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ABSTRACT INTRODUCTION

Dark matter is a mystery, nonetheless known to constitute the majority of mass in * We know that some form of non-luminous WIMP Detector:
the universe, and current theory suggests that it takes the form of nonrelativistic matter, termed dark matter, exists and < wnd E Case 2 | E

- E

weakly interacting massive particles (WIMPs) that would form a halo around the
Milky Way. A high-pressure xenon gas chamber moving through this halo on Earth

could be able to identify the energy deposited if a WIMP collides with a xenon atom ° Weakly Interacting Massive Particles (WIMPs)

in the detector. In order to develop this capability, we have created a Garfield++ didat q h ht to f
program to simulate the behavior of the cloud of electrons ionized from their parent dare one candidate, and are tnoug O 10rm non-

comprises 85% of the mass in the universe.
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xenon atoms as a result of the nuclear recoil from one such collision. We are Corotating halos around galaxies. WIMP Case 1- Case 2
interested in maximizing the amount of recombination that occurs and learning : : wind M L P
ore Recombination Less Recombination

how this quantity depends on the orientation of the nuclear recoil with respect to * Earth WOUld be IIl.OVIIlg through this halo, and

the external electric field. Previous data from our simulation did show a large thus WIMP interactions should be coming from . o

recombination fraction with dependence on the magnitude of the electric field when a f d di : Detector: Figure 2. Columnar recombination may be used
o . , . preferred direction. . 4 T s .

2% trimethylamine (TMA) was added to xenon gas, but upon examining the . . Case 1 to determine nuclear recoil direction relative to

progression of individual simulations it is clear that the electron cloud quickly loses e The dependence of columnar recombination an external electric field. In the Case 1 detector

the shape of the initial recoil for short tracks. Future steps include investigating on orientation with respect to the external Figure 1. A stationary detector changes its orientation from Figure 1 the electron moves

other parameters that might result in more retention of directionality information. .o , , : , , : :

Progress toward benchmarking the simulation with gamma ray data was also made electric field in the detector is key to orientation with respect to the dark matter wind past more xenon ions and thus has more chances

by modeling recombination in portions of a simulated 22 keV gamma track. djfferentjatjng a WIMP Signal from background by ~90° as the Earth rotates through the day. to recombine.

METHOD RESULTS CONCLUSIONS

Scattered WIMP « Figure 3. WIMP EVE 100% Xe M., E e The animations of the electrons in our
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either recombine w0E 2% TMA, 98% Xe |8,
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detector that would maximize any columnar
recombination seen in a real WIMP recoil
(~200 electrons). Change initial electron
energy, increase the distance between ions,
change gas mix and/or TMA fraction.
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| | Figure 5. The position along the electric field vs kinetic * Simulating an entire gamma ray event
parent ion density . . o . . . .
\ similar to alpha track: energy for a 4.4 eV single electron in pure xenon (top) 203040 (Figure 7) and modeling recombination
10nm apart at 10 atm and 2% TMA in xenon (bottom). In 2% TMA the electron Eicure 7. A2 kaV am)I(n[uZ] v movine throueh pure vl based on samples of these events (Figure 8)
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~ \Nn total e is less energetic after it reaches equilibrium with the 5 5 y moving throtigh put brought this program much closer to results
= ‘ ‘ e ‘ ‘ _ . ST : xenon at 10 atm creates a track of ionizations featuring
o drift electric field (500 V/cm in the -y direction) because it loses - : - I-
A . - several dense clusters, of up to several hundred now seen in experiments using IMA. Goal:
, direction more energy through collisions with the TMA molecules. onveRe / p ) , . . . .
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