
On partitioning and reordering problems in a
hierarchically parallel hybrid linear solver

François-Henry Rouet

Lawrence Berkeley National Laboratory

Joint work with: I. Yamazaki (U. T. Knoxville), X. S. Li (LBNL), B. Uçar (ENS
Lyon)

IPDPS 2013, PDSEC Workshop, May 24th, 2013

The PDSLin solver (developers I. Yamazaki, X. S. Li)

PDSLin is a hybrid sparse linear solver:
I Schur complement method (non-overlapping domain

decomposition).
I Two-level parallelism: intra- and inter-domain parallelism.
I Small number of subdomains (typically 8–64) for stability.
I Explicit approximate Schur complement (dropping).

D

D
D

D

D

D

D
7

6

4

1

2
3

5

A =


D1 E1

D2 E2
.

Dk Ek
F1 F2 . . . Fk S



The PDSLin solver – continued
Package: http://crd-legacy.lbl.gov/FASTMath-LBNL/Software/

I C and MPI, with Fortran interface.
I Unsymmetric/symmetric, real/complex, multiple RHS.

Features

I Parallel graph partitioners:
I PT-Scotch.
I ParMETIS.

I Subdomains solvers:
I SuperLU, SuperLU_MT, SuperLU_DIST.
I MUMPS.
I PDSLin.
I ILU (inexact solution).

I Schur complement solvers:
I PETSc.
I SuperLU_DIST.

Two partitioning/reordering problems
We focus on two problems that arise when:

I Permuting the matrix into doubly-bordered form:

A =


D1 E1

D2 E2
.

Dk Ek
F1 F2 . . . Fk S


I Updating the Schur complement (triangular solution with

multiple sparse RHS):

S ←S −
k∑

`=1
F`D−1

` E`

=S −
k∑

`=1

(
U−T

` F`

)T (
L−1

` E`

)

Part I

Multi-constraint partitioning

The partitioning problem
I Partitioning: we consider the graph of A + AT ; we want a

doubly-bordered form.
I Objective: minimize the size of the Schur complement.
I Balance constraints:

I Subdomain constraints: balance the dimension of D` and the
number of nonzeros in D`.

I Interface constraints: balance the dimension of E` and the
number of nonzeros in E`.


D1 E1

D2 E2
.

Dk Ek
F1 F2 . . . Fk S



The partitioning problem
I Assume that we use graph partitioning and that each vertex

corresponds to a row.
I Weights need to be assigned to each row for each balance

objective, so that the weight of a part (row stripe) is their
sum.

I Issue: one cannot know in advance which entries in a row will
be in a the diagonal block or the border. The balance
objective is a complex function of the partition that cannot be
assessed by a looking at a priori weights.

I “Chicken-and-egg problem”[Pınar & Hendrickson ’01].
D1 E1

D2 E2
.

Dk Ek
F1 F2 . . . Fk S



Partitioning problems with complex objectives

I Conventional methods (e.g., nested dissection) do not take
these objectives into account and usually achieve bad
imbalance ratios.

I Predictor-corrector approach [Moulitsas & Karypis ’04, Pınar &
Hendrickson ’01]: refine an initial partition provided by standard
tools. Improves balance but predictor step is complex.

I Some (somewhat) failed attempts: compute a (cover or edge)
separator, transform into wide separator, extract a new
separator (vertex cover) that improves balance. Large increase
in cut. . .

I We use a Recursive Hypergraph Bisection with dynamic
weights [Kaya, Rouet, Uçar ’11].

Hypergraph partitioning

Hypergraph
A hypergraph H = (V,N) is a set of vertices V and a set of
hyperedges (nets) N , where a net h ∈ N is a subset of vertices.

Hypergraph partitioning (NP-complete)
Partition the vertices into a given number of parts of (almost)
same size, so that some cutsize metric is minimized; e.g.
con1 =

∑
n∈N

c(n)(λ(n) − 1) , or cnet =
∑
n∈N

c(n) , or soed =
∑
n∈N

c(n)λ(n)

1

4

3

58

7

6

2

5

4

3

1

6
2

Hypergraph partitioning

Hypergraph
A hypergraph H = (V,N) is a set of vertices V and a set of
hyperedges (nets) N , where a net h ∈ N is a subset of vertices.

Hypergraph partitioning (NP-complete)
Partition the vertices into a given number of parts of (almost)
same size, so that some cutsize metric is minimized; e.g.
con1 =

∑
n∈N

c(n)(λ(n) − 1) , or cnet =
∑
n∈N

c(n) , or soed =
∑
n∈N

c(n)λ(n)

1

4

3

58

7

6

2

5

4

3

1

6
2

Framework
Recursive bisection paradigm:
1. The first bisection is performed as for the single constraint

case.
2. For the subsequent steps: use the partial/coarse information

gathered during the previous step to set secondary constraints
(complex objectives) and use multi-constraint bisection (we
use PaToH [Çatalyürek & Aykanat, ’99]): modify vertex-weights.

Algorithm 1 RB
if not first bisection step then

Use previous bisection information: set secondary constraints.
end if
Bisect with standard tools.
Discard or split nets according to the objective function and create the two
columns sets.
call RB on the first set.
call RB on the second set.

Applying RHB to our problem

Algorithm:
1. Decompose A patternwise as A = MT M [Çatalyürek, Aykanat,

Kayaaslan ’09] (M “short and wide” matrix).
2. Permute M into singly-bordered form using RHB and a column-net

model:

1

4

3

58

7

6

2

5

4

3

1

6
2

4 5 1 6 3 2

8
2
7
6

5
1
3
4

Weights:
w(vi , 1)= |{j : mij 6= 0}|2 ⇒ balance on the row stripes of A.
w(vi , 2)= |{j : mij 6= 0 and column j is not cut yet}|2 ⇒ balance on

the diagonal blocks of A.

Results with PDSLin

We compared NGD with PT-Scotch and our RHB approach:
Matrix Alg. Time (s) Iter. nS nD`

nzD`
nzcolE`

nzE`

×102 ×103 ×103 ×100 ×100

dds.quad
NGD 98.3+5.5 18 95 min 35 1408 980 18792

max 58 2372 3292 61880

RHB 90.4+5.3 19 99 min 37 1504 956 17548
max 58 2162 3614 66416

dds.linear
NGD 108.7+7.5 11 44 min 87 1355 305 1695

max 114 1792 2593 14622

RHB 100.7+6.7 10 38 min 87 1346 305 1685
max 112 1762 2267 12566

matrix211
NGD 89.8+8.9 17 121 min 80 3328 1290 15480

max 106 8782 5580 133056

RHB 73.3+9.9 18 130 min 78 6290 1428 17136
max 173 7223 4380 104256

G3_circuit
NGD 26.3+6.9 11 66 min 192 925 975 1718

max 205 985 2493 3944

RHB 22.9+5.3 8 51 min 193 933 899 1749
max 201 969 1750 3300

Part II

Reordering sparse RHS for triangular
solution

Triangular solution with sparse RHS

Updating the Schur complement consists of triangular solutions
(L`, U`) with multiple sparse RHS (F`, E`).
We rely on the elimination tree of D`:

Theorem [Gilbert ’86, Gilbert & Liu ’93]
The structure of L−1b is the union of paths in the tree for the
nodes in struct(b) to the root node.

Example:
Solution of L x = [0 1 0 1 0 0]T

Node 1 is not accessed.

6

2

3

5

4

1

Multiple RHS

Right-hand sides are processed by blocks of size B. Within a block,
operations are performed on the union of the different solution
vectors. Some padded zeros are introduced.

Ordering/partitioning matters; example with 4 RHS and B = 2:
1 2 3 4
X 0 X 0
0 X
0 X X X

1 3 2 4
X X

X 0
0 X X X

I We have a simple heuristic and a hypergraph model.
I We tackled a similar (but actually quite different) problem in

an out-of-core context (cf. [Amestoy et al. ’12]).

Two approaches

1. Simple heuristic: ordering RHS according to their first
nonzero, following the postordering of the elimination tree.
This is inexpensive and increases similarities between
consecutive columns but only one path is taken into account.

2. Hypergraph model: partitioning the row-net model of the
RHS matrix (interface) with the con1 metric minimizes the
number of padded zeros (con1 and padded zeros differ by a
constant). This hypergraph can be easily sparsified by
removing quasi-dense rows.

Results

Padded zeros vs block size B:

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

block size

fra
ct

io
n

of
 p

ad
de

d
ze

ro
s

natural
postorder
hypergraph

Matrix tdr190k
N = 1.1 M, NZ = 43.3 M
Accelerator cavity design.

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

block size

fra
ct

io
n

of
 p

ad
de

d
ze

ro
s

natural
postorder
hypergraph

Matrix matrix211
N = 0.8 M, NZ = 55.8 M

Fusion (M3D-C1).

Results

Time for updating the Schur complement vs block size B:

0 50 100 150 200 250
0

5

10

15

20

block size

so
lu

tio
n

tim
e

(s
)

natural
postorder
hypergraph

Matrix tdr190k
N = 1.1 M, NZ = 43.3 M
Accelerator cavity design.

0 50 100 150 200 250 300
0

5

10

15

20

block size

so
lu

tio
n

tim
e

(s
)

natural
postorder
hypergraph

Matrix matrix211
N = 0.8 M, NZ = 55.8 M

Fusion (M3D-C1).

Conclusion

I Multi-constraint partitioning:
I Using Recursive Hypergraph Bisection improves load balance,

usually at the price of a moderate increase in the size of the
Schur complement.

I Total run time of PDSLin decreases (∼ 10− 50% for our
applications of interest, accelerator modeling and fusion).

I Parallel algorithms?
I Reordering sparse right-hand sides:

I Using the row-net hypergraph model or the postordering
heuristic decreases the amount of padded zeros.

I Practical gains in PDSLin: Schur complement update time
decreased by ∼ 30%.

	Multi-constraint partitioning
	Reordering sparse RHS for triangular solution

