Mean State

Download Data
Period Mean (original grids) [1]
Model Period Mean (intersection) [1]
Benchmark Period Mean (intersection) [1]
Model Period Mean (complement) [1]
Benchmark Period Mean (complement) [1]
Bias [1]
Phase Shift [months]
Bias Score [1]
Seasonal Cycle Score [1]
Spatial Distribution Score [1]
Overall Score [1]
Benchmark [-] 0.455
v3.LR.historical_0101 [-] 0.614 0.617 0.455 0.610 0.491 0.162 1.73 0.261 0.746 0.994 0.667
v3alt.LR.highECS001.historical [-] 0.626 0.621 0.455 0.631 0.167 1.97 0.247 0.706 0.985 0.646
v3alt.LR.highECS003.historical [-] 0.624 0.622 0.455 0.626 0.167 1.97 0.250 0.708 0.990 0.649
v3alt.LR.lowECS001.historical [-] 0.594 0.602 0.455 0.585 0.473 0.147 1.72 0.300 0.752 0.995 0.682
v3alt.LR.lowECS002.historical [-] 0.563 0.582 0.455 0.540 0.490 0.127 1.49 0.354 0.794 0.990 0.713
v3alt.LR.lowECS003.historical [-] 0.572 0.588 0.455 0.553 0.486 0.133 1.54 0.342 0.785 0.991 0.706
Download Data
Period Mean (original grids) [1]
Model Period Mean (intersection) [1]
Benchmark Period Mean (intersection) [1]
Model Period Mean (complement) [1]
Benchmark Period Mean (complement) [1]
Bias [1]
Phase Shift [months]
Bias Score [1]
Seasonal Cycle Score [1]
Spatial Distribution Score [1]
Overall Score [1]
Benchmark [-] 0.541
v3.LR.historical_0101 [-] 0.799 0.618 0.541 0.884 0.0768 1.30 0.382 0.820 0.799 0.667
v3alt.LR.highECS001.historical [-] 0.811 0.639 0.541 0.892 0.0974 1.41 0.353 0.810 0.771 0.645
v3alt.LR.highECS003.historical [-] 0.811 0.639 0.541 0.891 0.0978 1.30 0.398 0.825 0.757 0.660
v3alt.LR.lowECS001.historical [-] 0.817 0.651 0.541 0.894 0.110 1.19 0.391 0.845 0.698 0.645
v3alt.LR.lowECS002.historical [-] 0.801 0.635 0.541 0.877 0.0933 1.19 0.441 0.839 0.771 0.684
v3alt.LR.lowECS003.historical [-] 0.812 0.649 0.541 0.887 0.108 1.15 0.426 0.853 0.743 0.674
Download Data
Period Mean (original grids) [1]
Model Period Mean (intersection) [1]
Benchmark Period Mean (intersection) [1]
Model Period Mean (complement) [1]
Benchmark Period Mean (complement) [1]
Bias [1]
Phase Shift [months]
Bias Score [1]
Seasonal Cycle Score [1]
Spatial Distribution Score [1]
Overall Score [1]
Benchmark [-] 0.529
v3.LR.historical_0101 [-] 0.684 0.611 0.529 0.824 0.0820 2.09 0.589 0.666 0.812 0.689
v3alt.LR.highECS001.historical [-] 0.708 0.641 0.529 0.837 0.113 2.04 0.535 0.671 0.741 0.649
v3alt.LR.highECS003.historical [-] 0.692 0.616 0.529 0.835 0.0876 2.21 0.585 0.641 0.804 0.677
v3alt.LR.lowECS001.historical [-] 0.688 0.614 0.529 0.828 0.0854 1.67 0.584 0.744 0.790 0.706
v3alt.LR.lowECS002.historical [-] 0.656 0.579 0.529 0.802 0.0503 1.32 0.595 0.818 0.825 0.746
v3alt.LR.lowECS003.historical [-] 0.664 0.585 0.529 0.815 0.0558 1.74 0.611 0.747 0.843 0.734
Download Data
Period Mean (original grids) [1]
Model Period Mean (intersection) [1]
Benchmark Period Mean (intersection) [1]
Model Period Mean (complement) [1]
Benchmark Period Mean (complement) [1]
Bias [1]
Phase Shift [months]
Bias Score [1]
Seasonal Cycle Score [1]
Spatial Distribution Score [1]
Overall Score [1]
Benchmark [-] 0.521
v3.LR.historical_0101 [-] 0.571 0.585 0.521 0.536 0.482 0.0637 1.75 0.505 0.728 0.988 0.741
v3alt.LR.highECS001.historical [-] 0.596 0.607 0.521 0.567 0.404 0.0865 1.78 0.474 0.722 0.987 0.728
v3alt.LR.highECS003.historical [-] 0.584 0.596 0.521 0.553 0.397 0.0749 1.79 0.491 0.723 0.989 0.734
v3alt.LR.lowECS001.historical [-] 0.582 0.593 0.521 0.551 0.455 0.0726 1.58 0.489 0.760 0.987 0.745
v3alt.LR.lowECS002.historical [-] 0.562 0.576 0.521 0.526 0.446 0.0551 1.51 0.521 0.775 0.989 0.762
v3alt.LR.lowECS003.historical [-] 0.568 0.580 0.521 0.537 0.450 0.0588 1.57 0.514 0.770 0.988 0.757
Download Data
Period Mean (original grids) [1]
Model Period Mean (intersection) [1]
Benchmark Period Mean (intersection) [1]
Model Period Mean (complement) [1]
Benchmark Period Mean (complement) [1]
Bias [1]
Phase Shift [months]
Bias Score [1]
Seasonal Cycle Score [1]
Spatial Distribution Score [1]
Overall Score [1]
Benchmark [-] 0.539
v3.LR.historical_0101 [-] 0.646 0.612 0.539 0.776 0.0729 2.22 0.610 0.646 0.826 0.694
v3alt.LR.highECS001.historical [-] 0.673 0.643 0.539 0.788 0.104 2.13 0.555 0.654 0.752 0.654
v3alt.LR.highECS003.historical [-] 0.652 0.616 0.539 0.789 0.0770 2.35 0.607 0.617 0.817 0.680
v3alt.LR.lowECS001.historical [-] 0.646 0.612 0.539 0.777 0.0724 1.75 0.611 0.731 0.807 0.716
v3alt.LR.lowECS002.historical [-] 0.611 0.577 0.539 0.744 0.0377 1.36 0.613 0.814 0.839 0.755
v3alt.LR.lowECS003.historical [-] 0.618 0.581 0.539 0.763 0.0414 1.84 0.636 0.734 0.859 0.743

Temporally integrated period mean

BENCHMARK MEAN
Data not available
Data not available
MODEL MEAN
Data not available
Data not available
BIAS
Data not available
Data not available
BIAS SCORE
Data not available
Data not available
BENCHMARK MAX MONTH
Data not available
Data not available
MODEL MAX MONTH
Data not available
Data not available
DIFFERENCE IN MAX MONTH
Data not available
Data not available
SEASONAL CYCLE SCORE
Data not available
Data not available

SPATIAL TAYLOR DIAGRAM
Data not available
MODEL COLORS
Data not available

Spatially integrated regional mean

MODEL COLORS
Data not available
REGIONAL MEAN
Data not available
ANNUAL CYCLE
Data not available
MONTHLY ANOMALY
Data not available
ANNUAL CYCLE
Data not available

All Models

Benchmark
Data not available
Data not available
v3.LR.historical_0101
Data not available
Data not available
v3alt.LR.highECS001.historical
Data not available
Data not available
v3alt.LR.highECS003.historical
Data not available
Data not available
v3alt.LR.lowECS001.historical
Data not available
Data not available
v3alt.LR.lowECS002.historical
Data not available
Data not available
v3alt.LR.lowECS003.historical
Data not available
Data not available

Data Information

  Title:
FLUXCOM (RS+METEO) Global Land Energy Fluxes using GSWP3 climate data

  Version:
1

  Institutions:
Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Germany

  Source:
Data generated by machine learning to merge energy flux measurements from FLUXNET eddy covariance towers with MODIS remote sensing and GSWP3v1 meteorological data (RS+METEO)

  History:
2019-05-07: downloaded source from doi:10.17871/FLUXCOM_EnergyFluxes_v1
2019-06-28: converted to netCDF with https://github.com/mmu2019/Datasets/blob/master/read-sh-fluxcom.py

  References:
Jung, M., S. Koirala, U. Weber, K. Ichii, F. Gans, G. Camps-Valls, D. Papale, C. Schwalm, G. Tramontana, M. Reichstein (2019), The FLUXCOM ensemble of global land-atmosphere energy fluxes, Scientific Data, submitted, 1-12, https://arxiv.org/abs/1812.04951

Tramontana, G., M. Jung, C.R. Schwalm, K. Ichii, G. Camps-Valls, B. Raduly, M. Reichstein, M.A. Arain, A. Cescatti, G. Kiely, L. Merbold, P. Serrano-Ortiz, S. Sickert, S. Wolf, and D. Papale (2016), Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291-4313, doi:10.5194/bg-13-4291-2016

  Comments:
time_period: 1980-01 through 2014-12
original_temporal_resolution: monthly
original_spatial_resolution: 0.5 degree
original_units: MJ/m2/day
final_temporal_resolution: monthly
final_spatial_resolution: 0.5 degree
final_units: watt/m2

  Convention:
CF-1.7