ROOT logo
#ifndef AliHMPIDParam_h
#define AliHMPIDParam_h
/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
 * See cxx source for full Copyright notice                               */

/* $Id$ */

#include "stdio.h"
#include <TMath.h>
#include <TNamed.h>        //base class
#include <TGeoManager.h>   //Instance()
#include <TGeoMatrix.h>   //Instance()
#include <TVector3.h>      //Lors2Mars() Mars2Lors()
 
// Class providing all the needed parametrised information
// to construct the geometry, to define segmentation and to provide response model
// In future will also provide all the staff needed for alignment and calibration

class AliHMPIDParam :public TNamed  
{
public:
//ctor&dtor    
  virtual        ~AliHMPIDParam() {if (fgInstance){for(Int_t i=0;i<7;i++){delete fM[i];fM[i] = 0x0;};fgInstance=0;}}
  
  void     Print(Option_t *opt="") const;                                         //print current parametrization
         
  static inline AliHMPIDParam* Instance();                                //pointer to AliHMPIDParam singleton
  static inline AliHMPIDParam* InstanceNoGeo();                           //pointer to AliHMPIDParam singleton without geometry.root for MOOD, displays, ...
//geo info
  enum EChamberData{kMinCh=0,kMaxCh=6,kMinPc=0,kMaxPc=5};      //Segmenation
  enum EPadxData{kPadPcX=80,kMinPx=0,kMaxPx=79,kMaxPcx=159};   //Segmentation structure along x
  enum EPadyData{kPadPcY=48,kMinPy=0,kMaxPy=47,kMaxPcy=143};   //Segmentation structure along y 
  //The electronics takes the 32bit int as: first 9 bits for the pedestal and the second 9 bits for threshold - values below should be within range
  enum EPedestalData{kPadMeanZeroCharge=400,kPadSigmaZeroCharge=20,kPadMeanMasked=401,kPadSigmaMasked=20};         //One can go up to 5 sigma cut, overflow is protected in AliHMPIDCalib
  
      
  static Float_t r2d         (                               )     {return 57.2957795;                               }
  static Float_t SizePadX    (                               )     {return fgCellX;                                  }  //pad size x, [cm]  
  static Float_t SizePadY    (                               )     {return fgCellY;                                  }  //pad size y, [cm]  

  static Float_t SizePcX    (                                )     {return fgPcX;                                    }  // PC size x
  static Float_t SizePcY    (                                )     {return fgPcY;                                    }  // PC size y
  static Float_t MaxPcX      (Int_t iPc                      )     {return fgkMaxPcX[iPc];                           }  // PC limits
  static Float_t MaxPcY      (Int_t iPc                      )     {return fgkMaxPcY[iPc];                           }  // PC limits
  static Float_t MinPcX      (Int_t iPc                      )     {return fgkMinPcX[iPc];                           }  // PC limits
  static Float_t MinPcY      (Int_t iPc                      )     {return fgkMinPcY[iPc];                           }  // PC limits
  static Int_t   Nsig        (                               )     {return fgNSigmas;                                 }  //Getter n. sigmas for noise
  static Float_t SizeAllX    (                               )     {return fgAllX;                                   }  //all PCs size x, [cm]        
  static Float_t SizeAllY    (                               )     {return fgAllY;                                   }  //all PCs size y, [cm]    

  static Float_t LorsX       (Int_t pc,Int_t padx             )    {return (padx    +0.5)*SizePadX()+fgkMinPcX[pc];  }  //center of the pad x, [cm]
  static Float_t LorsY       (Int_t pc,Int_t pady            )     {return (pady    +0.5)*SizePadY()+fgkMinPcY[pc];  }  //center of the pad y, [cm]

  Float_t ChPhiMin    (Int_t ch                       ) {return Lors2Mars(ch,LorsX(ch,kMinPx)-fX,LorsY(ch,kMinPy)-fY).Phi()*r2d();}      //PhiMin (degree) of the camber ch
  Float_t ChThMin     (Int_t ch                       ) {return Lors2Mars(ch,LorsX(ch,kMinPx)-fX,LorsY(ch,kMinPy)-fY).Theta()*r2d();}    //ThMin  (degree) of the camber ch
  Float_t ChPhiMax    (Int_t ch                       ) {return Lors2Mars(ch,LorsX(ch,kMaxPcx)-fX,LorsY(ch,kMaxPcy)-fY).Phi()*r2d();}    //PhiMax (degree) of the camber ch
  Float_t ChThMax     (Int_t ch                       ) {return Lors2Mars(ch,LorsX(ch,kMaxPcx)-fX,LorsY(ch,kMaxPcy)-fY).Theta()*r2d();}  //ThMax  (degree) of the camber ch

  inline static void   Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py);                                     //(x,y)->(pc,px,py) 

  static Int_t   Abs         (Int_t ch,Int_t pc,Int_t x,Int_t y)   {return ch*100000000+pc*1000000+x*1000+y;         }  //(ch,pc,padx,pady)-> abs pad
  static Int_t   DDL2C       (Int_t ddl                      )     {return ddl/2;                                    }  //ddl -> chamber
  static Int_t   A2C         (Int_t pad                      )     {return pad/100000000;                            }  //abs pad -> chamber
  static Int_t   A2P         (Int_t pad                      )     {return pad%100000000/1000000;                    }  //abs pad -> pc 
  static Int_t   A2X         (Int_t pad                      )     {return pad%1000000/1000;                         }  //abs pad -> pad X 
  static Int_t   A2Y         (Int_t pad                      )     {return pad%1000;                                 }  //abs pad -> pad Y 

  static Bool_t  IsOverTh    (Float_t q                      )     {return q >= fgThreshold;                         }  //is digit over threshold?
  
  Bool_t  GetInstType        (                               )const{return fgInstanceType;                            }  //return if the instance is from geom or ideal                        
  
  inline static Bool_t IsInDead(Float_t x,Float_t y        );                                                           //is the point in dead area?
  inline static Bool_t IsDeadPad(Int_t padx,Int_t pady,Int_t ch);                                                       //is a dead pad?
  
  inline void SetChStatus(Int_t ch,Bool_t status=kTRUE);
  inline void SetSectStatus(Int_t ch,Int_t sect,Bool_t status); 
  inline void SetPcStatus(Int_t ch,Int_t pc,Bool_t status); 
  inline void PrintChStatus(Int_t ch);
  inline void SetGeomAccept();
  
  inline static Int_t  InHVSector(           Float_t y     );                                                           //find HV sector
  static Int_t     Radiator(          Float_t y               )       {if (InHVSector(y)<0) return -1; return InHVSector(y)/2;}
  static Double_t  HinRad(Float_t y)         {if (Radiator(y)<0) return -1;return y-Radiator(y)*fgkMinPcY[Radiator(y)];}                                   // height in the radiator to estimate temperature from gradient
  static Bool_t    IsInside    (Float_t x,Float_t y,Float_t d=0)     {return  x>-d&&y>-d&&x<fgkMaxPcX[kMaxPc]+d&&y<fgkMaxPcY[kMaxPc]+d; } //is point inside chamber boundaries?

  //For optical properties
  static Double_t   EPhotMin()                       {return 5.5;}           //
  static Double_t   EPhotMax()                       {return 8.5;}           //Photon energy range,[eV]
  static Double_t NIdxRad(Double_t eV,Double_t temp) {return TMath::Sqrt(1+0.554*(1239.84/eV)*(1239.84/eV)/((1239.84/eV)*(1239.84/eV)-5769))-0.0005*(temp-20);}
  static Double_t NIdxWin(Double_t eV)               {return TMath::Sqrt(1+46.411/(10.666*10.666-eV*eV)+228.71/(18.125*18.125-eV*eV));}  
  static Double_t NMgF2Idx(Double_t eV)              {return 1.7744 - 2.866e-3*(1239.842609/eV) + 5.5564e-6*(1239.842609/eV)*(1239.842609/eV);}          // MgF2 idx of trasparency system
  static Double_t NIdxGap(Double_t eV)               {return 1+0.12489e-6/(2.62e-4 - eV*eV/1239.84/1239.84);}
  static Double_t LAbsRad(Double_t eV)               {return (eV<7.8)*(GausPar(eV,3.20491e16,-0.00917890,0.742402)+GausPar(eV,3035.37,4.81171,0.626309))+(eV>=7.8)*0.0001;}
  static Double_t LAbsWin(Double_t eV)               {return (eV<8.2)*(818.8638-301.0436*eV+36.89642*eV*eV-1.507555*eV*eV*eV)+(eV>=8.2)*0.0001;}//fit from DiMauro data 28.10.03
  static Double_t LAbsGap(Double_t eV)               {return (eV<7.75)*6512.399+(eV>=7.75)*3.90743e-2/(-1.655279e-1+6.307392e-2*eV-8.011441e-3*eV*eV+3.392126e-4*eV*eV*eV);}
  static Double_t QEffCSI(Double_t eV)               {return (eV>6.07267)*0.344811*(1-exp(-1.29730*(eV-6.07267)));}//fit from DiMauro data 28.10.03
  static Double_t GausPar(Double_t x,Double_t a1,Double_t a2,Double_t a3) {return a1*TMath::Exp(-0.5*((x-a2)/a3)*((x-a2)/a3));}
  inline static Double_t FindTemp(Double_t tLow,Double_t tUp,Double_t y);    //find the temperature of the C6F14 in a given point with coord. y (in x is uniform)
  
  
  Double_t   GetEPhotMean            ()const {return fPhotEMean;} 
  Double_t   GetRefIdx               ()const {return fRefIdx;}                       //running refractive index
  
  Double_t   MeanIdxRad              ()const {return NIdxRad(fPhotEMean,fTemp);}
  Double_t   MeanIdxWin              ()const {return NIdxWin(fPhotEMean);}
  //
  Float_t    DistCut                 ()const {return 1.0;}       //<--TEMPORAR--> to be removed in future. Cut for MIP-TRACK residual 
  Float_t    QCut                    ()const {return 100;}       //<--TEMPORAR--> to be removed in future. Separation PHOTON-MIP charge 
  Float_t    MultCut                 ()const {return 30;}       //<--TEMPORAR--> to be removed in future. Multiplicity cut to activate WEIGHT procedure 

  Double_t   RadThick                ()const {return 1.5;}       //<--TEMPORAR--> to be removed in future. Radiator thickness
  Double_t   WinThick                ()const {return 0.5;}       //<--TEMPORAR--> to be removed in future. Window thickness
  Double_t   GapThick                ()const {return 8.0;}       //<--TEMPORAR--> to be removed in future. Proximity gap thickness
  Double_t   WinIdx                  ()const {return 1.5787;}    //<--TEMPORAR--> to be removed in future. Mean refractive index of WIN material (SiO2) 
  Double_t   GapIdx                  ()const {return 1.0005;}    //<--TEMPORAR--> to be removed in future. Mean refractive index of GAP material (CH4)

  static        Int_t      Stack(Int_t evt=-1,Int_t tid=-1);              //Print stack info for event and tid
  static        Int_t      StackCount(Int_t pid,Int_t evt);               //Counts stack particles of given sort in given event  
  static        void       IdealPosition(Int_t iCh,TGeoHMatrix *m);       //ideal position of given chamber 
  //trasformation methodes
  void     Lors2Mars   (Int_t c,Float_t x,Float_t y,Double_t *m,Int_t pl=kPc)const{Double_t z=0; switch(pl){case kPc:z=8.0;break; case kAnod:z=7.806;break; case kRad:z=-1.25; break;}   Double_t l[3]={x-fX,y-fY,z};  fM[c]->LocalToMaster(l,m); }    
  TVector3 Lors2Mars   (Int_t c,Float_t x,Float_t y,            Int_t pl=kPc)const{Double_t m[3];Lors2Mars(c,x,y,m,pl); return TVector3(m);    }//MRS->LRS  
  void     Mars2Lors   (Int_t c,Double_t *m,Float_t &x ,Float_t &y          )const{Double_t l[3];fM[c]->MasterToLocal(m,l);x=l[0]+fX;y=l[1]+fY;}//MRS->LRS
  void     Mars2LorsVec(Int_t c,Double_t *m,Float_t &th,Float_t &ph         )const{Double_t l[3]; fM[c]->MasterToLocalVect(m,l); 
                                                                                   Float_t pt=TMath::Sqrt(l[0]*l[0]+l[1]*l[1]); 
                                                                                           th=TMath::ATan(pt/l[2]); 
                                                                                           ph=TMath::ATan2(l[1],l[0]);}    
  void     Lors2MarsVec(Int_t c,Double_t *m,Double_t *l                     )const{fM[c]->LocalToMasterVect(m,l);                              }//LRS->MRS 
  TVector3 Norm        (Int_t c                                             )const{Double_t n[3]; Norm(c,n); return TVector3(n);               }//norm 
  void     Norm        (Int_t c,Double_t *n                                 )const{Double_t l[3]={0,0,1};fM[c]->LocalToMasterVect(l,n);        }//norm
  void     Point       (Int_t c,Double_t *p,Int_t plane                     )const{Lors2Mars(c,0,0,p,plane);}         //point of given chamber plane

  void     SetTemp        (Double_t temp                                       ) {fTemp = temp;}                      //set actual temperature of the C6F14
  void     SetEPhotMean   (Double_t ePhotMean                                  ) {fPhotEMean = ePhotMean;}            //set mean photon energy
  
  void     SetRefIdx      (Double_t refRadIdx                                  ) {fRefIdx = refRadIdx;}               //set running refractive index
  
  void     SetNSigmas     (Int_t sigmas                                        ) {fgNSigmas   = sigmas;}                 //set sigma cut  
  void     SetThreshold   (Int_t thres                                         ) {fgThreshold = thres;}                 //set sigma cut        
  void     SetInstanceType(Bool_t inst                                         ) {fgInstanceType = inst;}             //kTRUE if from geomatry kFALSE if from ideal geometry
  //For PID
  Double_t SigLoc         (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to cathode segmetation
  Double_t SigGeom        (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to unknown photon origin
  Double_t SigCrom        (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to unknonw photon energy
  Double_t Sigma2         (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh              );//photon candidate sigma^2
  
  static Double_t SigmaCorrFact(Int_t iPart, Double_t occupancy                                         );//correction factor for theoretical resolution

  //Mathieson Getters
  
  static Double_t PitchAnodeCathode()  {return fgkD;}
  static Double_t SqrtK3x() {return fgkSqrtK3x;}
  static Double_t K2x    () {return fgkK2x;}
  static Double_t K1x    () {return fgkK1x;}
  static Double_t K4x    () {return fgkK4x;}
  static Double_t SqrtK3y() {return fgkSqrtK3y;}
  static Double_t K2y    () {return fgkK2y;}
  static Double_t K1y    () {return fgkK1y;}
  static Double_t K4y    () {return fgkK4y;}
  //
  enum EPlaneId {kPc,kRad,kAnod};            //3 planes in chamber 
  enum ETrackingFlags {kMipDistCut=-9,kMipQdcCut=-5,kNoPhotAccept=-11};     //flags for Reconstruction

protected:
  static /*const*/ Float_t fgkMinPcX[6];                                                           //limits PC
  static /*const*/ Float_t fgkMinPcY[6];                                                           //limits PC
  static /*const*/ Float_t fgkMaxPcX[6];                                                           //limits PC
  static /*const*/ Float_t fgkMaxPcY[6]; 
  
  static Bool_t fgMapPad[160][144][7];                                                                   //map of pads to evaluate if they are active or dead (160,144) pads for 7 chambers
  
// Mathieson constants
// For HMPID --> x direction means parallel      to the wires: K3 = 0.66  (NIM A270 (1988) 602-603) fig.1  
// For HMPID --> y direction means perpendicular to the wires: K3 = 0.90  (NIM A270 (1988) 602-603) fig.2  
//

  static const Double_t fgkD;  // ANODE-CATHODE distance 0.445/2
  
  static const Double_t fgkSqrtK3x,fgkK2x,fgkK1x,fgkK4x;
  static const Double_t fgkSqrtK3y,fgkK2y,fgkK1y,fgkK4y;
//
    
  static Int_t    fgNSigmas;                                                                        //sigma Cut
  static Int_t    fgThreshold;                                                                        //sigma Cut
  static Bool_t   fgInstanceType;                                                                  //kTRUE if from geomatry kFALSE if from ideal geometry

  static Float_t fgCellX, fgCellY, fgPcX, fgPcY, fgAllX, fgAllY;                                   //definition of HMPID geometric parameters 
         AliHMPIDParam(Bool_t noGeo);             //default ctor is protected to enforce it to be singleton

  static AliHMPIDParam *fgInstance;   //static pointer  to instance of AliHMPIDParam singleton

  TGeoHMatrix *fM[7];                 //pointers to matrices defining HMPID chambers rotations-translations
  Float_t fX;                         //x shift of LORS with respect to rotated MARS 
  Float_t fY;                         //y shift of LORS with respect to rotated MARS
  Double_t fRefIdx;                   //running refractive index of C6F14
  Double_t fPhotEMean;                //mean energy of photon
  Double_t fTemp;                     //actual temparature of C6F14  
private:
  AliHMPIDParam(const AliHMPIDParam& r);              //dummy copy constructor
  AliHMPIDParam &operator=(const AliHMPIDParam& r);   //dummy assignment operator
      
  ClassDef(AliHMPIDParam,1)           //HMPID main parameters class
};

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
AliHMPIDParam* AliHMPIDParam::Instance()
{
// Return pointer to the AliHMPIDParam singleton. 
// Arguments: none
//   Returns: pointer to the instance of AliHMPIDParam or 0 if no geometry       
  if(!fgInstance) new AliHMPIDParam(kFALSE);                                //default setting for reconstruction, if no geometry.root -> AliFatal
  return fgInstance;  
}//Instance()    
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
AliHMPIDParam* AliHMPIDParam::InstanceNoGeo()
{
// Return pointer to the AliHMPIDParam singleton without the geometry.root. 
// Arguments: none
//   Returns: pointer to the instance of AliHMPIDParam or 0 if no geometry       
  if(!fgInstance) new AliHMPIDParam(kTRUE);                               //to avoid AliFatal, for MOOD and displays, use ideal geometry parameters
  return fgInstance;  
}//Instance()    
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Bool_t AliHMPIDParam::IsInDead(Float_t x,Float_t y)
{
// Check is the current point is outside of sensitive area or in dead zones
// Arguments: x,y -position
//   Returns: 1 if not in sensitive zone           
  for(Int_t iPc=0;iPc<6;iPc++)
    if(x>=fgkMinPcX[iPc] && x<=fgkMaxPcX[iPc] && y>=fgkMinPcY[iPc] && y<=fgkMaxPcY [iPc]) return kFALSE; //in current pc
  
  return kTRUE;
}
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Bool_t AliHMPIDParam::IsDeadPad(Int_t padx,Int_t pady,Int_t ch)
{
// Check is the current pad is active or not
// Arguments: padx,pady pad integer coord
//   Returns: kTRUE if dead, kFALSE if active

    if(fgMapPad[padx-1][pady-1][ch]) return kFALSE; //current pad active
  
  return kTRUE;
}
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
void AliHMPIDParam::Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py)
{
// Check the pad of given position
// Arguments: x,y- position [cm] in LORS; pc,px,py- pad where to store the result
//   Returns: none
  pc=px=py=-1;
  if     (x>fgkMinPcX[0] && x<fgkMaxPcX[0]) {pc=0; px=Int_t( x               / SizePadX());}//PC 0 or 2 or 4
  else if(x>fgkMinPcX[1] && x<fgkMaxPcX[1]) {pc=1; px=Int_t((x-fgkMinPcX[1]) / SizePadX());}//PC 1 or 3 or 5
  else return;
  if     (y>fgkMinPcY[0] && y<fgkMaxPcY[0]) {      py=Int_t( y               / SizePadY());}//PC 0 or 1
  else if(y>fgkMinPcY[2] && y<fgkMaxPcY[2]) {pc+=2;py=Int_t((y-fgkMinPcY[2]) / SizePadY());}//PC 2 or 3
  else if(y>fgkMinPcY[4] && y<fgkMaxPcY[4]) {pc+=4;py=Int_t((y-fgkMinPcY[4]) / SizePadY());}//PC 4 or 5
  else return;
}
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Int_t AliHMPIDParam::InHVSector(Float_t y)
{
//Calculate the HV sector corresponding to the cluster position
//Arguments: y
//Returns the HV sector in the single module
 
   Int_t hvsec = -1;
   Int_t pc,px,py;
   Lors2Pad(1.,y,pc,px,py);
   if(py==-1) return hvsec;
   
   hvsec = (py+(pc/2)*(kMaxPy+1))/((kMaxPy+1)/2);
   
   return hvsec;
}
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Double_t AliHMPIDParam::FindTemp(Double_t tLow,Double_t tHigh,Double_t y)
{
//  Model for gradient in temperature
  Double_t yRad = HinRad(y);     //height in a given radiator
  if(tHigh<tLow) tHigh = tLow;   //if Tout < Tin consider just Tin as reference...
  if(yRad<0        ) yRad = 0;         //protection against fake y values
  if(yRad>SizePcY()) yRad = SizePcY(); //protection against fake y values
  
  Double_t gradT = (tHigh-tLow)/SizePcY();  // linear gradient
  return gradT*yRad+tLow;
}
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
void AliHMPIDParam::SetChStatus(Int_t ch,Bool_t status)
{
//Set a chamber on or off depending on the status
//Arguments: ch=chamber,status=kTRUE = active, kFALSE=off
//Returns: none
  for(Int_t padx=0;padx<kMaxPcx+1;padx++) {
     for(Int_t pady=0;pady<kMaxPcy+1;pady++) {
       fgMapPad[padx][pady][ch] = status;
     }
   }
}
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
void AliHMPIDParam::SetSectStatus(Int_t ch,Int_t sect,Bool_t status)
{
//Set a given sector sect for a chamber ch on or off depending on the status
//Sector=0,5 (6 sectors)
//Arguments: ch=chamber,sect=sector,status: kTRUE = active, kFALSE=off
//Returns: none
  
  Int_t npadsect = (kMaxPcy+1)/6;
  Int_t padSectMin = npadsect*sect;
  Int_t padSectMax = padSectMin+npadsect;
  
  for(Int_t padx=0;padx<kMaxPcx+1;padx++) {
     for(Int_t pady=padSectMin;pady<padSectMax;pady++) {
       fgMapPad[padx][pady][ch] = status;
     }
   }
}
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
void AliHMPIDParam::SetPcStatus(Int_t ch,Int_t pc,Bool_t status)
{
//Set a given PC pc for a chamber ch on or off depending on the status
//Arguments: ch=chamber,pc=PC,status: kTRUE = active, kFALSE=off
//Returns: none
  
  Int_t deltaX = pc%2;
  Int_t deltaY = pc/2;
  Int_t padPcXMin = deltaX*kPadPcX;
  Int_t padPcXMax = padPcXMin+kPadPcX;
  Int_t padPcYMin = deltaY*kPadPcY;
  Int_t padPcYMax = padPcYMin+kPadPcY;
  
  for(Int_t padx=padPcXMin;padx<padPcXMax;padx++) {
     for(Int_t pady=padPcYMin;pady<padPcYMax;pady++) {
       fgMapPad[padx][pady][ch] = status;
     }
   }
}
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
void AliHMPIDParam::PrintChStatus(Int_t ch)
{
//Print the map status of a chamber on or off depending on the status
//Arguments: ch=chamber
//Returns: none
  Printf(" ");
  Printf(" --------- C H A M B E R  %d   ---------------",ch);
  for(Int_t pady=kMaxPcy;pady>=0;pady--) {
     for(Int_t padx=0;padx<kMaxPcx+1;padx++) {
       if(padx==80) printf(" ");
       printf("%d",fgMapPad[padx][pady][ch]);
     }
     printf(" %d \n",pady+1);
     if(pady%48==0) printf("\n");
   }
   printf("\n");
}
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
void AliHMPIDParam::SetGeomAccept()
{
//Set the real acceptance of the modules, due to ineficciency or hardware problems (up tp 1/6/2010)
//Arguments: none
//Returns: none
  SetSectStatus(0,3,kFALSE);
  SetSectStatus(4,0,kFALSE);
  SetSectStatus(5,1,kFALSE);
  SetSectStatus(6,2,kFALSE);
  SetSectStatus(6,3,kFALSE);
}
#endif
 AliHMPIDParam.h:1
 AliHMPIDParam.h:2
 AliHMPIDParam.h:3
 AliHMPIDParam.h:4
 AliHMPIDParam.h:5
 AliHMPIDParam.h:6
 AliHMPIDParam.h:7
 AliHMPIDParam.h:8
 AliHMPIDParam.h:9
 AliHMPIDParam.h:10
 AliHMPIDParam.h:11
 AliHMPIDParam.h:12
 AliHMPIDParam.h:13
 AliHMPIDParam.h:14
 AliHMPIDParam.h:15
 AliHMPIDParam.h:16
 AliHMPIDParam.h:17
 AliHMPIDParam.h:18
 AliHMPIDParam.h:19
 AliHMPIDParam.h:20
 AliHMPIDParam.h:21
 AliHMPIDParam.h:22
 AliHMPIDParam.h:23
 AliHMPIDParam.h:24
 AliHMPIDParam.h:25
 AliHMPIDParam.h:26
 AliHMPIDParam.h:27
 AliHMPIDParam.h:28
 AliHMPIDParam.h:29
 AliHMPIDParam.h:30
 AliHMPIDParam.h:31
 AliHMPIDParam.h:32
 AliHMPIDParam.h:33
 AliHMPIDParam.h:34
 AliHMPIDParam.h:35
 AliHMPIDParam.h:36
 AliHMPIDParam.h:37
 AliHMPIDParam.h:38
 AliHMPIDParam.h:39
 AliHMPIDParam.h:40
 AliHMPIDParam.h:41
 AliHMPIDParam.h:42
 AliHMPIDParam.h:43
 AliHMPIDParam.h:44
 AliHMPIDParam.h:45
 AliHMPIDParam.h:46
 AliHMPIDParam.h:47
 AliHMPIDParam.h:48
 AliHMPIDParam.h:49
 AliHMPIDParam.h:50
 AliHMPIDParam.h:51
 AliHMPIDParam.h:52
 AliHMPIDParam.h:53
 AliHMPIDParam.h:54
 AliHMPIDParam.h:55
 AliHMPIDParam.h:56
 AliHMPIDParam.h:57
 AliHMPIDParam.h:58
 AliHMPIDParam.h:59
 AliHMPIDParam.h:60
 AliHMPIDParam.h:61
 AliHMPIDParam.h:62
 AliHMPIDParam.h:63
 AliHMPIDParam.h:64
 AliHMPIDParam.h:65
 AliHMPIDParam.h:66
 AliHMPIDParam.h:67
 AliHMPIDParam.h:68
 AliHMPIDParam.h:69
 AliHMPIDParam.h:70
 AliHMPIDParam.h:71
 AliHMPIDParam.h:72
 AliHMPIDParam.h:73
 AliHMPIDParam.h:74
 AliHMPIDParam.h:75
 AliHMPIDParam.h:76
 AliHMPIDParam.h:77
 AliHMPIDParam.h:78
 AliHMPIDParam.h:79
 AliHMPIDParam.h:80
 AliHMPIDParam.h:81
 AliHMPIDParam.h:82
 AliHMPIDParam.h:83
 AliHMPIDParam.h:84
 AliHMPIDParam.h:85
 AliHMPIDParam.h:86
 AliHMPIDParam.h:87
 AliHMPIDParam.h:88
 AliHMPIDParam.h:89
 AliHMPIDParam.h:90
 AliHMPIDParam.h:91
 AliHMPIDParam.h:92
 AliHMPIDParam.h:93
 AliHMPIDParam.h:94
 AliHMPIDParam.h:95
 AliHMPIDParam.h:96
 AliHMPIDParam.h:97
 AliHMPIDParam.h:98
 AliHMPIDParam.h:99
 AliHMPIDParam.h:100
 AliHMPIDParam.h:101
 AliHMPIDParam.h:102
 AliHMPIDParam.h:103
 AliHMPIDParam.h:104
 AliHMPIDParam.h:105
 AliHMPIDParam.h:106
 AliHMPIDParam.h:107
 AliHMPIDParam.h:108
 AliHMPIDParam.h:109
 AliHMPIDParam.h:110
 AliHMPIDParam.h:111
 AliHMPIDParam.h:112
 AliHMPIDParam.h:113
 AliHMPIDParam.h:114
 AliHMPIDParam.h:115
 AliHMPIDParam.h:116
 AliHMPIDParam.h:117
 AliHMPIDParam.h:118
 AliHMPIDParam.h:119
 AliHMPIDParam.h:120
 AliHMPIDParam.h:121
 AliHMPIDParam.h:122
 AliHMPIDParam.h:123
 AliHMPIDParam.h:124
 AliHMPIDParam.h:125
 AliHMPIDParam.h:126
 AliHMPIDParam.h:127
 AliHMPIDParam.h:128
 AliHMPIDParam.h:129
 AliHMPIDParam.h:130
 AliHMPIDParam.h:131
 AliHMPIDParam.h:132
 AliHMPIDParam.h:133
 AliHMPIDParam.h:134
 AliHMPIDParam.h:135
 AliHMPIDParam.h:136
 AliHMPIDParam.h:137
 AliHMPIDParam.h:138
 AliHMPIDParam.h:139
 AliHMPIDParam.h:140
 AliHMPIDParam.h:141
 AliHMPIDParam.h:142
 AliHMPIDParam.h:143
 AliHMPIDParam.h:144
 AliHMPIDParam.h:145
 AliHMPIDParam.h:146
 AliHMPIDParam.h:147
 AliHMPIDParam.h:148
 AliHMPIDParam.h:149
 AliHMPIDParam.h:150
 AliHMPIDParam.h:151
 AliHMPIDParam.h:152
 AliHMPIDParam.h:153
 AliHMPIDParam.h:154
 AliHMPIDParam.h:155
 AliHMPIDParam.h:156
 AliHMPIDParam.h:157
 AliHMPIDParam.h:158
 AliHMPIDParam.h:159
 AliHMPIDParam.h:160
 AliHMPIDParam.h:161
 AliHMPIDParam.h:162
 AliHMPIDParam.h:163
 AliHMPIDParam.h:164
 AliHMPIDParam.h:165
 AliHMPIDParam.h:166
 AliHMPIDParam.h:167
 AliHMPIDParam.h:168
 AliHMPIDParam.h:169
 AliHMPIDParam.h:170
 AliHMPIDParam.h:171
 AliHMPIDParam.h:172
 AliHMPIDParam.h:173
 AliHMPIDParam.h:174
 AliHMPIDParam.h:175
 AliHMPIDParam.h:176
 AliHMPIDParam.h:177
 AliHMPIDParam.h:178
 AliHMPIDParam.h:179
 AliHMPIDParam.h:180
 AliHMPIDParam.h:181
 AliHMPIDParam.h:182
 AliHMPIDParam.h:183
 AliHMPIDParam.h:184
 AliHMPIDParam.h:185
 AliHMPIDParam.h:186
 AliHMPIDParam.h:187
 AliHMPIDParam.h:188
 AliHMPIDParam.h:189
 AliHMPIDParam.h:190
 AliHMPIDParam.h:191
 AliHMPIDParam.h:192
 AliHMPIDParam.h:193
 AliHMPIDParam.h:194
 AliHMPIDParam.h:195
 AliHMPIDParam.h:196
 AliHMPIDParam.h:197
 AliHMPIDParam.h:198
 AliHMPIDParam.h:199
 AliHMPIDParam.h:200
 AliHMPIDParam.h:201
 AliHMPIDParam.h:202
 AliHMPIDParam.h:203
 AliHMPIDParam.h:204
 AliHMPIDParam.h:205
 AliHMPIDParam.h:206
 AliHMPIDParam.h:207
 AliHMPIDParam.h:208
 AliHMPIDParam.h:209
 AliHMPIDParam.h:210
 AliHMPIDParam.h:211
 AliHMPIDParam.h:212
 AliHMPIDParam.h:213
 AliHMPIDParam.h:214
 AliHMPIDParam.h:215
 AliHMPIDParam.h:216
 AliHMPIDParam.h:217
 AliHMPIDParam.h:218
 AliHMPIDParam.h:219
 AliHMPIDParam.h:220
 AliHMPIDParam.h:221
 AliHMPIDParam.h:222
 AliHMPIDParam.h:223
 AliHMPIDParam.h:224
 AliHMPIDParam.h:225
 AliHMPIDParam.h:226
 AliHMPIDParam.h:227
 AliHMPIDParam.h:228
 AliHMPIDParam.h:229
 AliHMPIDParam.h:230
 AliHMPIDParam.h:231
 AliHMPIDParam.h:232
 AliHMPIDParam.h:233
 AliHMPIDParam.h:234
 AliHMPIDParam.h:235
 AliHMPIDParam.h:236
 AliHMPIDParam.h:237
 AliHMPIDParam.h:238
 AliHMPIDParam.h:239
 AliHMPIDParam.h:240
 AliHMPIDParam.h:241
 AliHMPIDParam.h:242
 AliHMPIDParam.h:243
 AliHMPIDParam.h:244
 AliHMPIDParam.h:245
 AliHMPIDParam.h:246
 AliHMPIDParam.h:247
 AliHMPIDParam.h:248
 AliHMPIDParam.h:249
 AliHMPIDParam.h:250
 AliHMPIDParam.h:251
 AliHMPIDParam.h:252
 AliHMPIDParam.h:253
 AliHMPIDParam.h:254
 AliHMPIDParam.h:255
 AliHMPIDParam.h:256
 AliHMPIDParam.h:257
 AliHMPIDParam.h:258
 AliHMPIDParam.h:259
 AliHMPIDParam.h:260
 AliHMPIDParam.h:261
 AliHMPIDParam.h:262
 AliHMPIDParam.h:263
 AliHMPIDParam.h:264
 AliHMPIDParam.h:265
 AliHMPIDParam.h:266
 AliHMPIDParam.h:267
 AliHMPIDParam.h:268
 AliHMPIDParam.h:269
 AliHMPIDParam.h:270
 AliHMPIDParam.h:271
 AliHMPIDParam.h:272
 AliHMPIDParam.h:273
 AliHMPIDParam.h:274
 AliHMPIDParam.h:275
 AliHMPIDParam.h:276
 AliHMPIDParam.h:277
 AliHMPIDParam.h:278
 AliHMPIDParam.h:279
 AliHMPIDParam.h:280
 AliHMPIDParam.h:281
 AliHMPIDParam.h:282
 AliHMPIDParam.h:283
 AliHMPIDParam.h:284
 AliHMPIDParam.h:285
 AliHMPIDParam.h:286
 AliHMPIDParam.h:287
 AliHMPIDParam.h:288
 AliHMPIDParam.h:289
 AliHMPIDParam.h:290
 AliHMPIDParam.h:291
 AliHMPIDParam.h:292
 AliHMPIDParam.h:293
 AliHMPIDParam.h:294
 AliHMPIDParam.h:295
 AliHMPIDParam.h:296
 AliHMPIDParam.h:297
 AliHMPIDParam.h:298
 AliHMPIDParam.h:299
 AliHMPIDParam.h:300
 AliHMPIDParam.h:301
 AliHMPIDParam.h:302
 AliHMPIDParam.h:303
 AliHMPIDParam.h:304
 AliHMPIDParam.h:305
 AliHMPIDParam.h:306
 AliHMPIDParam.h:307
 AliHMPIDParam.h:308
 AliHMPIDParam.h:309
 AliHMPIDParam.h:310
 AliHMPIDParam.h:311
 AliHMPIDParam.h:312
 AliHMPIDParam.h:313
 AliHMPIDParam.h:314
 AliHMPIDParam.h:315
 AliHMPIDParam.h:316
 AliHMPIDParam.h:317
 AliHMPIDParam.h:318
 AliHMPIDParam.h:319
 AliHMPIDParam.h:320
 AliHMPIDParam.h:321
 AliHMPIDParam.h:322
 AliHMPIDParam.h:323
 AliHMPIDParam.h:324
 AliHMPIDParam.h:325
 AliHMPIDParam.h:326
 AliHMPIDParam.h:327
 AliHMPIDParam.h:328
 AliHMPIDParam.h:329
 AliHMPIDParam.h:330
 AliHMPIDParam.h:331
 AliHMPIDParam.h:332
 AliHMPIDParam.h:333
 AliHMPIDParam.h:334
 AliHMPIDParam.h:335
 AliHMPIDParam.h:336
 AliHMPIDParam.h:337
 AliHMPIDParam.h:338
 AliHMPIDParam.h:339
 AliHMPIDParam.h:340
 AliHMPIDParam.h:341
 AliHMPIDParam.h:342
 AliHMPIDParam.h:343
 AliHMPIDParam.h:344
 AliHMPIDParam.h:345
 AliHMPIDParam.h:346
 AliHMPIDParam.h:347
 AliHMPIDParam.h:348
 AliHMPIDParam.h:349
 AliHMPIDParam.h:350
 AliHMPIDParam.h:351
 AliHMPIDParam.h:352
 AliHMPIDParam.h:353
 AliHMPIDParam.h:354
 AliHMPIDParam.h:355
 AliHMPIDParam.h:356
 AliHMPIDParam.h:357
 AliHMPIDParam.h:358
 AliHMPIDParam.h:359
 AliHMPIDParam.h:360
 AliHMPIDParam.h:361
 AliHMPIDParam.h:362
 AliHMPIDParam.h:363
 AliHMPIDParam.h:364
 AliHMPIDParam.h:365
 AliHMPIDParam.h:366
 AliHMPIDParam.h:367
 AliHMPIDParam.h:368