#include "AliHMPIDParam.h"
#include "AliHMPIDDigit.h"
#include "AliLog.h"
#include <AliRunLoader.h>
#include <AliStack.h>
#include "AliCDBManager.h"
#include "AliCDBEntry.h"
#include <TLatex.h> //TestTrans()
#include <TView.h> //TestTrans()
#include <TPolyMarker3D.h> //TestTrans()
#include <TRotation.h>
#include <TParticle.h> //Stack()
#include <TGeoPhysicalNode.h> //ctor
#include <TGeoBBox.h>
#include <TF1.h> //ctor
ClassImp(AliHMPIDParam)
const Double_t AliHMPIDParam::fgkD = 0.222500;
const Double_t AliHMPIDParam::fgkSqrtK3x = TMath::Sqrt(0.66);
const Double_t AliHMPIDParam::fgkK2x = TMath::PiOver2()*(1 - 0.5*fgkSqrtK3x);
const Double_t AliHMPIDParam::fgkK1x = 0.25*fgkK2x*fgkSqrtK3x/TMath::ATan(fgkSqrtK3x);
const Double_t AliHMPIDParam::fgkK4x = fgkK1x/(fgkK2x*fgkSqrtK3x);
const Double_t AliHMPIDParam::fgkSqrtK3y = TMath::Sqrt(0.87);
const Double_t AliHMPIDParam::fgkK2y = TMath::PiOver2()*(1 - 0.5*fgkSqrtK3y);
const Double_t AliHMPIDParam::fgkK1y = 0.25*fgkK2y*fgkSqrtK3y/TMath::ATan(fgkSqrtK3y);
const Double_t AliHMPIDParam::fgkK4y = fgkK1y/(fgkK2y*fgkSqrtK3y);
Float_t AliHMPIDParam::fgkMinPcX[]={0.,0.,0.,0.,0.,0.};
Float_t AliHMPIDParam::fgkMaxPcX[]={0.,0.,0.,0.,0.,0.};
Float_t AliHMPIDParam::fgkMinPcY[]={0.,0.,0.,0.,0.,0.};
Float_t AliHMPIDParam::fgkMaxPcY[]={0.,0.,0.,0.,0.,0.};
Bool_t AliHMPIDParam::fgMapPad[160][144][7];
Float_t AliHMPIDParam::fgCellX=0.;
Float_t AliHMPIDParam::fgCellY=0.;
Float_t AliHMPIDParam::fgPcX=0;
Float_t AliHMPIDParam::fgPcY=0;
Float_t AliHMPIDParam::fgAllX=0;
Float_t AliHMPIDParam::fgAllY=0;
Bool_t AliHMPIDParam::fgInstanceType=kTRUE;
AliHMPIDParam* AliHMPIDParam::fgInstance=0x0;
Int_t AliHMPIDParam::fgNSigmas = 4;
Int_t AliHMPIDParam::fgThreshold= 4;
AliHMPIDParam::AliHMPIDParam(Bool_t noGeo):
TNamed("HmpidParam","default version"),
fX(0), fY(0), fRefIdx(1.28947),fPhotEMean(6.675),fTemp(25)
{
AliCDBManager *pCDB = AliCDBManager::Instance();
if(!pCDB) {
AliWarning("No Nmean C6F14 from OCDB. Default is taken from ctor.");
} else {
AliCDBEntry *pNmeanEnt =pCDB->Get("HMPID/Calib/Nmean");
if(!pNmeanEnt) {
AliWarning("No Nmean C6F14 from OCDB. Default is taken from ctor.");
} else {
TObjArray *pNmean = (TObjArray*)pNmeanEnt->GetObject();
if(pNmean->GetEntries()==43) {
Double_t tmin,tmax;
((TF1*)pNmean->At(42))->GetRange(tmin,tmax);
fPhotEMean = ((TF1*)pNmean->At(42))->Eval(tmin);
AliInfo(Form("EPhotMean = %f eV successfully loaded from OCDB",fPhotEMean));
} else {
AliWarning("For backward compatibility EPhotMean is taken from ctor.");
}
}
}
fRefIdx = MeanIdxRad();
Float_t dead=2.6;
if(noGeo==kTRUE) fgInstanceType=kFALSE;
if(noGeo==kFALSE && !gGeoManager)
{
TGeoManager::Import("geometry.root");
if(!gGeoManager) AliFatal("!!!!!!No geometry loaded!!!!!!!");
}
fgCellX=0.8;fgCellY=0.84;
if(!noGeo==kTRUE){
TGeoVolume *pCellVol = gGeoManager->GetVolume("Hcel");
if(pCellVol) {
TGeoBBox *bcell = (TGeoBBox *)pCellVol->GetShape();
fgCellX=2.*bcell->GetDX(); fgCellY = 2.*bcell->GetDY();
}
}
fgPcX=80.*fgCellX; fgPcY = 48.*fgCellY;
fgAllX=2.*fgPcX+dead;
fgAllY=3.*fgPcY+2.*dead;
fgkMinPcX[1]=fgPcX+dead; fgkMinPcX[3]=fgkMinPcX[1]; fgkMinPcX[5]=fgkMinPcX[3];
fgkMaxPcX[0]=fgPcX; fgkMaxPcX[2]=fgkMaxPcX[0]; fgkMaxPcX[4]=fgkMaxPcX[2];
fgkMaxPcX[1]=fgAllX; fgkMaxPcX[3]=fgkMaxPcX[1]; fgkMaxPcX[5]=fgkMaxPcX[3];
fgkMinPcY[2]=fgPcY+dead; fgkMinPcY[3]=fgkMinPcY[2];
fgkMinPcY[4]=2.*fgPcY+2.*dead; fgkMinPcY[5]=fgkMinPcY[4];
fgkMaxPcY[0]=fgPcY; fgkMaxPcY[1]=fgkMaxPcY[0];
fgkMaxPcY[2]=2.*fgPcY+dead; fgkMaxPcY[3]=fgkMaxPcY[2];
fgkMaxPcY[4]=fgAllY; fgkMaxPcY[5]=fgkMaxPcY[4];
fX=0.5*SizeAllX();
fY=0.5*SizeAllY();
for(Int_t ich=kMinCh;ich<=kMaxCh;ich++) {
for(Int_t padx=0;padx<160;padx++) {
for(Int_t pady=0;pady<144;pady++) {
fgMapPad[padx][pady][ich] = kTRUE;
}
}
}
for(Int_t i=kMinCh;i<=kMaxCh;i++)
if(gGeoManager && gGeoManager->IsClosed()) {
TGeoPNEntry* pne = gGeoManager->GetAlignableEntry(Form("/HMPID/Chamber%i",i));
if (!pne) {
AliErrorClass(Form("The symbolic volume %s does not correspond to any physical entry!",Form("HMPID_%i",i)));
fM[i]=new TGeoHMatrix;
IdealPosition(i,fM[i]);
} else {
TGeoPhysicalNode *pnode = pne->GetPhysicalNode();
if(pnode) fM[i]=new TGeoHMatrix(*(pnode->GetMatrix()));
else {
fM[i]=new TGeoHMatrix;
IdealPosition(i,fM[i]);
}
}
} else{
fM[i]=new TGeoHMatrix;
IdealPosition(i,fM[i]);
}
fgInstance=this;
}
void AliHMPIDParam::Print(Option_t* opt) const
{
for(Int_t i=0;i<7;i++) fM[i]->Print(opt);
}
void AliHMPIDParam::IdealPosition(Int_t iCh, TGeoHMatrix *pMatrix)
{
const Double_t kAngHor=19.5;
const Double_t kAngVer=20;
const Double_t kAngCom=30;
const Double_t kTrans[3]={490,0,0};
pMatrix->RotateY(90);
pMatrix->SetTranslation(kTrans);
switch(iCh){
case 0: pMatrix->RotateY(kAngHor); pMatrix->RotateZ(-kAngVer); break;
case 1: pMatrix->RotateZ(-kAngVer); break;
case 2: pMatrix->RotateY(kAngHor); break;
case 3: break;
case 4: pMatrix->RotateY(-kAngHor); break;
case 5: pMatrix->RotateZ(kAngVer); break;
case 6: pMatrix->RotateY(-kAngHor); pMatrix->RotateZ(kAngVer); break;
}
pMatrix->RotateZ(kAngCom);
}
Int_t AliHMPIDParam::Stack(Int_t evt,Int_t tid)
{
AliRunLoader *pAL=AliRunLoader::Open();
if(pAL->LoadHeader()) return -1;
if(pAL->LoadKinematics()) return -1;
Int_t mtid=-1;
Int_t iNevt=pAL->GetNumberOfEvents();
for(Int_t iEvt=0;iEvt<iNevt;iEvt++){
if(evt!=-1 && evt!=iEvt) continue;
pAL->GetEvent(iEvt);
AliStack *pStack=pAL->Stack();
if(tid==-1){
for(Int_t i=0;i<pStack->GetNtrack();i++) pStack->Particle(i)->Print();
Printf("totally %i tracks including %i primaries for event %i out of %i event(s)",
pStack->GetNtrack(),pStack->GetNprimary(),iEvt,iNevt);
}else{
if(tid<0 || tid>pStack->GetNtrack()) {Printf("Wrong tid, valid tid range for event %i is 0-%i",iEvt,pStack->GetNtrack());break;}
TParticle *pTrack=pStack->Particle(tid); mtid=pTrack->GetFirstMother();
TString str=pTrack->GetName();
while((tid=pTrack->GetFirstMother()) >= 0){
pTrack=pStack->Particle(tid);
str+=" from ";str+=pTrack->GetName();
}
}
}
pAL->UnloadHeader(); pAL->UnloadKinematics();
return mtid;
}
Int_t AliHMPIDParam::StackCount(Int_t pid,Int_t evt)
{
AliRunLoader *pAL=AliRunLoader::Open();
pAL->GetEvent(evt);
if(pAL->LoadHeader()) return 0;
if(pAL->LoadKinematics()) return 0;
AliStack *pStack=pAL->Stack();
Int_t iCnt=0;
for(Int_t i=0;i<pStack->GetNtrack();i++) if(pStack->Particle(i)->GetPdgCode()==pid) iCnt++;
pAL->UnloadHeader(); pAL->UnloadKinematics();
return iCnt;
}
Double_t AliHMPIDParam::Sigma2(Double_t trkTheta,Double_t trkPhi,Double_t ckovTh, Double_t ckovPh)
{
TVector3 v(-999,-999,-999);
Double_t trkBeta = 1./(TMath::Cos(ckovTh)*GetRefIdx());
if(trkBeta > 1) trkBeta = 1;
if(trkBeta < 0) trkBeta = 0.0001;
v.SetX(SigLoc (trkTheta,trkPhi,ckovTh,ckovPh,trkBeta));
v.SetY(SigGeom(trkTheta,trkPhi,ckovTh,ckovPh,trkBeta));
v.SetZ(SigCrom(trkTheta,trkPhi,ckovTh,ckovPh,trkBeta));
return v.Mag2();
}
Double_t AliHMPIDParam::SigLoc(Double_t trkTheta,Double_t trkPhi,Double_t thetaC, Double_t phiC,Double_t betaM)
{
Double_t phiDelta = phiC - trkPhi;
Double_t sint = TMath::Sin(trkTheta);
Double_t cost = TMath::Cos(trkTheta);
Double_t sinf = TMath::Sin(trkPhi);
Double_t cosf = TMath::Cos(trkPhi);
Double_t sinfd = TMath::Sin(phiDelta);
Double_t cosfd = TMath::Cos(phiDelta);
Double_t tantheta = TMath::Tan(thetaC);
Double_t alpha =cost-tantheta*cosfd*sint;
Double_t k = 1.-GetRefIdx()*GetRefIdx()+alpha*alpha/(betaM*betaM);
if (k<0) return 1e10;
Double_t mu =sint*sinf+tantheta*(cost*cosfd*sinf+sinfd*cosf);
Double_t e =sint*cosf+tantheta*(cost*cosfd*cosf-sinfd*sinf);
Double_t kk = betaM*TMath::Sqrt(k)/(GapThick()*alpha);
Double_t dtdxc = kk*(k*(cosfd*cosf-cost*sinfd*sinf)-(alpha*mu/(betaM*betaM))*sint*sinfd);
Double_t dtdyc = kk*(k*(cosfd*sinf+cost*sinfd*cosf)+(alpha* e/(betaM*betaM))*sint*sinfd);
Double_t errX = 0.2,errY=0.25;
return TMath::Sqrt(errX*errX*dtdxc*dtdxc + errY*errY*dtdyc*dtdyc);
}
Double_t AliHMPIDParam::SigCrom(Double_t trkTheta,Double_t trkPhi,Double_t thetaC, Double_t phiC,Double_t betaM)
{
Double_t phiDelta = phiC - trkPhi;
Double_t sint = TMath::Sin(trkTheta);
Double_t cost = TMath::Cos(trkTheta);
Double_t cosfd = TMath::Cos(phiDelta);
Double_t tantheta = TMath::Tan(thetaC);
Double_t alpha =cost-tantheta*cosfd*sint;
Double_t dtdn = cost*GetRefIdx()*betaM*betaM/(alpha*tantheta);
Double_t f = 0.0172*(7.75-5.635)/TMath::Sqrt(24.);
return f*dtdn;
}
Double_t AliHMPIDParam::SigGeom(Double_t trkTheta,Double_t trkPhi,Double_t thetaC, Double_t phiC,Double_t betaM)
{
Double_t phiDelta = phiC - trkPhi;
Double_t sint = TMath::Sin(trkTheta);
Double_t cost = TMath::Cos(trkTheta);
Double_t sinf = TMath::Sin(trkPhi);
Double_t cosfd = TMath::Cos(phiDelta);
Double_t costheta = TMath::Cos(thetaC);
Double_t tantheta = TMath::Tan(thetaC);
Double_t alpha =cost-tantheta*cosfd*sint;
Double_t k = 1.-GetRefIdx()*GetRefIdx()+alpha*alpha/(betaM*betaM);
if (k<0) return 1e10;
Double_t eTr = 0.5*RadThick()*betaM*TMath::Sqrt(k)/(GapThick()*alpha);
Double_t lambda = (1.-sint*sinf)*(1.+sint*sinf);
Double_t c1 = 1./(1.+ eTr*k/(alpha*alpha*costheta*costheta));
Double_t c2 = betaM*TMath::Power(k,1.5)*tantheta*lambda/(GapThick()*alpha*alpha);
Double_t c3 = (1.+eTr*k*betaM*betaM)/((1+eTr)*alpha*alpha);
Double_t c4 = TMath::Sqrt(k)*tantheta*(1-lambda)/(GapThick()*betaM);
Double_t dtdT = c1 * (c2+c3*c4);
Double_t trErr = RadThick()/(TMath::Sqrt(12.)*cost);
return trErr*dtdT;
}
Double_t AliHMPIDParam::SigmaCorrFact (Int_t iPart, Double_t occupancy)
{
Double_t corr = 1.0;
switch(iPart) {
case 0: corr = 0.115*occupancy + 1.166; break;
case 1: corr = 0.115*occupancy + 1.166; break;
case 2: corr = 0.115*occupancy + 1.166; break;
case 3: corr = 0.065*occupancy + 1.137; break;
case 4: corr = 0.048*occupancy + 1.202; break;
}
return corr;
}