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Abstract1

Investigations into the role of anthropogenic emissions in the occurrence of extreme2

weather often use a method that compares simulations of atmospheric climate models3

run under a factual scenario of historical boundary conditions observed during the pe-4

riod of the event against simulations run under a counterfactual scenario of what those5

boundary conditions might naturally have been over that same period in the absence6

of anthropogenic emissions. A particular requirement for this experiment design is the7

requirement of an accurate estimation of ocean surface boundary conditions for use by8

the counterfactual natural simulations. Here we use output from the CMIP5 multi-9

climate-model archive to develop a robust estimate of sea surface temperatures and10

sea ice conditions for use in counterfactual natural simulations, intended as a bench-11

mark estimate to facilitate comparison across climate models and across studies. This12

development includes tests to ensure that the final estimate is stable from year-to-year13

and stable against other perturbations to the methodology, as well as consideration of14

the strengths and weaknesses in comparison to other available attributable warming15

estimates. While this estimate is tailored specifically for the International CLIVAR16

C20C+ Detection and Attribution Project, it can be used by related projects as well.17

1 Introduction18

Growing interest in the role of anthropogenic emissions in recent and current extreme19

weather (labeled “event attribution” in this paper) has been reflected in a rapidly growing20

number of studies (e.g. see summaries in Stott et al. 2013; Bindoff et al. 2013; National21

Academies of Sciences, Engineering, and Medicine 2016; Herring et al. 2018). One of the22

more popular methods for evaluating the role of emissions in observed climate change23

involves the comparison of climate model simulations run under a “real-world” factual24

scenario against simulations of the same climate model run under a “natural-world” coun-25

terfactual scenario of what the world might have been in the absence of anthropogenic26

emissions (Gillett et al. 2016). More specifically, simulations in the factual scenario are27

run under observed historical boundary conditions, including variations in anthropogenic28

and natural factors such as greenhouse gas concentrations, aerosol burdens (or emissions),29

ozone concentrations, stratospheric volcanic aerosol burden, solar insolation, and land30

cover and use. The counterfactual simulations are run under the same natural boundary31

conditions (volcanic aerosols and solar insolation), but with the anthropogenic drivers set32
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at preindustrial values. The large sample size required for robust statistical characterisa-33

tion of the properties of extreme (and hence rare) weather is provided by running multiple34

simulations under each scenario, with each simulation beginning from a different initial35

state. A comparison between the two sets of simulations of the frequency of exceedance36

of a threshold or some other property of the extremes hence provides a measure of the37

anthropogenic role in that event (Stone and Allen 2005).38

One of the challenges in this climate modelling approach is the need to run a large39

number of simulations. In addition, models operating at low spatial resolution tend to40

reproduce the climatology of extreme weather poorly relative to higher resolution models41

(e.g. Wehner et al. 2014) and also do not always provide useful surrogates for higher42

resolution models in terms of the anthropogenic response in extreme weather (Wehner43

et al. 2015). Considering that models of the coupled atmosphere-ocean system also require44

a large spin-up time from standard initial condition perturbations in order to plausibly45

satisfy the ergodic assumption, full implementation of this climate modelling approach can46

be computationally prohibitive. Pall et al. (2011) proposed that computational efficiency47

could be achieved by running the simulations with an atmosphere (and land)-only model48

using prescribed ocean surface conditions. This approach not only has the advantage of49

increased computational efficiency, but also, if simulations are based on observed ocean50

conditions, of the removal of large biases in the ocean state that can exist in current51

atmosphere-ocean models.52

The Pall et al. (2011) approach has a catch, however, in that counterfactual natural-53

world ocean and sea-ice boundary conditions now have to be produced off-line, and there54

is no uniquely obvious way for doing so. A number of different approaches have been used,55

and these will be described in the next section. However, we argue below that in general56

these estimates are lacking in terms of a number of criteria. While these estimates are57

plausible and deserving of investigation, it would prove helpful for diagnosing components58

of uncertainty in event attribution calculations if there were a benchmark estimate that59

could be used to identify differences in results across atmospheric models and other variable60

aspects of experiment design. Hence, in this paper we develop a credible benchmark61

estimate of the natural-world sea surface temperature (SST) and sea ice concentration62

(SIC) boundary conditions. This is performed by estimating the warming attributing to63

anthropogenic emissions and then subtracting that estimate from the real-world state.64

We will refer to the factual real-world state as “All-Hist” (for historical all-forcings), the65

counterfactual natural-world SSTs (Section 4) and SICs (Section 5) developed here as the66

“Nat-Hist/CMIP5-est1 SSTs and SICs” (for historical natural-forcings scenario generated67

using simulations for the CMIP5 archive), and the attributable warming estimate used to68

calculate the Nat-HIST/CMIP5-est1 SSTs and SICs through subtraction from the All-Hist69

state as the “Nat-Hist/CMIP5-est1 attributable warming” (Section 4).70

These Nat-Hist/CMIP5-est1 SSTs and SICs are intended specifically as a benchmark71

for use by the International CLIVAR C20C+ D&A Project, an international multi-model72

effort using the atmospheric modelling approach to understand extreme weather in the73

context of anthropogenic climate change (Stone et al. 2019); in that sense this paper is74

intended as a traceable account of the experiment design adopted by the project. However,75

it is hoped that it will also prove useful for other related projects as well. It should also be76

made clear that this should not be the only SSTs and SICs used for Nat-Hist scenarios; the77

sensitivity of event attribution conclusions to the estimation of the Nat-Hist ocean found78

in several studies indicates that it is crucial that multiple estimates be explored (Pall et al.79

2011; Kay et al. 2011; Christidis et al. 2013; Christidis and Stott 2014; Shiogama et al.80

2014; Schaller et al. 2016).81
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2 Constructing counterfactual natural-world surface bound-82

ary conditions83

The Pall et al. (2011) atmospheric time-slice approach is based on four conditions (Risser84

et al. 2017):85

• The extreme event of interest must occur in the atmosphere (and/or land surface).86

• The event, and more specifically the metric comparing the event in the two scenarios,87

should be at most only weakly dependent on the ocean state, for instance of the88

occurrence of El Niño events (Risser et al. 2017).89

• If the preceding condition is not satisfied, then the aspect of the ocean state on which90

the event depends, for instance the frequency and anomalous properties of El Niño91

events, must be unaffected by anthropogenic forcing.92

• Short-term coupling between the atmosphere and ocean must not be important for93

the generation of the event (Trenberth et al. 2015; Dong et al. 2017); this could be94

an issue for instance for tropical cyclones, which churn up cold water from beneath95

the mixed layer and thus can undermine the surface conditions conducive to their96

existence and growth.97

While the first condition is fundamental, the other three can also be interpreted as as-98

sumptions.99

The atmospheric modelling approach has thus converted a modelling issue into an100

experiment design issue. Along with the forcings described above, such as greenhouse101

gas concentrations, we now need to prescribe SST and SIC states for both the factual and102

counterfactual scenario (Table 1). While the specification of the other boundary conditions103

follows easily from current practice (e.g. Gillett et al. 2016) or from the experiment design,104

the specification is not so obvious for the ocean and sea ice conditions. In this paper we105

will assume that the SSTs and SICs for the factual All-Hist simulations are based on106

observed values. In theory they could also be obtained from simulations of atmosphere-107

ocean models, but the advantage of using observed values is that it seems most consistent108

with the experiment design and it removes biases that exist in atmosphere-ocean model109

outputs. Either way, the exact method for specifying the All-Hist ocean and sea ice state110

is not important for this paper, which focuses on generation of the counterfactual natural-111

world SSTs and SICs.112

The counterfactual natural-world, hereafter “Nat-Hist” (for historical naturally-forced,113

of which the Nat-HIST/CMIP5-est1 estimate of SSTs and SICs is one plausible estimate),114

SSTs and SICs generally must be based on subtraction of a map of attributable change115

from the All-Hist values. To see why substraction from the All-Hist values is necessary,116

consider the situation where observed SSTs and SICs from the 2006-2015 period are used117

for the All-Hist scenario and the observed values from the approximately pre-industrial118

1851-1860 period are used for the Nat-Hist scenario. Suppose that an extreme event actu-119

ally occurs more frequently under El Niño conditions (so violating the second assumption):120

then it could matter a great deal whether two El Niño events occurred in one period but121

only one in the other, or whether the magnitude of the El Niño events differed between122

the two periods. Because of the small length of these periods relative to the time frame for123

robust statistical characterisation of El Niño events (possibly centuries), any differences124

could easily reflect sampling limitations rather than an actual anthropogenic influence on125

El Niño behaviour. Subtraction of an anthropogenic warming signal from the All-Hist126
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Table 1: List of time-varying boundary conditions for use in the “All-Hist” and “Nat-Hist”
scenarios in the C20C+ D&A project, an international climate modelling effort using
the Pall et al. (2011) atmospheric modelling approach to understand past and current
extreme weather in the context of anthropogenic climate change. The Nat-Hist/CMIP5-
est1 estimate of SSTs and SICs developed in this paper is one estimate of the Nat-Hist
scenario. The prescription of land cover/use in Nat-Hist scenarios is not set by the project
protocols, and thus depends on whether the relevant modeller considers the interest to be
in all anthropogenic forcing or in large-scale forcing.
Forcing All-Hist Nat-Hist family

Greenhouse gas concentrations Historical values Pre-industrial values
Anthropogenic aerosol burdens or emissions Historical values Pre-industrial values
Stratospheric ozone Historical values Pre-industrial values
Land cover/use Historical values Historical or pre-industrial values
Solar insolation Historical values Historical values
Natural aerosol burdens or emissions Historical values Historical values
Sea surface temperatures Historical values Modified historical values
Sea ice concentrations Historical values Modified historical values

SSTs, on the other hand, would ensure a like-for-like comparison in terms of the anoma-127

lous ocean states. Obviously the accuracy of this approach depends on the assumption128

that the effect of emissions on ocean variability is much smaller than sampling uncertainty129

arising from several decades of data.130

Within this paper, we will refer to the quantity being subtracted from the All-Hist131

SSTs as the “attributable warming” estimate, it being an estimate of the degree to which132

anthropogenic interference with the climate system has warmed the ocean. Note that while133

the Nat-Hist/CMIP5-est1 attributable warming estimate is unique, the Nat-Hist/CMIP5-134

est1 SSTs and SICs that result from its subtraction from the All-Hist SSTs and SICs can135

vary depending on the observational (or other) product used for the All-Hist values.136

3 Evaluating estimates of attributable warming137

We propose that there are a number of criteria for a benchmark Nat-Hist attributable138

warming estimate and the resulting Nat-Hist SSTs and SICs.139

Physical plausibility: They must be physically plausible. If the attributable warming140

estimate is subtracted from observed SSTs and SICs used for the All-Hist scenario,141

then at least the variability is physically plausible (assuming anthropogenic forcing142

has a minimal effect on ocean variability). So this condition applies more specifically143

to the attributable warming estimate.144

Robustness: The Nat-Hist SSTs and SICs must be robust against perturbations to the145

method used for estimating the attributable warming signal and against perturba-146

tions to the method used to generate SSTs and SICs from that attributable warming147

signal.148

Obviousness: A proposed benchmark will be more acceptable as a benchmark only if149

users consider it an obvious possible approach. While the above criteria may them-150

selves be criteria for the acceptance of a proposed benchmark, here we are referring151

to other factors, such as the usage of well-regarded data products and a preference152

for simplicity where possible.153
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Availability: Files containing the attributable warming estimate and/or the resulting154

Nat-Hist SSTs and SICs must be publicly downloadable, or code for their calculation155

must be publicly downloadable.156

A number of plausible candidates exist already. Estimates based on simulations of157

a single atmosphere-ocean climate model have been produced and used by a number of158

studies (Pall et al. 2011; Christidis et al. 2013; Shiogama et al. 2013; Christidis and Stott159

2014; Wolski et al. 2014; Schaller et al. 2016). These candidates are physically plausible, in160

that these climate models are explicitly constructed as physically plausible representations161

of the climate system. The climate model data themselves are readily accessible and the162

method of calculation is either straightforward or uses readily available code, depending163

on the details. However, the result is not robust to the selection of climate model (e.g.164

Pall et al. 2011), and typically available simulations from individual models provide poor165

sample sizes for accurate estimation of the attributable warming signal. Thus the selection166

of atmosphere-ocean climate model becomes important, and it is not obvious which one167

should be selected.168

An alternative approach is to base the estimate on observed data rather than climate169

models, using a map of observed linear trends in the historical record (Christidis and Stott170

2014; Sun et al. 2018). This certainly satisfies the physical plausibility criterion, as the real171

climate response is embedded in the observed trend (observational errors notwithstanding),172

even if it is partly hidden by sampling variability. Observed trends also fit the obviousness173

criterion, as observed trends are a frequent measure used in climate change research, and174

observed SST and SIC data products are widely available. However, the spatial patterns175

are not very robust, depending strongly on the interpolation method used to estimate176

temperatures over large areas of the ocean that were largely unmonitored a century ago177

(Deser et al. 2010; Hartmann et al. 2013; Kennedy 2014) as well as the specific period of178

time considered.179

Bichet et al. (2015) and Bichet et al. (2016) instead used a hybrid observations-climate-180

model approach, in which simulations of atmosphere-ocean climate models were used to181

calculate a time-invariant pattern, with the time-varying amplitude of that pattern cal-182

culated from the observational record. They concluded that the resulting attributable183

warming estimate reflected about half to three quarters of the actual response to anthro-184

pogenic forcing, depending on details of the methodology. In contrast to using observed185

trends, sensitivity to the period used in this pattern scaling approach may mostly reflect186

the availability of more data when longer periods are used. The method also would seem187

to satisfy the obviousness criterion. Physical plausibility rests on the assumption that the188

spatial patterns of forcings which have strong regional characteristics do not change over189

time, that the sensitivity of the climate system to forcings with different rates of change190

does not vary across those forcings, and that the response to natural forcings does not191

project onto the spatial pattern.192

4 Nat-Hist/CMIP5-est1 attributable warming and SSTs193

4.1 Data source194

Our proposed candidate for a benchmark attributable warming estimate follows exist-195

ing atmosphere-ocean climate model-based approaches, but uses multiple climate models196

instead of just one. This candidate uses “historical” (representing historical changes in cli-197

mate driven by both anthropogenic and natural forcings) simulations and “historicalNat”198

(driven by natural forcings only) simulations from the CMIP5 climate model database199
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(Taylor et al. 2012). These have become the international standard for estimating how we200

expect the average climate to have evolved over the past century (historical) and how we201

expect it might have evolved in the absence of anthropogenic interference (historicalNat)202

(Bindoff et al. 2013), so they can be considered an obvious option. These simulations203

have been generated using state-of-the-art coupled atmosphere-ocean models of the cli-204

mate system and thus are intended to account for all possible sources of climate variability205

on time scales ranging up to the full one and a half centuries covered, thus being explicitly206

designed to be physically plausible (although we are invoking an assumption that their207

linear average must be physically plausible too). They also provide a much larger sample208

size than a single model would, suggesting some robustness. Thus we adopt these simula-209

tions for estimation of the Nat-Hist/CMIP5-est1 attributable warming signal by taking the210

time-varying difference between the historical and historicalNat simulations (see below).211

The CMIP5 historical simulations start before the beginning of the 20th century but212

end in the year 2005, so we extend them to (and beyond) the present using CMIP5213

simulations driven with the RCP4.5 emissions scenario (“rcp45”) which continue on from214

the end of the historical simulations; the choice of this scenario is mostly dictated by higher215

availability of simulations. No such continuation exists for historicalNat simulations (some216

of which end later than 2005) so whenever a historicalNat simulation ends we adopt the217

final available year for use in subsequent years; the assumption of constant natural forcings218

underlies the RCP4.5 scenario and so this choice ensures that we are still diagnosing219

the response to anthropogenic forcing only. Note that application of 5-year temporal220

smoothing (explained below) means that values for post-end-of-simulation years in the221

final product are in fact informed by the last five available years of simulation.222

The simulations used are listed in Table 2. Selection is based on:223

• Availability on 1 April 2013.224

• Availability of monthly skin temperature output (see Section 4.3) from simulations225

following the historical, rcp45, and historicalNat scenarios.226

By selecting pairs of historical and historicalNat simulations which share initial condi-227

tions, we assume that long-term secular drift is cancelled through the subtraction of the228

latter from the former. In total 51 simulations for each scenario (historical&rcp45, his-229

toricalNat) from 19 CMIP5 models satisfy these criteria. All data are regridded to the230

1◦ × 1◦ longitude-latitude grid of the Hurrell et al. (2008), NOAA OI.v2 (Reynolds et al.231

2002), and HadISST1 (Rayner et al. 2003) observational sea surface temperature and sea232

ice coverage products, with data retained over ocean as well as over land.233

4.2 Method234

In summary, the estimation of the Nat-Hist/CMIP5-est1 attributable warming and SSTs235

uses the following steps. Further details are provided in subsequent subsections, but here236

we provide a summary for clarity. Let T (x,m, a, s, h) represent the skin temperature and237

SST (x,m, a, s, h) represent the sea surface temperature, both at spatial location x during238

month m and year a in simulation s run under historical scenario h. A bar over any239

independent variable denotes an average across all values, i.e. m̄ is the annual average.240

1. We take the monthly mean skin temperature output (see Section 4.3) from the241

CMIP5 historical and rcp45 simulations listed in Table 2 for T (x,m, a, s, historical&rcp45)242

and CMIP5 historicalNat simulations for T (x,m, a, s, historicalNat).243
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Table 2: List of CMIP5 “historical”, “rcp45”, and “historicalNat” simulations of
atmosphere-ocean models used for estimating the Nat-Hist/CMIP5-est1 attributable
warming signal. Simulation labels are those adopted by the CMIP5 data archive and
apply to all three scenarios. rcp45 simulations continue from historical simulations with
the handover on 1 January 2006, while historicalNat simulations end in different years,
depending on the model. A total of 51 simulations from 19 CMIP5 models for each of the
scenarios are included in the calculation.

CMIP5 Model CMIP5 simulation labels Last year of

HistoricalNat

simulations

BCC-CSM1-1 r1i1p1 2012
BNU-ESM r1i1p1 2005
CanESM2 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1 2012
CCSM4 r1i1p1, r2i1p1, r4i1p1, r6i1p1 2005
CNRM-CM5 r1i1p1 2012
CSIRO-Mk3-6-0 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1 2012
GFDL-CM3 r1i1p1 2005
GFDL-ESM2M r1i1p1 2005
GISS-E2-H-p1 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1 2012
GISS-E2-H-p3 r1i1p3, r2i1p3, r3i1p3, r4i1p3, r5i1p3 2012
GISS-E2-R-p1 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1 2012
GISS-E2-R-p3 r1i1p3, r2i1p3, r3i1p3, r4i1p3, r5i1p3 2012
HadGEM2-ES r1i1p1, r2i1p1, r3i1p1, r4i1p1 2018/2019
IPSL-CM5A-LR r1i1p1, r2i1p1, r3i1p1 2012
IPSL-CM5A-MR r1i1p1 2012
MIROC-ESM r1i1p1 2005
MIROC-ESM-CHEM r1i1p1 2005
MRI-CGCM3 r1i1p1 2005
NorESM1-M r1i1p1 2012
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2. We apply a five-year boxcar filter along the year dimension (see Section 4.5), result-244

ing in245

T 5year(x,m, a, s, h) = 1
5

∑a+2
a′=a−2 T (x,m, a′, s, h) for h ∈ {historical&rcp45, historicalNat}246

3. For the historicalNat scenario, if the last year alast of a simulation is earlier than247

year a+2 (because of the 5-year smoothing above), then we define the value in year248

a to be alast:249

T 5year(x,m, a, s, h) = T 5year(x,m, alast, s, h) for a+ 2 > alast.250

4. We average across all simulations in each scenario, hence251

T 5year(x,m, a, s̄, h) = 1
Ns(h)

∑Ns(h)
s=1 T 5year(x,m, a, s, h)252

(see Section 4.4). Note that the number of simulations Ns(h) is the same for both253

h ∈ {historical&rcp45, historicalNat} in our implementation.254

5. The Nat-Hist/CMIP5-est1 attributable warming estimate is the difference between255

the two scenarios:256

∆T 5year(x,m, a, s̄,Nat-Hist/CMIP5-est1 )257

= T 5year(x,m, a, s̄, historical&rcp45)− T 5year(x,m, a, s̄, historicalNat).258

6. The Nat-Hist/CMIP5-est1 SSTs are then calculated by substracting the Nat-Hist/CMIP5-259

est1 attributable warming estimate from the All-Hist (generally observed) SSTs:260

SST (x,m, a, s̄,Nat-Hist/CMIP5-est1 )261

= SST (x,m, a, s̄,All-Hist)−∆T 5year(x,m, a, s̄,Nat-Hist/CMIP5-est1 ).262

Any resulting SSTs that are less than the freezing point (-1.8◦C in the observational263

products used here for the All-Hist SSTs) are set to the freezing point.264

In the following subsections, we describe these steps in more detail and examine vari-265

ous aspects of the robustness of the Nat-Hist/CMIP5-est1 attributable warming estimate266

against decisions made in these steps.267

4.3 Selection of skin temperature268

The most obvious temperature measure to use for estimating changes in SSTs might be269

SST itself. However, because SST cannot go below the freezing point, it may not accurately270

portray changes in surface conditions in the polar regions. Pall et al. (2011) used 1.5m271

near-surface temperature partly for this reason. Here though we opt for skin temperature.272

It more closely matches SST in the ice-free open ocean, and over ice-covered regions it273

reports the temperature at the ice-air interface, and this interface is in fact the surface274

boundary as seen by atmospheric models.275

4.4 Averaging across simulations276

Either models or simulations could be treated as the basic unit for averaging. When277

considering differences between historical&rcp45 and historicalNat simulations over the278

recent past and near future, as here, natural autonomous variability of the climate system279

accounts for a large fraction of the spread of trends across simulations, which means that280

it is a common practice to consider each simulation as equally probable (e.g. Hegerl et al.281

2007; Hoegh-Guldberg et al. 2014). Our estimate follows this practice, which also provides282

a higher effective sample size that proves useful for reducing sampling noise at small283

scales. Taking only one simulation (the “r1ip1” or “r1i1p3” simulation for each scenario,284

yielding 19 simulations per scenario in total) per model yields a similar difference map285

at large scales, but with some regional differences (Figure 1). The rougher appearance286
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-0.5
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-1.0

Figure 1: Estimates of the attributable warming for January 2001 using all selected CMIP5
simulations (left) or only one simulation (per scenario) per climate model (right). A 5-year
boxcar filter has been used in the year dimension in all calculations (Section 4.5).

No temporal smoothing 5-year boxcar �lter

-1.0-0.5 0.0

K

0.5 1.0

Figure 2: Maps of the difference between January 2006 and January 2001 in estimated
attributable warming. The left map is produced without temporal smoothing, while the
right map uses a 5-year boxcar filter applied to January data (i.e. the average of the
maps from January 2004, 2005, 2006, 2007, and 2008 minus the average for the maps from
January 1999, 2000, 2001, 2002, and 2003).

of the pattern when only one simulation per model is used suggests that a large part287

of this difference is sampling noise in the smaller data set (19 versus 51 simulations per288

simulation).289

4.5 Stability from year to year290

Despite the use of 51 simulations for each of the historical&rcp45 and historicalNat sce-291

narios, there may still be noticeable sampling noise at the grid scale of the attributable292

warming estimates, which could be important for simulation of regional extreme weather.293

Anthropogenic forcing is changing only slightly from year to year, so comparison of nearby294

years should reveal little difference if sampling noise is minimal. Figure 2 compares the295

attributable warming estimate for January 2006 against the estimate for January 2001296

when Step #2 (the 5-year smoothing) is skipped and reveals that, despite use of a large297

number of simulations, regional year-to-year variations as large as 0.5◦C arise over the298

non-polar ocean. One option would be to impose some spatial smoothing (Shiogama et al.299

2013), but this could remove local warming gradients that are important for the generation300

of extreme weather on and near coasts. Another option is to smooth in time (Shiogama301

et al. 2013). Use of a 5-year boxcar filter (note that no overlap occurs for the 2001 and302

2006 calculations) applied separately for each calendar month reduces those variations to303

about 0.1◦C (in ice-free areas) of the global average warming.304
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Figure 3: Map of the difference between January 1997 and January 1992 in estimated
attributable warming. No temporal filter has been applied in the calculation.

One potential issue with a temporal filter is that it smooths out the climate response305

to volcanic eruptions. If the sea surface temperature response to a major volcanic eruption306

is linearly additive with the response to anthropogenic forcing (Meehl et al. 2003; Gillett307

et al. 2004; Shiogama et al. 2012), then the volcanic responses in the historical&rcp45308

and historicalNat simulations will cancel, leaving no imprint on the attributable warming309

estimate. However, if they are not linearly additive then there may be an imprint on310

the attributable warming estimate, meaning that it will not be appropriate to apply a311

temporal filter. Figure 3 shows the difference in attributable ocean warming estimates for312

January 1992 (soon after the major eruption of Mt. Pinatubo) and for January 1997 (a313

while after, with no major eruptions occurring in the interim). No temporal smoothing314

was used for this map. The magnitude of the differences is comparable to those seen315

in the left panel of Figure 2, which is also a comparison of estimates with no temporal316

smoothing between Januaries five years apart but during an eruptionless period. More317

systematically, the root-mean-squared differences between the spatial patterns of estimated318

attributable warming over the ocean for each calendar month (not shown) do not indicate319

anything special about the years during and following the major Mt. Agung, El Chichón,320

or Mt. Pinatubo eruptions. We therefore adopt the 5-year boxcar smoothing in all further321

calculations.322

4.6 Amplitude of response323

Is the estimated attributable warming plausible? We expect the Nat-Hist/CMIP5-est1324

SSTs to have a near-zero trend, because the historicalNat simulations on which the Nat-325

Hist/CMIP5-est1 attributable warming calculation is predicated have a near-zero trend326

on multi-decadal time-scales. The 1961-2015 trends in the All-Hist SSTs based on the327

Hurrell et al. (2008) and NOAA OI.v2 observed products are shown in Figure 4 along328

with the Nat-Hist/CMIP5-est1 SSTs calculated by subtracting the Nat-Hist/CMIP5-est1329

attributable warming signal from the observed All-Hist SSTs. While there is little long-330

term trend over the Indian, South Pacific, and North Atlantic Oceans, sizeable areas of331

the North Pacific, South Atlantic, and Antarctic Oceans have cooling trends in the Nat-332

Hist/CMIP5-est1 SSTs that rival the magnitude of some of the warming trends in the333

All-Hist observations. The Antarctic cooling results from the observed cooling magnified334

by subtraction of a non-zero attributable warming signal in the CMIP5 data; it may be335

relevant that observational monitoring is quite poor in this area (better since 1982 with336

satellite monitoring). The North Pacific does not warm as much as other basins in the337
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Figure 4: Map of 1961-2015 trends in All-Hist ocean temperatures, as recorded in Hurrell
et al. (2008) and NOAA OI.v2 (left), and in Nat-Hist/CMIP5-est1 sea surface tempera-
tures calculated by subtracting the Nat-Hist/CMIP5-est1 attributable warming estimate
from the Hurrell et al. (2008) and NOAA OI.v2 data (right). Note that the Hurrell et al.
(2008) product adopts NOAA OI.v2 in later decades, so here we have simply extended
Hurrell et al. (2008) with the regular NOAA OI.v2 updates.

All-Hist map, possibly due to aliasing with the Pacific Decadal Oscillation which has gone338

from the negative to the positive to the negative phase during this period.339

Overall, there is a 0.15◦C cooling over the 50◦S–50◦N ocean surface (a 0.17◦C cooling340

including all latitudes) during the 1961–2015 period in the Nat-Hist/CMIP5-est1 SSTs341

when it is based on the Hurrell et al. (2008)/NOAA OI.v2 observational sea surface tem-342

perature product, compared to a 0.51◦C All-Hist warming with that product (0.45◦C343

warming including all latitudes). If instead the HadISST1 observed SST product (Rayner344

et al. 2003) is used, then the Nat-Hist/CMIP5 SSTs cool by 0.18◦C compared to a 0.48◦345

warming of the observed All-Hist ocean over 50◦S–50◦N, or 0.19◦C cooling compared to346

0.43◦C warming globally. In comparison, the CMIP5 historical and historicalNat simula-347

tions warm (in skin temperature) by 0.66◦C and 0.08◦C respectively over the 50◦S–50◦N348

ocean during 1961-2010 (the value for All-Hist and Nat-Hist/CMIP5-est1 SSTs over that349

period is a 0.45◦C warming and a 0.13◦C cooling respectively).350

We can also evaluate the magnitude of the response through regression against the351

observed record. We take the global mean and annual mean skin temperatures over ocean352

areas averaged across all of the historical&rcp45 CMIP5 simulations listed in Table 2353

(T (x̄, m̄, a, s̄, historical&rcp45)), do the same for the historicalNat simulations (T (x̄, m̄, a, s̄, historicalNat)),354

and take the global mean from the Hurrell et al. (2008) observational (All-Hist) product355

of sea surface temperatures (SST (x̄, m̄, a, 0,All-Hist), where the “0” denotes the single356

realisation). We then regress 5-year-averages (a5year) of these historical&rcp45 and his-357

toricalNat signals using the total least squares regression approach (Allen and Stott 2003,358

v3.1.2 code at http://climate.web.runbox.net/detect lib/). If β represents a regression359

coefficient and ǫ(a5year) represents the residual in the regression, then360

SST (x̄, m̄, a5year, 0,All-Hist)

= βhistorical&rcp45 (T (x̄, m̄, a5year, s̄, historical&rcp45)− ǫhistorical&rcp45(a5year))

+ βhistoricalNat (T (x̄, m̄, a, s̄, historicalNat)− ǫhistoricalNat(a5year)) + ǫobserved(a5year).

(1)

The residual is compared against available skin temperature data from unforced (i.e. no361

changes in external boundary conditions beyond the diurnal and annual cycles) “piCon-362

trol” simulations from all of the CMIP5 models listed in Table 2 (except no data is available363
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Table 3: 90% confidence ranges on regression coefficients from 2-way regression of the
CMIP5 historical&rcp45 and historicalNat climate model output against the Hurrell et al.
(2008) observed sea surface temperature record. Values marked with asterisks fail the
goodness-of-fit test on the residuals. The confidence ranges and goodness-of-fit are es-
timated with unforced simulations providing 79 samples for 110-year trends and 175 for
50-year trends.
Period Domain Annual January April July October

1901–2010 Ocean, global 0.87,1.16* 0.83,1.12* 0.87,1.18* 0.88,1.19* 0.87,1.15*
1901–2010 Ocean, 50◦S–50◦N 0.91,1.19* 0.87,1.16* 0.90,1.20* 0.91,1.20* 0.91,1.18*
1961–2010 Ocean, global 0.58,1.02 0.47,0.96 0.62,1.08 0.64,1.09 0.55,0.99
1961–2010 Ocean, 50◦S–50◦N 0.62,1.05 0.54,0.99 0.65,1.09 0.65,1.09 0.60,1.03

for BCC-CSM-1). The 90% confidence range on the regression coefficient for the response364

to anthropogenic forcing is listed in Table 3 for a number of periods, domains, and months365

of the year. No years past 2010 are considered in these regressions due to availability of366

CMIP5 climate model output.367

For the century-long time scale, the most likely estimates for the regression coefficients368

are near 1, meaning that the magnitude of the long-term change in the Nat-Hist/CMIP5-369

est1 attributable warming estimate is consistent with the magnitude of the observed trends.370

However, the residual of the regression is significantly larger than would be expected371

with an adequate fit. This inconsistency results from a warm bias in the CMIP5 histor-372

ical&rcp45 simulations relative to observed values at the beginning of the 20th Century373

and a relative cold bias in the middle of the century, which can be at least partially re-374

duced by considering the responses to greenhouse gas forcing and anthropogenic aerosols375

forcing separately, i.e. through a regression analysis that isolates these responses (Ribes376

and Terray 2013).377

A more relevant analysis, however, would examine the 1961–2010 period, both because378

the observational monitoring is more comprehensive for this period and because it more379

closely matches with periods likely to be examined in the C20C+ D&A Project and similar380

investigations. Because the temporal profile of the aerosol and greenhouse gas responses is381

similar (but opposite) over the past half century, a regression analysis distinguishing only382

anthropogenic and natural signals over the past half-century is able to produce an adequate383

fit to the observed record over this period, but at the cost of regression coefficients that384

are barely consistent with 1 (Table 3). Thus, it may be possible to improve the accuracy385

of the Nat-Hist/CMIP5-est1 attributable warming estimate through adjustments based386

on a multi-signal regression analysis such as is performed in this test. However, we note387

that recent progress in data recovery and analysis have tended to increase estimates of the388

observed rate of warming in comparison to the ocean temperature products considered389

above (Karl et al. 2015). Also, sea surface temperatures in the past few years have been390

markedly higher than during the decade ending in 2010 (the last decade used for the391

regression analysis performed here), suggesting that the existence of the discrepancy may392

be sensitive to the choice of period. In light of this uncertainty, the Nat-Hist/CMIP5-est1393

attributable warming estimate appears to have an acceptable possible warm bias and that394

the added complexity of a regression-based adjustment is not required.395
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5 Sea ice coverage396

Unfortunately, the attributable change in sea ice coverage cannot be diagnosed in the same397

manner as the attributable ocean warming. Regional biases in sea ice extent in the CMIP5398

models (Mahlstein et al. 2013; Flato et al. 2013; Notz 2014), as well as inconsistencies in399

subtracting a mean difference from a temporally-varying observed extent, lead to implausi-400

ble Nat-Hist estimates. Recognising this, Pall et al. (2011) instead developed an approach401

to alter sea ice coverage in a manner that is consistent with the estimated Nat-Hist SSTs.402

This method involves determining a simple functional form to the SST–SIC relationship403

and modifying the All-Hist ice coverage using this function. Pall et al. (2011) adopted a404

function that depends on a linear fit passing through the freezing-point/full-coverage point405

and the median temperature/coverage point of all intermediate-coverage areas as deter-406

mined from observed grid-cell-resolution data, the function being estimated separately for407

each hemisphere. The function then followed three basic steps (see inset Figure 5):408

• If the Nat-Hist temperature is below the freezing point, enforce full coverage.409

• While at temperatures above the intercept of the linear fit and no-coverage, maintain410

the All-Hist coverage.411

• While the temperature is between the freezing point and the intercept of the linear412

fit and no-coverage, increase the coverage at the rate indicated by the linear fit.413

The approach has been used by a number of recent studies (Christidis et al. 2013; Sh-414

iogama et al. 2013; Christidis and Stott 2014), but its performance has yet to be examined415

in detail. We adopt a similar function here except that the intermediate-coverage section416

is estimated using a bin-based approach, as a check to confirm an approximately linear re-417

lationship. We calculate the median temperature in each of 100 equally-sized ice-coverage418

bins, and the new function is the line that connects the freezing-point/full-coverage point419

and the centre of mass of all of the bin medians. The calculations are performed on ob-420

served temperature/ice-coverage data over the 2001-2010 period using the NOAA OI.v2421

observationally-based dataset (Reynolds et al. 2002). The result ends up being similar422

to the linear fit of Pall et al. (2011) (dashed red versus dashed blue lines in the plots423

in the top two rows of Figure 6). This bin-based empirical fit has a slope of φ(x) and424

a no-coverage intercept at SSTopen(x), and is estimated and applied separately for the425

Northern and Southern Hemispheres (denoted via dependence on location x).426

Given this function, the algorithm for determining the Nat-Hist ice coverage follows a427

series of steps, listed in Figure 5. The resulting changes are illustrated in Figure 6, when428

the Nat-Hist/CMIP5-est1 attributable warming estimate is applied to the NOAA OI.v2429

observational product. The profile of the centre-of-mass of the bins (solid red lines in the430

top and middle left panels of Figure 6) is nearly linear, the linear fit (dotted red line) is431

very close to the linear fit used by Pall et al. (2011). Because of the way the function432

starts increasing ice coverage deterministicly at SSTopen(x), the visual difference between433

the SST–SIC scatter before (top and middle left panels) and after (top and middle central434

panels) is a thinning of the scatter at low SIC values. A notable issue is that the function is435

limited in its ability to handle attributable coolling (i.e. sea ice retreat due to the Nat-Hist436

conditions being warmer than the observed/All-Hist conditions). In particular, because437

available observational products fix surface temperature to the freezing point when ice438

coverage is full, it is not possible to thin the full-coverage ice in a sensible way following439

this sort of method. One solution would be to use skin temperature, but the required440

multi-decadal observations are lacking. Fortunately, for the intended application here this441

issue is not relevant because no regions near sea ice exhibit an attributable cooling.442
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Figure 5: The algorithm used for estimating counterfactual Nat-Hist fractional
sea ice coverage, SIC(x,m, a, 0,Nat-Hist), in a cell x on the target spatial grid
during month m of year a. The inputs are the factual All-Hist (observed)
sea surface temperature, SST (x,m, a, 0,All-Hist), and fractional sea ice coverage,
SIC(x,m, a, 0,All-Hist), along with the attributable warming estimate for the location,
∆T (x,m, a, s̄,Nat-Hist/CMIP5-est1 ). The inset shows example cases schematically. The
s variable and “-Hist” in the All-Hist and Nat-Hist variable values have been omitted in
the figure for conciseness. SSTfreeze is the freezing temperature of sea water (-1.8◦C in
the NOAA OI.v2 observationally-based data product). See text for further details.

While the results in Figure 6 look plausible, we can evaluate the method more directly443

by using it to estimate All-Hist sea ice coverage from observed sea surface temperatures,444

and then comparing against the actual observed sea ice coverage. Usage of the algorithm445

as an actual predictor, rather than a delta on existing values, should be a strong test. To446

do this, the sea ice coverage is defined:447

• As full when SST (x,m, a, 0,All-Hist) = SSTfreeze448

(note SST (x,m, a, 0,All-Hist) ≥ SSTfreeze);449

• As φ(x) · (SST (x,m, a, 0,All-Hist)− SSTopen(x))450

when SSTfreeze < SST (x,m, a, 0,All-Hist) < SSTopen(x);451

• As zero when SSTopen(x) < SST (x,m, a, 0,All-Hist).452

Results are shown in Figure 7. The estimated values tend to lag in both the spring453

and autumn, reflecting a lack of a consideration of freezing or melting physics in the454

algorithm. Coverage also tends to be overestimated in the Arctic during the winter by455
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about 1 million km2. As seen in the maps, there can be some regional differences which456

could be relevant for the generation of extreme weather over nearby land. However,457

considering the algorithm is intended only for estimating perturbations from observed458

conditions, this usage as a direct predictor should be considered an indication of what the459

maximum possible errors can be, rather than what they are likely to be in regular usage.460

Does the method produce expected near-zero trends in Nat-Hist/CMIP5-est1 sea461

ice coverage? Figure 8 shows the trends over the 1961-2015 in the All-Hist and Nat-462

Hist/CMIP5-est1 sea ice concentration when using the Hurrell et al. (2008) and NOAAOI.v2463

products. In the Northern Hemisphere, the Nat-Hist/CMIP5-est1 SICs increase north of464

Norway and adjacent to the Kamchatka Peninsula and the Kuril Islands at a rate compa-465

rable to the fastest retreat seen in the All-Hist SICs. In other regions there is little change466

in the Nat-Hist/CMIP5-est1 SICs, so overall the Northern Hemisphere Nat-Hist/CMIP5-467

est1 advance is about half the size of the All-Hist retreat. Over the Southern Hemisphere,468

however, there is a widespread advance of Nat-Hist/CMIP5-est1 SICs, in comparison to469

little trend in the All-Hist SICs. It is difficult to be sure about the accuracy of the ob-470

served SICs around Antarctica before 1982 on which these trend calculations are based,471

but needless to say such a large Nat-Hist/CMIP5-est1 advance is not what would be ex-472

pected under the absence of anthropogenic forcing. This Southern Hemisphere result is473

entirely consistent with the anthropogenic ocean warming around Antarctica in the CMIP5474

historical&rcp45 simulations and the lack of warming in observational products. As such475

it does not really serve as a test of the sea ice algorithm used here, but rather as a flag on476

a regional warming in the CMIP5 historical&rcp45 simulations that is not supported by477

the observational record.478

6 Discussion479

This paper has described the development of an estimate of the ocean warming and associ-480

ated sea ice retreat attributable to anthropogenic emissions, for use in generating a scenario481

(dubbed Nat-Hist/CMIP5-est1) of what the ocean surface might have been in the absence482

of those emissions. This estimate is based on the difference in multi-model-mean skin tem-483

peratures of simulations available in the CMIP5 database, between simulations forced with484

historical anthropogenic and natural drivers versus simulations forced by natural drivers485

only. In Section 3 we proposed four criteria for a benchmark estimate: physical plausibil-486

ity, robustness, obviousness, and availability. Here we evaluate the Nat-Hist/CMIP5-est1487

SSTs and SICs against these criteria.488

Considering the nature of the underlying source of data, the Nat-Hist/CMIP5-est1 at-489

tributable warming and resulting SSTs and SICs are physically plausible. The underlying490

climate models are explicitly constructed to simulate the interactions and evolution of the491

various physical components of the climate system. Comparisons against the observational492

record suggest that the Nat-Hist/CMIP5-est1 attributable warming estimate may over-493

estimate the global amplitude of the warming attributable to anthropogenic emissions.494

In general the regional Nat-Hist/CMIP5-est1 SSTs appear plausible, but the long-term495

trends in Nat-Hist/CMIP5-est1 SICs flag some regions, particularly near the sea ice edge,496

where the attributable warming estimate is not specifically supported by the observational497

record. This is the most significant possible weakness identified here.498

The Nat-Hist/CMIP5-est1 attributable warming estimate and resulting SSTs and SICs499

are robust against perturbations to data selection, possible nonlinearities due to the oc-500

currence of volcanic eruptions, and choice of year. We argue that the data source, possibly501

the most used in the world for detection and attribution purposes, and historical-minus-502
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historicalNat-based method are common enough to satisfy the obviousness criterion. Es-503

timates based on a single atmosphere-ocean climate model suffer from the issue that the504

method of selecting the model is not universally obvious, and results appear to be sen-505

sitive to that issue; in contrast the Nat-Hist/CMIP5-est1 attributable warming estimate506

appears robust against the exact method of selecting simulations from available climate507

models because of the large pool of simulations and models used (Section 4.4).508

In terms of availability, the data products used consist of easily accessible observational509

products and CMIP5 output, and the methodology is simple enough that it should be510

straightforward to reproduce. Moreover, the Nat-Hist/CMIP5-est1 attributable warming511

estimate, as well as the Nat-Hist/CMIP5-est1 SSTs and SICs resulting from application to512

both the combined Hurrell et al. (2008) and NOAA OI.v2 (labeled as NOAA OI.v2) obser-513

vational product and the HadISST1 observational product are freely downloadable online514

at http://portal.nersc.gov/c20c/data/C20C/ as part of the C20C+ D&A project, as is the515

code for their generation at http://portal.nersc.gov/c20c/experiment.html#TOOLS..516

Some recent studies have conducted factual real-world versus counterfactual natural-517

world experiments under a weather hindcast setup (Takayabu et al. 2015; Pall et al. 2017;518

Wehner et al. 2019). In these experiments, a standard ensemble hindcast is compared519

against a modified hindcast in which SSTs, initial boundary conditions, and lateral bound-520

ary conditions for a regional downscaling model are modified through subtraction of an at-521

trbutable anthropogenic component. Using the same method and CMIP5 models described522

above for the Nat-Hist/CMIP5-est1 attributable SST warming, we have calculated consis-523

tent Nat-Hist/CMIP5-est1 attributable sea level pressure change and attributable three-524

dimensional change in atmospheric geopotential height, temperature, specific humidity,525

zonal wind, and meridional wind (available at http://portal.nersc.gov/c20c/data/C20C/).526

With this set of attributable changes, it will be possible to compare and contrast the hind-527

cast approach with the free-running global climate model approach, under a controlled528

experiment design.529

However, this estimate is by no means the only possible one, and even if it is adopted530

as a benchmark it should not be used exclusively. In addition to existing estimates de-531

scribed in Section 3, here we briefly mention other possible estimates related to this Nat-532

Hist/CMIP5-est1 estimate:533

Sampling of amplitude uncertainty: If we assume separability of the attributable534

warming pattern and the amplitude of that pattern, the regression analysis described535

in Section 4.6 can also calculate the probability distribution of values for the regres-536

sion coefficient informed by observed trends. Usage of the same pattern but different537

amplitudes corresponding to specified quantiles of this probability distribution can538

yield markedly different estimates of the magnitude of the role of anthropogenic539

emissions in the chance of extreme weather (Pall et al. 2011).540

Sampling individual atmosphere-ocean climate models : One possible criticism of541

the attributable warming estimate used for the Nat-Hist/CMIP5-est1 scenario is that542

it is not necessarily physically consistent, i.e. in a nonlinear climate system averaging543

across models may produce changes in circulation that are not physically plausible.544

This issue would be remedied by selecting simulations from just a single climate545

model. Indeed, the few studies that have used more than one such estimate have546

found major differences in results, highlighting the importance of examining mul-547

tiple estimates (Pall et al. 2011; Kay et al. 2011; Christidis et al. 2012; Shiogama548

et al. 2014; Christidis and Stott 2014; Schaller et al. 2016). The 5-year temporal549

filter could be expanded to deal with the smaller sample size of simulations (Sh-550
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iogama et al. 2013, Section 4.5), but not too much; spatial smoothing is another551

option (Shiogama et al. 2013) but it would remove much of the small-scale fea-552

tures that are vital aspects of the differences between single-model estimates. Thus,553

single-model estimates would likely retain a substantial amount of sampling noise.554

Following the above methods (but using an 11-year temporal filter), a number of555

single-model attributable warming estimates have been calculated and are provided556

at http://portal.nersc.gov/c20c/data/C20C/.557

Usage of a different sea ice coverage estimator: Differences in treatment of how sea558

ice coverage should be altered may be important for attribution studies at high lat-559

itudes (Angélil et al. 2014). Permutations on the method developed here, including560

seasonally-varying φ and SSTopen parameters for the SST-SIC function, are one op-561

tion. Otto et al. (2015) used a different method following from the development562

of the HadISST1 product, but it has substantial biases when applied to other ob-563

servational products (J. Imbers, pers. comm.). A method that can yield plausible564

sea ice retreat would, however, be useful for examining a counterfactual world with-565

out aerosol emissions (but with historical greenhouse gas emissions), for instance.566

Overall, though, the tests conducted above suggest that biases in attributable SST567

warming may be the biggest source of error in natural-world SIC estimates.568

Beyond the variations described above, other possibilities could be more observa-569

tionally focussed (Christidis and Stott 2014), for instance using pattern scaling methods570

(Bichet et al. 2015; 2016). Ultimately, it is hoped that both hardware and software will571

develop to the point where large-ensemble, high-spatial-resolution experiments are possi-572

ble with fully coupled atmosphere-ocean-land-ice models, at which point offline estimation573

of the attributable ocean warming and sea ice retreat will become obsolete.574
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Figure 6: The estimation of attributable changes in sea ice coverage as implemented for the
Nat-Hist/CMIP5-est1 scenario. The top two rows show data for the Northern Hemisphere
(top row) and Southern Hemisphere (middle row). The left panels of these two rows show
the sea ice coverage and sea surface temperature relationship during the 2001-2010 period
in the NOAA OI.v2 observational product (Reynolds et al. 2002) (dots, only a limited
number of points are displayed in order to avoid saturation), the Pall et al. (2011) linear
fit for adjusting ice coverage (blue line, with the diamonds marking the points used to
calculate the line), and the median temperature for each coverage bin (solid red line)
and the resulting linear fit (dashed red line) used for the Nat-Hist/CMIP5-est1 scenario.
The middle panels in the top two rows show the resulting temperature and coverage
data estimates for the Nat-Hist/CMIP5-est1 scenario, while the right panels show the
progression from observed values to Nat-Hist/CMIP5-est1 values. The bottom left panel
shows the monthly coverage time series for both hemispheres (North in red, South in blue)
as observed (solid) and under the Nat-Hist/CMIP5-est1, based on NOAA OI.v2. The two
maps illustrate Arctic coverage for November 2009 from observed All-Hist (middle) and
for the Nat-Hist/CMIP5-est1 scenario (right).
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Figure 7: Comparison of sea ice coverage predicted directly from observed All-Hist sea
surface temperatures using the algorithm described in Figure 5 versus observed All-Hist
values. Left panel: Monthly mean values for the Northern (red) and Southern (blue)
Hemispheres from the NOAA OI.v2 observational product (solid) and as estimated from
the NOAA OI.v2 sea surface temperatures (dotted). Middle panel: Observed sea ice
concentration according to NOAA OI.v2 for January 2001. Right panel: Predicted sea ice
concentration based on NOAA OI.v2 sea surface temperatures.

Figure 8: Map of 1961-2015 trends in All-Hist sea ice concentration, as recorded in Hurrell
et al. (2008) (left), and in Nat-Hist/CMIP5-est1 sea ice concentration calculated from the
Hurrell et al. (2008) and NOAA OI.v2 reference (right).
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