Kelvin-Helmholtz
(big laser, tiny box simulation)

*Hurricane, O. A., et al. "Blast-wave driven Kelvin-Helmholtz shear layers in a laser driven high-energy-density
plasma." Astrophysics and Space Science 336.1 (2011): 139-143.

116

ROVER is deployed in MARBL through Ascent

Experimental radiographs

Simulated radiographs

• In-situ radiography of a laser
driven Kelvin-Helmholtz
instability

• 2.3K MPI tasks
• 120 hours wall time
• 3.5M 3D Q2 elements, 100M

quad points
• ~20K RK2 timesteps

117

Data reduction: cinema database support

• http://portal.nersc.gov/project/visit/larsen/cinema/rad_kh/cinema.html

• https://bit.ly/2VUOyYE

http://portal.nersc.gov/project/visit/larsen/cinema/rad_kh/cinema.html

118

Additional ECP connections

• SW4: seismology • WarpX: electromagnetic PIC code

https://github.com/geodynamics/sw4 https://github.com/ECP-WarpX/WarpX

119

• Performing visualization every cycle takes time and resources away from the
simulation

• We plan to add support for “Triggers”:
– When X happens do Y

• Examples:
– Entropy in energy reaches some threshold

• Save data or render
– Not enough node memory

• Examine data flow network and make adjustments
• Resample data to fit within constraints

Under development: Triggers

Flow filter

120

Under development: Jupyter Notebook Support

Cloverleaf3d
(FORTRAN Hydro Proxy

App)
Conduit

Ascent’s Jupyter support will allow you to connect to a running simulation, access
published data, run scripts, and yield back to the simulation.

121

Jupyter Notebook Demonstration

122

Jupyter Notebook Demonstration

123

• Devil Ray is a library for direct ray tracing
and volume rendering of high-order MFEM
meshes

• Many-core capable, built using:
– MFEM (http://mfem.org/)
– RAJA (https://github.com/LLNL/RAJA)
– Umpire (https://github.com/LLNL/Umpire)

• Devil Ray will be integrated as a component
of Ascent

Under development: Devil Ray to support native MFEM
rendering

Example render of a high-
order mesh using Devil Ray

http://mfem.org/
https://github.com/LLNL/RAJA
https://github.com/LLNL/Umpire

124

• Traditional visualization refines high-order meshes into meshes with linear
elements

• Increases memory usage
– Might not have the memory in-situ

• Low-order refine can miss important features
– Ex, high-order contours

Why do we need direct MFEM support?

125

Publications

126

• Python has a massive menu of data science tools

• Goal: Use Ascent to connect Python data science tools to HPC
simulations

• Demonstrate ease of use:
– Ascent provides curated simulation data that is easy to digest in python
– Conduit Blueprint data published in Fortran, C, or C++ codes can be

accessed as numpy arrays

Proof-of-concept: In-situ machine learning

127

What does using Python in Ascent look like?

128

• Harvey Mudd Clinic
– 2 semester senior project
– 4 team members

• Investigate distributed machine learning
– Naïve bayes
– Random forest
– Mondrian forest

• Demonstrate proof-of-concept in-situ
– Ascent + Cloverleaf3D + python extract

Custom Python Example: Distributed machine learning

129

Proof-of-concept: In-situ distributed machine learning results

Actual Pressure Predicted Pressure Difference

130

• We support python filters
– Must edit the Ascent runtime to execute
– How do I pass my data back to Ascent?

• Inside of a python extract
– Create another instance of Ascent
– Publish the new data set and actions

Inception: Using Ascent from a python extract

Ascent Level 1

python
extract

Ascent Level 2

131

Custom C++ Filter: Gathering performance + mesh data

C++ Filter

Allocation 1 Allocation 2

Online
Database

Query The Database

132

Native MFEM rendering support (Beta Support)

133

Why is Ascent Important?

• Designed for batch-focused in-situ analysis
• Helps connect your data with other ecosystems
• Light weight

– Streamlined API
– Low dependency count

• Targeting unique capabilities
– Rendering of high-order meshes

• Easy to use and extend
– Lowers barriers to custom analysis

134

Ascent is ready for common visualization use cases

• GitHub Repo: https://github.com/Alpine-DAV/ascent

• Docs: https://alpine-dav.github.io/ascent

• Try it out using Docker:

– docker pull alpinedav/ascent

– More info: http://ascent.readthedocs.io/en/latest/Tutorial.html

• Primary Contacts:

– Matt Larsen larsen30@llnl.gov

– Cyrus Harrison cyrush@llnl.gov

https://github.com/Alpine-DAV/ascent
https://alpine-dav.github.io/ascent
http://ascent.readthedocs.io/en/latest/Tutorial.html
mailto:larsen30@llnl.gov
mailto:cyrush@llnl.gov

135

• This research was supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy, Office of Science and the
National Nuclear Security Administration.

• This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract DE-AC52-
07NA27344. Lawrence Livermore National Security, LLC (LLNL-CONF-737832)

Acknowledgements

136

Questions?

Cloverleaf3D Lulesh Kripke Smooth Noise

Proxy-applications included with Ascent

