A GENERIC ALGORITHM FOR SCAFFOLDING
NEXT-GENERATION SEQUENCING ASSEMBLIES

USER MANUAL

July 17, 2013

Contents

Chapter 1: Introduction

The millions of short reads usually involved in high-throughput sequencing (HTS) are first
assembled into longer fragments called contigs, which are then scaffolded, i.e. ordered and
oriented using additional information, to produce even longer sequences called scaffolds. Most
existing scaffolders are not suited for using information other than paired reads to perform
scaffolding. They use this limited information to construct scaffolds, often preferring scaffold
length to accuracy, when faced with the tradeoff.

1.1 GRASS algorithm

GRASS (stands for GeneRic ASsembly Scaffolder) is an assembly scaffolder capable of combin-
ing multiple scaffolding information sources, such as paired reads or related genomes. It offers
a Mized-Integer Programming (MIP) formulation of the contig scaffolding problem, which com-
bines contig order, distance and orientation in a single optimization objective. The resulting
optimization problem is solved using an Expectation-Maximization procedure and an uncon-
strained binary quadratic programming approximation of the original problem. Please refer to
the original manuscript for details.

1.2 Components

GRASS consists of two components: dataLinker and scaffoldOptimizer. datalinker is
responsible for converting available scaffolding information into abstract contig links and ex-
porting the latter for further processing by the scaffoldOptimizer module. Contig links pro-
vide relative orientation, order and approximate distance for contigs that they connect. This
information is used by the scaffoldOptimizer to formulate the contig scaffolding problem in
terms of mixed integer programming and solve the latter. The MIP formulation allows GRASS
to consider contig order, orientation and distance simultaneously while minimizing the extent
to which constraints given by the contig links are violated.

datalLinker can use any information source to create contig links. Current version of
GRASS supports the following information sources:

e I[llumina paired reads (aligned to contigs using BWA)
e 454 mate pair reads (aligned to contig using NovoAlign)

e Related genomes (contigs are aligned to genome sequences using MUMmer)

Chapter 2: Installation

2.1 Prerequisites

GRASS is written in C++ and requires GCC 4.4.6 or later to be compiled. It should also work
with other compilers, however, this has not been tested. It was written for Linux operating
systems (tested on Red Hat Linux).

GRASS relies on several C++ libraries and third-party software packages. These have to be
installed before installing GRASS:

1. IBM ILOG CPLEX Optimizer (version > 12.2.0.2)

2. NCBI C++ Toolkit (version > 7.0.0), http://www.ncbi.nlm.nih.gov/books/NBK7170/
3. Boost C++ Libraries (version > 1.48.0), http://www.boost.org/

4. BamTools C++ API (version > 0.9.0), http://sourceforge.net/projects/bamtools/
5. BWA (version > 0.5.9rcl), http://bio-bwa.sourceforge.net/

6. NovoAlign (version > 2.07), http://www.novocraft.com/

7. SAMTools (version > 0.1.12a), http://samtools.sourceforge.net/

8. MUMmer (version > 3.07), http://mummer.sourceforge.net/

The first four prerequisites are required to compile GRASS, whereas the last four are invoked
during runtime. Please follow software-specific instructions when installing the prerequisites.
The third-party application that GRASS relies on must be reachable via the execution PATH.

2.1.1 IBM ILOG CPLEX Optimizer

To scaffold contigs GRASS splits the problem into sub-problems, which are then solved sep-
arately. Each such sub-problem requires solving a Linear Programming (LP) problems. The
CPLEX C++4 API is used to solve these linear programs. CPLEX is available at no charge for
academic use (see http://www-01.ibm.com/support/docview.wss?uid=swg21419058).

In future versions of GRASS it is planned to switch to a more light-weight LP solver.

2.1.2 NCBI C++ Toolkit

GRASS depends on the NCBI C++ Toolkit for performing global alignment of consecutive
contigs during scaffold post-processing. This is done using Hirschberg’s linear space algorithm
for performing sequence alignment. Source code for the NCBI C++4 Toolkit can be obtained
from http://www.ncbi.nlm.nih.gov/books/NBK7170/.

In future versions of GRASS it is planned to use a stand-alone implementation of the
Hirschberg’s algorithm instead of the complete NCBI Toolkit.

http://www.ncbi.nlm.nih.gov/books/NBK7170/
http://www.boost.org/
http://sourceforge.net/projects/bamtools/
http://bio-bwa.sourceforge.net/
http://www.novocraft.com/
http://samtools.sourceforge.net/
http://mummer.sourceforge.net/
http://www-01.ibm.com/support/docview.wss?uid=swg21419058
http://www.ncbi.nlm.nih.gov/books/NBK7170/

2.1.3 Boost C+-+ Libraries

Boost C++ Libraries can be obtained from http://www.boost.org/.

2.1.4 BamTools C++ API

BamTools API is used for processing BAM files containing read alignment. BamTools can be
downloaded from http://sourceforge.net/projects/bamtools/.

2.1.5 BWA

Burrows-Wheeler Aligner (BWA) is used (by the datalLinker module of GRASS) to align
[llumina sequencing reads to the contigs. The alignments are output to a temporary file in
SAM format. BWA can be obtained from http://bio-bwa.sourceforge.net/.

2.1.6 NovoAlign

Similarly to BWA and Illumina reads, NovoAlign is used to align 454 reads. The aligner can
be obtained from http://www.novocraft.com/.

2.1.7 SAMTools

SAMTools are used to convert alignment output from SAM to BAM file format. The latter
is processed by GRASS using functions from the BamTools API. SAMTools can be obtained
from http://samtools.sourceforge.net/.

2.1.8 MUMmer

MUMmer is used for alining contigs to reference genomes, both for creation of scaffolding links
(by the datalLinker module) and evaluation of scaffolds (performed by breakpointCounter).
MUMmer can be obtained from http://mummer.sourceforge.net/.

2.2 Obtaining GRASS

GRASS is freely available under the GNU GPL v3 license and can be obtained. The latest
version of GRASS can be checked out from its SVN repository:

svn checkout http://tud-scaffolding.googlecode.com/svn/trunk/ grass
Alternatively GRASS source code can be downloaded from
http://code.google.com/p/tud-scaffolding/downloads/list

GRASS prerequisites are not distributed with it and have to obtained from their respective
websites.

http://www.boost.org/
http://sourceforge.net/projects/bamtools/
http://bio-bwa.sourceforge.net/
http://www.novocraft.com/
http://samtools.sourceforge.net/
http://mummer.sourceforge.net/
http://code.google.com/p/tud-scaffolding/downloads/list

2.3 Compiling GRASS

GRASS comes with a simple Makefile, but not with a configuration script. All compiler
options, include and library paths must be set manually. This can be done by changing
Makefile.config accordingly. The things that must be changed are the include and library
paths (-I and -L compiler switches). These paths must point to installation directories of the
prerequisite libraries.

After the changes are complete, the source code can be compiled by running make from the
source code root directory:

make

This compiles the core set GRASS tools: breakpointCounter, coverageUtil, datalinker
and scaffoldOptimizer. The corresponding executables can be found in a newly created bin
folder.

Chapter 3: Running GRASS

The following section consider an example of scaffolding E.coli using [llumina paired end reads
from SRR001665 (insert size 21610 bp, 160 x) and SRR001666 (insert size 488418 bp, 107 x).
For the purpose of this example assembled contigs are stored in file contigs. fa, left and right
reads are stored in files SRR001665_1.fastq and SRR001665_2.fastq, and SRR001666_1.fastq
and SRR001666_2.fastq for the two libraries respectively.

3.1 Creating contig links

Contig links can be created from the available data using the dataLinker module. The links are
created by aligning paired reads to contigs or by aligning contigs to related genome sequences,
and considering the resulting alignments. Several important parameters determine minimal
quality of the considered alignments:

e —minlength <n> sets the minimum length an alignment to consider creating a link be-
tween two contigs. This setting is used for paired read alignments and for alignments to
related genome sequences. If an alignment /read is shorter that n bp, no contig links are
created for it.

e -mapq <n> sets the minimum mapping quality of read pair alignments to consider creating
a link between two contigs they align to. Mapping quality reported by the read aligner
(BWA or NovoAlign is used). If a read’s mapping quality is lower than n, no contig links
are created for it.

e -maxedit <n> sets the maximum allowed edit distance in a read alignment. If a read’s
alignment contains more than n mismatches/indels, no contig links are created for it.

e -maxhits <n> sets the maximum allowed number of read alignments per read for it to be
considered in contig link creating. Contig links created from reads with more than one
alignment are marked as ambiguous.

e -nooverlapdeviation <n> sets the maximum allowed deviation from the mean insert
size of a read pair under the assumption that contigs do not overlap. If the minimum
required insert size between two reads aligned to different contigs required for the two
contig not to overlap is more than n standard deviation away for the mean insert size, no
links are created for this read pair.

The default GRASS behavior is to use strict settings for these parameters: -minlength 30,
-mapq 36, -maxedit 0, -maxhits 5 and disabled -nooverlapdeviation.

3.1.1 From paired reads

To create links from paired, each paired read library has to be specified by listing FASTQ files
with it’s left and right reads, mean insert size and standard deviation. For [llumina paired end
reads it can be done by using -illumina <left> <right> <mean> <std> switch:

6

-illumina SRRO01665_1.fastq SRR001665_2.fastq 216 10
-illumina SRR001666_1.fastq SRR001666_2.fastq 488 18

Similarly, switch -454 can be used to input 454 mate pair reads.

GRASS can use aligned reads to estimate contig coverage. This information can optionally
be used to detect repeat contigs. Data required by scaffoldOptimizer to estimate contig
coverage can be recorded by specified the -readcoverage filename.coverage switch.

For the considered example the following command creates contig links of weight 1 from
[llumina paired reads:

dataLinker -weight 1 -illumina SRR001665_1.fastq SRR001665_2.fastq 216 10 \
-illumina SRR0O01666_1.fastq SRR001666_2.fastq 488 18 \
-readcoverage ecoli.coverage \
-output ecoli.opt \
-bwathreads 12 contigs.fa

The reusable -weight <n> switch specifies a weight of contig links created from the in-
formation sources that are specified after it. A link of weight n is created for every suitable
read pair. The creating contig links are saved into a file specified by the —output <filename>
switch. Switches prefixed with -bwa control behavior of the BWA read aligner executed in the
background to align reads to contigs. -bwathreads specifies the number of threads used by
BWA.

3.1.2 From related genome sequences

GRASS can use genome sequences of (closely) related organisms to guide its scaffolding process.
It does so by aligning contigs to the genome sequences and creating links for contigs based on
the alignment. A related genome sequence can be added as an information source be specifying
a FASTA file with the sequence(s) and a standard deviation associated with this sequence using
the -seq <reference.fa> <sigma> switch. The standard deviation o should be chosen such
that it reflects the degree of uncertainty in the distances derived by the contig alignment. A
value of o = 3000 could be a good first guess. If, for example, E.coli strain DH10B genome is
stored in file dh10b.fa, then the following command can be used to create contig links using
it:

datalinker -weight 70 -seq dh10b.fa 3000 \
-output ecoli.opt contigs.fa

3.2 Scaffolding linked contigs

Contig links created at the previous step can be used by the scaffoldOptimizer module to
construct scaffolds. This module provides various options for controlling the amount of time and
the number of attempts spent on optimization; the parameters for computing global sequence
alignments of overlapping contigs; and options controlling contig link bundling.

By default contig link bundling is turned on (option -bundle yes), links are sorted prior to
bundling (option -sort yes) and ambiguous contig links are removed (option —ambiguous no).
These settings show good performance in practice.

When provided with a coverage depth estimate and a contig read coverage file produced by
the dataLinker module, GRASS automatically detect repeat contigs and removed contig links
incident to them. This functionality is enabled7by the

-repeat-coverage <exp. cov.> <cov. filename>
switch. For the considered F.coli example, the following switch can be used:
-repeat-coverage 264 ecoli.coverage

It’s important to filter contig links that are likely to be incorrect prior to scaffolding. For
this purpose contig links with weights smaller than an erosion threshold e are removed at the
start of the algorithm. The erosion threshold is set using the —erosion <e> switch. A default
value of 5 is suitable for most scaffolding applications, but can be increased to produce more
confident scaffolds or chosen to implement combinatorial contig link selection (e.g. keep a
link only if it’s supported by multiple information sources) in presence of multiple information
sources.

The following command is sufficient for scaffolding the considered F.coli example:

scaffoldOptimizer -repeat-coverage 264 ecoli.coverage \
-output scaffolds.fa ecoli.opt

It outputs constructed scaffolds into a file specified by the —output <filename> switch.

Chapter 4: Known issues & contact

4.1 Known issues

GRASS is continuously improved and the discovered bugs or issues are fixed as soon as possible.
However, several less critical issues remain:

1. GRASS depends on a large number of libraries and application, which are time-consuming
to obtain, compile and setup. Most of the large dependencies (such as CPLEX, the NCBI
C++ Toolkit and Boost C++ Libraries) and waived by switching to more light-weight

libraries.

2. GRASS’ Makefile does not correctly handle source code dependencies. An occasional
make clean may be required to ensure that all output is up to date.

We hope to resolve these issues in the next release of GRASS.

4.2 Contact information

You can report bugs or contact us with questions or suggestions via
e Via GRASS Google code project: http://code.google.com/p/tud-scaffolding/

e Via email: a.gritsenko|at-symbol|tudelft.nl

http://code.google.com/p/tud-scaffolding/
mailto:a.girtsenko@tudelft.nl?subject=GRASS

