void SurveyToAlignmentExample(){ // Macro to show an example of conversion of survey data into alignment // data. The position of four fiducial marks, sticked above one surface // of a box is converted into the global position of the box. // gSystem->Load("libGeom"); TGeoManager *mgr = new TGeoManager("Geom","survey to alignment toy"); TGeoMedium *medium = 0; TGeoVolume *top = mgr->MakeBox("TOP",medium,250,250,250); mgr->SetTopVolume(top); // make shape components // ******** red outermost box *************** TGeoBBox *sbox0 = new TGeoBBox(200,200,50); TGeoVolume* box0 = new TGeoVolume("B0",sbox0); box0->SetVisDaughters(); box0->SetLineColor(2); //red top->AddNode(box0,1); // ******** green middle box *************** TGeoBBox *sbox1 = new TGeoBBox(180,180,40); TGeoVolume* box1 = new TGeoVolume("B1",sbox1); box1->SetLineColor(3);//green TGeoTranslation* tr = new TGeoTranslation("tr",10,0,0); box0->AddNode(box1,1,tr); // ******** bleu inner box *************** TGeoBBox *sbox2 = new TGeoBBox(160,160,30); TGeoVolume* box2 = new TGeoVolume("B2",sbox2); box2->SetLineColor(4);//bleu box1->AddNode(box2,1,tr); // ******** violet innermost box *************** Double_t zsize = 20.; TGeoBBox *sbox3 = new TGeoBBox(140,140,zsize); TGeoVolume* box3 = new TGeoVolume("B3",sbox3); box3->SetLineColor(6);//violet box2->AddNode(box3,1,tr); // Four fiducial marks on the box3, expressed in local coordinates // We imagine they are at 2mm above the upper surface of the volume // at the corners of a square of 200 cm side const Double_t xside = 100; const Double_t yside = 100; const Double_t zoffset = 0.2; const Double_t zdepth = zsize+zoffset; Double_t A[3]={-xside,-yside,zdepth}; Double_t B[3]={xside,-yside,zdepth}; Double_t C[3]={xside,yside,zdepth}; Double_t D[3]={-xside,yside,zdepth}; TGeoBBox *fmbox = new TGeoBBox(1,1,1); TGeoVolume* fm = new TGeoVolume("FM",fmbox); fm->SetLineColor(7);//color TGeoTranslation* Atr = new TGeoTranslation("Atr",-xside,-yside,zdepth); TGeoTranslation* Btr = new TGeoTranslation("Btr",xside,-yside,zdepth); TGeoTranslation* Ctr = new TGeoTranslation("Ctr",xside,yside,zdepth); TGeoTranslation* Dtr = new TGeoTranslation("Dtr",-xside,yside,zdepth); box3->AddNode(fm,1,Atr); box3->AddNode(fm,2,Btr); box3->AddNode(fm,3,Ctr); box3->AddNode(fm,4,Dtr); // ^ local y // | // D-------------|-------------C // | | | // | | | // | | | // | | | // | | | // | | | // ------------------|------------------> local x // | | | // | | | // | | | // | | | // | | | // | | | // A-------------|-------------B // // local z exiting the plane of the screen mgr->CloseGeometry(); mgr->GetTopVolume()->Draw(); mgr->SetVisOption(0); mgr->SetVisLevel(6); Int_t i; // ************* get ideal global matrix ******************* mgr->cd("TOP_1/B0_1/B1_1/B2_1/B3_1"); TGeoHMatrix g3 = *mgr->GetCurrentMatrix(); // !!don't declare g3 // as a pointer to mgr->GetCurrentMatrix(), mgr->cd("...") // would eventually change the content pointed by g3 behind your back // ************* get ideal local matrix ******************* TGeoNode* n3 = mgr->GetCurrentNode(); TGeoMatrix* l3 = n3->GetMatrix(); Double_t gA[3], gB[3], gC[3], gD[3]; // point coordinates in the global RS g3.LocalToMaster(A,gA); g3.LocalToMaster(B,gB); g3.LocalToMaster(C,gC); g3.LocalToMaster(D,gD); cout<<endl<<"Ideal fiducial marks coordinates in the global RS:\n"<< "A "<<gA[0]<<" "<<gA[1]<<" "<<gA[2]<<" "<<endl<< "B "<<gB[0]<<" "<<gB[1]<<" "<<gB[2]<<" "<<endl<< "C "<<gC[0]<<" "<<gC[1]<<" "<<gC[2]<<" "<<endl<< "D "<<gD[0]<<" "<<gD[1]<<" "<<gD[2]<<" "<<endl; // We apply a delta transformation to the surveyed vol box3 to represent // its real position, given below by ng3 nl3, which differs from its // ideal position saved above in g3 and l3 TGeoPhysicalNode* pn3 = mgr->MakePhysicalNode("TOP_1/B0_1/B1_1/B2_1/B3_1"); Double_t dphi = 3; // tilt by 3 degrees around z Double_t dz = 5; // shift by 5 cm along z TGeoRotation* rrot = new TGeoRotation("rot",dphi,0.,0.); TGeoCombiTrans localdelta = *(new TGeoCombiTrans(0.,0.,dz, rrot)); // new local matrix, representing real position TGeoHMatrix nlocal = *l3 * localdelta; TGeoHMatrix* nl3 = new TGeoHMatrix(nlocal); pn3->Align(nl3); //Let's get the global matrix for later comparison TGeoHMatrix* ng3 = pn3->GetMatrix(); //"real" global matrix, what survey sees printf("\n\n************ real global matrix **************\n"); ng3->Print(); Double_t ngA[3], ngB[3], ngC[3], ngD[3]; ng3->LocalToMaster(A,ngA); ng3->LocalToMaster(B,ngB); ng3->LocalToMaster(C,ngC); ng3->LocalToMaster(D,ngD); cout<<endl<<"Fiducial marks coordinates in the global RS given by survey:\n"<< "A "<<ngA[0]<<" "<<ngA[1]<<" "<<ngA[2]<<" "<<endl<< "B "<<ngB[0]<<" "<<ngB[1]<<" "<<ngB[2]<<" "<<endl<< "C "<<ngC[0]<<" "<<ngC[1]<<" "<<ngC[2]<<" "<<endl<< "D "<<ngD[0]<<" "<<ngD[1]<<" "<<ngD[2]<<" "<<endl; // From the new fiducial marks coordinates derive back the // new global position of the surveyed volume //*** What follows is the actual survey-to-alignment procedure which assumes, //*** as is the case of the present example, 4 fiducial marks //*** at the corners of a square lying on a plane parallel to a surface //*** of the surveyed box at a certain offset and with //*** x and y sides parallel to the box's x and y axes. //*** If the code below is placed in a separate class or method, it needs //*** as input the four points and the offset from the origin (zdepth) //*** The algorithm can be easily modified for different placement //*** and/or cardinality of the fiducial marks. Double_t ab[3], bc[3], n[3]; Double_t plane[4], s; // first vector on the plane of the fiducial marks for(i=0;i<3;i++){ ab[i] = ngB[i] - ngA[i]; } // second vector on the plane of the fiducial marks for(i=0;i<3;i++){ bc[i] = ngC[i] - ngB[i]; } // vector normal to the plane of the fiducial marks obtained // as cross product of the two vectors on the plane d0^d1 n[0] = ab[1] * bc[2] - ab[2] * bc[1]; n[1] = ab[2] * bc[0] - ab[0] * bc[2]; n[2] = ab[0] * bc[1] - ab[1] * bc[0]; Double_t sizen = TMath::Sqrt( n[0]*n[0] + n[1]*n[1] + n[2]*n[2] ); if(sizen>1.e-8){ s = Double_t(1.)/sizen ; //normalization factor }else{ return 0; } // plane expressed in the hessian normal form, see: // http://mathworld.wolfram.com/HessianNormalForm.html // the first three are the coordinates of the orthonormal vector // the fourth coordinate is equal to the distance from the origin for(i=0;i<3;i++){ plane[i] = n[i] * s; } plane[3] = -( plane[0] * ngA[0] + plane[1] * ngA[1] + plane[2] * ngA[2] ); cout<<plane[0]<<" "<<plane[1]<<" "<<plane[2]<<" "<<plane[3]<<" "<<endl; // The center of the square with fiducial marks as corners // as the middle point of one diagonal - md // Used below to get the center - orig - of the surveyed box Double_t orig[3], md[3]; for(i=0;i<3;i++){ md[i] = (ngA[i] + ngC[i]) * 0.5; } // The center of the box for(i=0;i<3;i++){ orig[i] = md[i] - plane[i]*zdepth; } orig[1] = md[1] - plane[1]*zdepth; orig[2] = md[2] - plane[2]*zdepth; cout<<endl<<"The origin of the box: "<<orig[0]<<" "<<orig[1]<<" "<<orig[2]<<endl; // get x,y local directions needed to write the global rotation matrix // for the surveyed volume by normalising vectors ab and bc Double_t sx = TMath::Sqrt(ab[0]*ab[0] + ab[1]*ab[1] + ab[2]*ab[2]); if(sx>1.e-8){ for(i=0;i<3;i++){ ab[i] /= sx; } cout<<endl<<"x "<<ab[0]<<" "<<ab[1]<<" "<<ab[2]<<endl; } Double_t sy = TMath::Sqrt(bc[0]*bc[0] + bc[1]*bc[1] + bc[2]*bc[2]); if(sy>1.e-8){ for(i=0;i<3;i++){ bc[i] /= sy; } cout<<endl<<"y "<<bc[0]<<" "<<bc[1]<<" "<<bc[2]<<endl; } // the global matrix for the surveyed volume - ng Double_t rot[9] = {ab[0],bc[0],plane[0],ab[1],bc[1],plane[1],ab[2],bc[2],plane[2]}; TGeoHMatrix ng; ng.SetTranslation(orig); ng.SetRotation(rot); cout<<"\n********* global matrix inferred from surveyed fiducial marks ***********\n"; ng.Print(); // // To produce the alignment object for the given volume you would // // then do something like this: // // Calculate the global delta transformation as ng * g3-1 // TGeoHMatrix gdelta = g3->Inverse(); //now equal to the inverse of g3 // gdelta.MultiplyLeft(&ng); // Int_t index = 0; // // if the volume is in the look-up table use something like this instead: // // AliGeomManager::LayerToVolUID(AliGeomManager::kTOF,i); // AliAlignObjMatrix* mobj = new AliAlignObjMatrix("symname",index,gdelta,kTRUE); }