Chromosome evolution and the genetic basis of agronomically important traits in greater yam (Dioscorea alata)

Jessen Bredeson Plant Comparative Genomics DOE-JGI, LBNL

(fmr. University of California, Berkeley)

Read our publication to learn more

ARTICLE

https://doi.org/10.1038/s41467-022-29114-w

Chromosome evolution and the genetic basis of agronomically important traits in greater yam

OPEN

Jessen V. Bredeson (b) ^{1,18}, Jessica B. Lyons (b) ^{1,2,18}, Ibukun O. Oniyinde³, Nneka R. Okereke⁴, Olufisayo Kolade³, Ikenna Nnabue⁴, Christian O. Nwadili⁴, Eva Hřibová⁵, Matthew Parker⁶, Jeremiah Nwogha⁴, Shengqiang Shu (b) ⁷, Joseph Carlson⁷, Robert Kariba^{8,9}, Samuel Muthemba (b) ^{8,9}, Katarzyna Knop⁶, Geoffrey J. Barton (b) ⁶, Anna V. Sherwood (b) ^{6,16}, Antonio Lopez-Montes^{3,17}, Robert Asiedu (b) ³, Ramni Jamnadass^{8,9}, Alice Muchugi^{8,9}, David Goodstein (b) ⁷, Chiedozie N. Egesi^{3,4,10}, Jonathan Featherston¹¹, Asrat Asfaw (b) ³, Gordon G. Simpson^{6,12}, Jaroslav Doležel (b) ⁵, Prasad S. Hendre (b) ^{8,9}, Allen Van Deynze (b) ¹³, Pullikanti Lava Kumar³, Jude E. Obidiegwu (b) ⁴M, Ranjana Bhattacharjee (b) ³M & Daniel S. Rokhsar (b) ^{1,2,7,14,15}M

https://www.nature.com/articles/s41467-022-29114-w

The greater yam, D. alata

- Water/winged/purple yam, ube (monocot, Dioscoreales)
- Most broadly cultivated *Dioscorea* species
- High nutritional content, low glycemic index
- Yields well in marginal soil
- Easily propagated, early vigor, low post-harvest losses
- Breeding difficult due to:
 - obligate outcrossing
 - long growth cycle
 - Poor/no flowering
 - polyploidy

Huge potential for yam in Africa

Harvested area

Suitability index

Goal: Enhance food security for smallholder farmers

- **NSF BREAD Project aims:**
 - Accelerate the pace of improvement by:
 - Facilitating genome-enhanced breeding approaches
 - Connecting phenotype to genotype
 - Characterizing global genetic diversity
- Transfer advanced genomic technologies to African research institutions

TDa95/00328, a popular breeding line

- Disomic inheritance
- Used in many crosses
- Anthracnose resistance

Anthracnose

Mignouna et al. 2002. 10.1007/s00122-002-0912-6 Arnau et al. 2009. 10.1007/s00122-009-0977-6

Deep long reads and long-range linkages

Assembly reconstructs 20 chromosomes

- Est. size: 455±39 Mb
- Contig: 479.5 Mb
- Chr: 475 Mb
- N50 length: 4.5 Mb
- 25,189 genes
- · 38,603 total isoforms

BUSCO (%)	Embryophyta	Liliopsida
Complete	97.8	93.4
Fragmented	1.5	3.8
Missing	0.7	2.8

Shengqiang Shu (DOE JGI)

Inferring *Dioscorea* genome evolutionary history

Dioscorea 1:1 collinearity conserved

Siadjeu et al. 2020. doi:10.3390/genes11030274 Sugihara et al. 2020. doi:10.1073/pnas.2015830117 Cheng et al. 2021. doi:10.1016/j.xplc.2020.100079

Dioscorea genomes share a WGD

Delta: evidence of paleo-allotetraploidization

Delta: evidence of paleo-allotetraploidization

$$Pr(k; n) = 2^k \cdot n! / (k! \cdot choose(2n, n))$$

Species	k	n	Α	В	Median	p
D. alata	11	11	0.632	0.484	0.552	2.9×10 ⁻³
D. rotundata	11	11	0.623	0.493	0.545	2.9×10 ⁻³
D. dumetorum	11	11	0.630	0.485	0.557	2.9×10 ⁻³
D. zingiberensis	9	11	0.652	0.461	0.553	7.9×10 ⁻²

WGDs in phylogenetic context

Core

monocots

Dioscorea–Trichopus: ~68 Mya Dioscorea–Asparagus: ~120 Mya Dioscorea–Spirodella: ~128 Mya

D. rotundata	14,889	0.064
T. zeylanicus	9,013	0.804
<i>D. alata</i> (delta)	1,578	0.869
A. comosus	6,405	1.263
<i>D. alata</i> (tau)	404	1.316
S. polyrhiza	4,973	1.564

Identifying agronomically important QTL

Linkage mapping and QTL for crosses segregating for key traits

Populations:

- 10 F₁, 6 outbred parents
- 83–320 progeny / cross

Target traits:

- Anthracnose resistance
- Tuber quality traits

QTL analysis:

- DArT genotyping at IGSS, BecA-ILRI, Kenya
- AlphaFamImpute imputation
- Logistic regression, Wald Test
- max(T) correction, 1×10^6 iterations

Anthracnos

Dioal.05G18350: EIX1/2 protein, LRR superfamily

Anthracnose resistance (field trial)

Tuber oxidation

1.26±0.13 1.45±0.13 1.83±0.18 Chromosome position (Mb)

Dioal.18G098800, Dioal.18G099400, Dioal.18G100900: peroxidase-encoding genes

Potential marker-assisted breeding targets

Table 3 Significant QTL identified in this study.

Pop. ID	Trait	QTL peak position	n	<i>p</i> -value	Variant	h²	Significance Window ^a
TDa1402	Anthracnose susceptibility (Field 2017)	Chr5: 22,308,637	53	1.69 × 10 ⁻⁴	A/A,A/G,G/G	0.4820	21,931,073 22,825,712
TDa1402	Anthracnose susceptibility (Field 2018)	Chr19: 8,369,514	49	1.25 × 10 ⁻²	T/T,T/C	0.2986	3,732,307 17.565.140
TDa1419	Anthracnose DLA 3-yr mean	Chr6: 61,001	243	1.28 × 10 ⁻²	C/C,C/T	0.0734	38,157 1,418,849
TDa1419	Dry matter	Chr18: 25,069,928	150	2.27 × 10 ⁻²	C/C,C/T	0.1020	24,779,355 25,415,124
TDa1419	Oxidation after 30 min ^b	Chr18: 26,496,992	151	5.86 × 10 ⁻³	T/T,T/A,A/A	0.1367	26,199,630 26,749,589
TDa1419	Oxidation after 180 min ^b	Chr18: 26,496,992	151	1.38 × 10 ⁻²	T/T,T/A,A/A	0.1188	26,199,630 26,749,589
TDa1427	Oxidation after 30 min	Chr18: 24,495,033	97	4.52 × 10 ⁻⁶	A/A,A/G	0.3127	24,034,264
TDa1401B	Tuber size	Chr12: 310,852	53	4.19 × 10 ⁻²	T/T,T/C,C/C	0.2894	76,400 489 583
TDa1512	Tuber shape	Chr7: 3,115,608	43	3.17 × 10 ⁻²	A/A,A/G	0.3406	1,798,899 5,707,988

Pop. ID mapping population identifier, *n* the number of genotyped and phenotyped progeny used in QTL analysis, *p-value* empirical significance ($\alpha = 0.05$) of the genotype-phenotype association at the peak locus, calculated by Wald statistic-based logistic regression and corrected for family-wise multiple testing by the max(*T*) method, *Variant* alleles segregating at QTL peak position, h^2 narrow-sense heritability.

^aCalculated as haplotypic linkage disequilibrium \geq 0.9 relative to the peak QTL marker.

^bSame QTL for both oxidation time points in TDa1419.

A sneak peek: African yam diversity

Dense sampling of African Yam Belt

- 1,272 D. alata samples
- · IGSS, BecA-ILRI, Kenya
- 87 replicated samples (181 total replicates)
- 101 contaminated samples
- 7,441 QC-passing loci @ MAF ≥ 5%

Nominal source	Count			
Total	1,272			
Nigeria (1,026 IITA; 28 NRCRI)	1,054			
Cote d'Ivoire	90			
Tanzania	82			
Cameroon	18			
Japan	16			
Vietnam	12			

Diversity sample is highly clonal

Can we analyze in a broader global context?

Sharif et al. (2020) DOI:10.1093/aob/mcaa122

Accessions semi-differentiated by continent

To do: segmental population assignment

D. alata genome project

Dan Rokhsar (UC Berkeley, JGI) Jess Lyons (fmr. UC Berkeley) Ranjana Bhattacharjee (IITA Ibadan) Ibukun Ogunleye (IITA Ibadan) Jude Obidiegwu (NRCRI) Chiedozie Egesi (NRCRI, IITA, Cornell) Chiedozie Egesi (NRCRI, IITA, Cornell) Shengqiang Shu (JGI) Joe Carlson (JGI) David Goodstein (JGI) Therese Mitros (UC Berkeley) Allen Van Deynze (UC Davis, AOCC)

Lukas Mueller and colleagues (BTI) Prasad Hendre (ICRAF, AOCC) Ramni Jamnadass (ICRAF, AOCC) Alice Muchugi (ICRAF, AOCC) Jaroslav Doležel (IEB Czech Rep.) Eva Hřibová (IEB Czech Rep.) Gordon Simpson (JHI, Dundee Univ.) Mathew Parker (Dundee Univ.) Kasia Knop (Dundee Univ.) Nick Schurch (Dundee Univ.) Geoff Barton (Dundee Univ.)

Jonathan Featherston (ARC S. Africa)

Acknowledgements

Lava Kumar (IITA) Kolade Olufisayo (IITA) Asrat Amele (IITA) Agre Paterne (IITA) David De Koeyer (IITA) Robert Asiedu (IITA) Antonio Lopez-Montes (former IITA) Michael Abberton (IITA) Clay Sneller (IGSS) Jackline Chepkoech (IGSS) Mercy Elohor (IGSS) Andrzej Kilian (DArT) Lutz Froenike (UC Davis) Oanh Nguyen (UC Davis) Dovetail Genomics LLC Shana McDevitt (UC Berkeley VCGSL)

Univ. Dundee GCRF Challenge Fund Illumina Greater Good Initiative

Thank you for listening!

jbredeson@lbl.gov