/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////// // ITS geometry manipulation routines. // // Created April 15 1999. // // version: 0.0.0 // // By: Bjorn S. Nilsen // // version: 0.0.1 // // Updated May 27 1999. // // Added Cylindrical random and global based changes. // // // // Modified and added functions Feb. 7 2006 // /////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// // The local coordinate system by, default, is show in the following // figures. Also shown are the ladder numbering scheme. //Begin_Html /* <img src="picts/ITS/AliITSgeomMatrix_L1.gif"> </pre> <br clear=left> <font size=+2 color=blue> <p>This shows the relative geometry differences between the ALICE Global coordinate system and the local detector coordinate system. </font> <pre> <pre> <img src="picts/ITS/its1+2_convention_front_5.gif"> </pre> <br clear=left> <font size=+2 color=blue> <p>This shows the front view of the SPDs and the orientation of the local pixel coordinate system. Note that the inner pixel layer has its y coordinate in the opposite direction from all of the other layers. </font> <pre> <pre> <img src="picts/ITS/its3+4_convention_front_5.gif"> </pre> <br clear=left> <font size=+2 color=blue> <p>This shows the front view of the SDDs and the orientation of the local pixel coordinate system. </font> <pre> <pre> <img src="picts/ITS/its5+6_convention_front_5.gif"> </pre> <br clear=left> <font size=+2 color=blue> <p>This shows the front view of the SSDs and the orientation of the local pixel coordinate system. </font> <pre> */ //End_Html // //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// // // version: 0 // Written by Bjorn S. Nilsen // // Data Members: // // TString fVersion // Transformation version. // Int_t fTrans // Flag to keep track of which transformation // Int_t fNmodules // The total number of modules // Int_t fNlayers // The number of ITS layers for this geometry. By default this // is 6, but can be modified by the creator function if there are // more layers defined. // // TArrayI fNlad // A pointer to an array fNlayers long containing the number of // ladders for each layer. This array is typically created and filled // by the AliITSgeom creator function. // // TArrayI fNdet // A pointer to an array fNlayers long containing the number of // active detector volumes for each ladder. This array is typically // created and filled by the AliITSgeom creator function. // // TObjArray fGm containing objects of type AliITSgeomMatrix // A pointer to an array of AliITSgeomMatrix classes. One element // per module (detector) in the ITS. AliITSgeomMatrix basicly contains // all of the necessary information about the detector and it's coordinate // transformations. // //////////////////////////////////////////////////////////////////////// #include <Riostream.h> #include <ctype.h> #include <TRandom.h> #include <TSystem.h> #include <TArrayI.h> #include "AliITSgeom.h" #include "AliLog.h" ClassImp(AliITSgeom) //______________________________________________________________________ AliITSgeom::AliITSgeom(): TObject(), fVersion("GEANT"),// Transformation version. fTrans(0), // Flag to keep track of which transformation fNmodules(0), // The total number of modules fNlayers(0), // The number of layers. fNlad(), //[] Array of the number of ladders/layer(layer) fNdet(), //[] Array of the number of detector/ladder(layer) fGm(0,0) // Structure of translation. and rotation. { // The default constructor for the AliITSgeom class. It, by default, // sets fNlayers to zero and zeros all pointers. // Do not allocate anything zero everything. // Inputs: // none. // Outputs: // none. // Return: // a zeroed AliITSgeom object. fGm.SetOwner(kTRUE); return; } //______________________________________________________________________ AliITSgeom::AliITSgeom(Int_t itype,Int_t nlayers,const Int_t *nlads, const Int_t *ndets,Int_t mods): TObject(), fVersion("GEANT"), // Transformation version. fTrans(itype), // Flag to keep track of which transformation fNmodules(mods), // The total number of modules fNlayers(nlayers), // The number of layers. fNlad(nlayers,nlads),//[] Array of the number of ladders/layer(layer) fNdet(nlayers,ndets),//[] Array of the number of detector/ladder(layer) fGm(mods,0) // Structure of translation. and rotation. { // A simple constructor to set basic geometry class variables // Inputs: // Int_t itype the type of transformation kept. // bit 0 => Standard GEANT // bit 1 => ITS tracking // bit 2 => A change in the coordinate system // has been made. others are still to be defined // as needed. // Int_t nlayers The number of ITS layers also set the size of // the arrays // Int_t *nlads an array of the number of ladders for each // layer. This array must be nlayers long. // Int_t *ndets an array of the number of detectors per ladder // for each layer. This array must be nlayers long. // Int_t mods The number of modules. Typically the sum of all the // detectors on every layer and ladder. // Outputs: // none // Return: // A properly inilized AliITSgeom object. fGm.SetOwner(kTRUE); return; } //______________________________________________________________________ void AliITSgeom::Init(Int_t itype,Int_t nlayers,const Int_t *nlads, const Int_t *ndets,Int_t mods){ // A simple Inilizer to set basic geometry class variables // Inputs: // Int_t itype the type of transformation kept. // bit 0 => Standard GEANT // bit 1 => ITS tracking // bit 2 => A change in the coordinate system // has been made. others are still to be defined // as needed. // Int_t nlayers The number of ITS layers also set the size of // the arrays // Int_t *nlads an array of the number of ladders for each // layer. This array must be nlayers long. // Int_t *ndets an array of the number of detectors per ladder // for each layer. This array must be nlayers long. // Int_t mods The number of modules. Typically the sum of all the // detectors on every layer and ladder. // Outputs: // none // Return: // A properly inilized AliITSgeom object. fVersion = "GEANT"; // Transformation version. fTrans = itype; // Flag to keep track of which transformation fNmodules = mods; // The total number of modules fNlayers = nlayers; // The number of layers. fNlad.Set(nlayers,nlads);//[] Array of the number of ladders/layer(layer) fNdet.Set(nlayers,ndets);//[] Array of the number of detector/ladder(layer) fGm.Clear(); fGm.Expand(mods); // Structure of translation. and rotation. fGm.SetOwner(kTRUE); return; } //______________________________________________________________________ void AliITSgeom::CreateMatrix(Int_t mod,Int_t lay,Int_t lad,Int_t det, AliITSDetector idet,const Double_t tran[3], const Double_t rot[10]){ // Given the translation vector tran[3] and the rotation matrix rot[1], // this function creates and adds to the TObject Array fGm the // AliITSgeomMatrix object. // The rot[10] matrix is set up like: /* / rot[0] rot[1] rot[2] \ // | rot[3] rot[4] rot[5] | // \ rot[6] rot[7] rot[8] / if(rot[9]!=0) then the Identity matrix // is used regardless of the values in rot[0]-rot[8]. */ // Inputs: // Int_t mod The module number. The location in TObjArray // Int_t lay The layer where this module is // Int_t lad On which ladder this module is // Int_t det Which detector on this ladder this module is // AliITSDetector idet The type of detector see AliITSgeom.h // Double_t tran[3] The translation vector // Double_t rot[10] The rotation matrix. // Outputs: // none // Return: // none. Int_t id[3]; Double_t r[3][3] = {{1.0,0.0,0.0},{0.0,1.0,0.0},{0.0,0.0,1.0}}; if(mod<0||mod>=fGm.GetSize()){ Error("CreateMatrix","mod=%d is out of bounds max value=%d",mod, fGm.GetSize()); return; } // end if delete fGm.At(mod); id[0] = lay; id[1] = lad; id[2] = det; if(rot[9]!=0.0) { // null rotation r[0][0] = rot[0]; r[0][1] = rot[1]; r[0][2] = rot[2]; r[1][0] = rot[3]; r[1][1] = rot[4]; r[1][2] = rot[5]; r[2][0] = rot[6]; r[2][1] = rot[7]; r[2][2] = rot[8]; } // end if fGm.AddAt(new AliITSgeomMatrix(idet,id,r,tran),mod); } //______________________________________________________________________ AliITSgeom::~AliITSgeom(){ // The destructor for the AliITSgeom class. If the arrays fNlad, // fNdet, or fGm have had memory allocated to them, there pointer values // are non zero, then this memory space is freed and they are set // to zero. In addition, fNlayers is set to zero. The destruction of // Inputs: // none. // Outputs: // none. // Return: // none. return; } //______________________________________________________________________ AliITSgeom::AliITSgeom(const AliITSgeom &source) : TObject(source), fVersion(source.fVersion), // Transformation version. fTrans(source.fTrans), // Flag to keep track of which transformation fNmodules(source.fNmodules),// The total number of modules fNlayers(source.fNlayers), // The number of layers. fNlad(source.fNlad), // Array of the number of ladders/layer(layer) fNdet(source.fNdet), // Array of the number of detector/ladder(layer) fGm(source.fGm.GetSize(),source.fGm.LowerBound())// Structure of // translation and rotation. { // The copy constructor for the AliITSgeom class. It calls the // = operator function. See the = operator function for more details. // Inputs: // AliITSgeom &source The AliITSgeom class with which to make this // a copy of. // Outputs: // none. // Return: // none. Int_t i,n; n = source.fGm.GetLast()+1; for(i=source.fGm.LowerBound();i<n;i++){ fGm.AddAt(new AliITSgeomMatrix(*((AliITSgeomMatrix*)( source.fGm.At(i)))),i); } // end for i fGm.SetOwner(kTRUE); return; } //______________________________________________________________________ AliITSgeom& AliITSgeom::operator=(const AliITSgeom &source){ // The = operator function for the AliITSgeom class. It makes an // independent copy of the class in such a way that any changes made // to the copied class will not affect the source class in any way. // This is required for many ITS alignment studies where the copied // class is then modified by introducing some misalignment. // Inputs: // AliITSgeom &source The AliITSgeom class with which to make this // a copy of. // Outputs: // none. // Return: // *this The a new copy of source. Int_t i; if(this == &source) return *this; // don't assign to ones self. // if there is an old structure allocated delete it first. this->fGm.Clear(); this->fVersion = source.fVersion; this->fTrans = source.fTrans; this->fNmodules = source.fNmodules; this->fNlayers = source.fNlayers; this->fNlad = source.fNlad; this->fNdet = source.fNdet; this->fGm.Expand(this->fNmodules); for(i=source.fGm.LowerBound();i<source.fGm.GetLast();i++){ fGm.AddAt(new AliITSgeomMatrix(*((AliITSgeomMatrix*)( source.fGm.At(i)))),i); } // end for i fGm.SetOwner(kTRUE); return *this; } //______________________________________________________________________ Int_t AliITSgeom::GetModuleIndex(Int_t lay,Int_t lad,Int_t det)const{ // This routine computes the module index number from the layer, // ladder, and detector numbers. The number of ladders and detectors // per layer is determined when this geometry package is constructed, // see AliITSgeom(const char *filename) for specifics. // Inputs: // Int_t lay The layer number. Starting from 1. // Int_t lad The ladder number. Starting from 1. // Int_t det The detector number. Starting from 1. // Outputs: // none. // Return: // the module index number, starting from zero. Int_t i,j,k,id[3]; i = fNdet[lay-1] * (lad-1) + det - 1; j = 0; for(k=0;k<lay-1;k++) j += fNdet[k]*fNlad[k]; i = i+j; if(i>=fNmodules) return -1; GetGeomMatrix(i)->GetIndex(id); if(id[0]==lay&&id[1]==lad&&id[2]==det) return i; // Array of modules fGm is not in expected order. Search for this index for(i=0;i<fNmodules;i++){ GetGeomMatrix(i)->GetIndex(id); if(id[0]==lay&&id[1]==lad&&id[2]==det) return i; } // end for i // This layer ladder and detector combination does not exist return -1. return -1; } //______________________________________________________________________ void AliITSgeom::GetModuleId(Int_t index,Int_t &lay,Int_t &lad,Int_t &det) const{ // This routine computes the layer, ladder and detector number // given the module index number. The number of ladders and detectors // per layer is determined when this geometry package is constructed, // see AliITSgeom(const char *filename) for specifics. // Inputs: // Int_t index The module index number, starting from zero. // Outputs: // Int_t lay The layer number. Starting from 1. // Int_t lad The ladder number. Starting from 1. // Int_t det The detector number. Starting from 1. // Return: // none. Int_t id[3]; AliITSgeomMatrix *g = GetGeomMatrix(index); if (g == 0x0){ Error("GetModuleId","Can not get GeoMatrix for index = %d",index); lay = -1; lad = -1; det = -1; }else{ g->GetIndex(id); lay = id[0]; lad = id[1]; det = id[2]; }// End if return; // The old way kept for posterity. /* Int_t i,j,k; j = 0; for(k=0;k<fNlayers;k++){ j += fNdet[k]*fNlad[k]; if(j>index)break; } // end for k lay = k+1; i = index -j + fNdet[k]*fNlad[k]; j = 0; for(k=0;k<fNlad[lay-1];k++){ j += fNdet[lay-1]; if(j>i)break; } // end for k lad = k+1; det = 1+i-fNdet[lay-1]*k; return; */ } //______________________________________________________________________ Int_t AliITSgeom::GetNDetTypes(Int_t &max)const{ // Finds and returns the number of detector types used and the // maximum detector type value. Only counts id >=0 (no undefined // values. See AliITSgeom.h for list of AliITSDetecor enumerated types. // Inputs: // none. // Outputs: // The maximum detector type used // Return: // The number of detector types used Int_t i,*n,id; max = -1; for(i=0;i<GetIndexMax();i++){ id = GetModuleType(i); if(id>max) max=id; } // end for i n = new Int_t[max+1]; for(i=0;i<max;i++) n[i] = 0; for(i=0;i<GetIndexMax();i++){ id = GetModuleType(i); if(id>-1)n[id]++; // note id=-1 => undefined. } // end for i id = 0; for(i=0;i<max;i++) if(n[i]!=0) id++; delete[] n; return id+1; } //______________________________________________________________________ Int_t AliITSgeom::GetNDetTypes(TArrayI &maxs,AliITSDetector *types)const{ // Finds and returns the number of detector types used and the // number of each detector type. Only counts id >=0 (no undefined // values. See AliITSgeom.h for list of AliITSDetecor enumerated types. // Inputs: // none. // Outputs: // The maximum detector type used // Return: // The number of detector types used Int_t i,j,*n,id,max; max = -1; for(i=0;i<GetIndexMax();i++){ id = GetModuleType(i); if(id>max) max=id; } // end for i n = new Int_t[max+1]; for(i=0;i<max;i++) n[i] = 0; for(i=0;i<GetIndexMax();i++){ id = GetModuleType(i); if(id>-1)n[id]++; // note id=-1 => undefined. } // end for i id = 0; for(i=0;i<=max;i++) if(n[i]!=0) id++; maxs.Set(id); j = 0; for(i=0;i<=max;i++) if(n[i]!=0){ maxs[j] = n[i]; types[j++] = (AliITSDetector) i; } // end for i/end if delete[] n; return id; } //______________________________________________________________________ Int_t AliITSgeom::GetStartDet(Int_t dtype)const{ // returns the starting module index value for a give type of detector id. // This assumes that the detector types are different on different layers // and that they are not mixed up. // Inputs: // Int_t dtype A detector type number. 0 for SPD, 1 for SDD, // and 2 for SSD. // Outputs: // none. // Return: // the module index for the first occurrence of that detector type. switch(dtype){ case 0: return GetModuleIndex(1,1,1); break; case 1: return GetModuleIndex(3,1,1); break; case 2: return GetModuleIndex(5,1,1); break; default: Warning("GetStartDet","undefined detector type %d",dtype); return 0; } // end switch Warning("GetStartDet","undefined detector type %d",dtype); return 0; } //______________________________________________________________________ Int_t AliITSgeom::GetLastDet(Int_t dtype)const{ // returns the last module index value for a give type of detector id. // This assumes that the detector types are different on different layers // and that they are not mixed up. // Inputs: // Int_t dtype A detector type number. 0 for SPD, 1 for SDD, // and 2 for SSD. // Outputs: // Return: // the module index for the last occurrence of that detector type. switch((AliITSDetector)dtype){ case kSPD: return GetModuleIndex(3,1,1)-1; break; case kSDD: return GetModuleIndex(5,1,1)-1; break; case kSSD: return GetIndexMax()-1; break; case kSSDp: case kSDDp: case kND: default: Warning("GetLastDet","undefined detector type %d",dtype); return 0; } // end switch Warning("GetLastDet","undefined detector type %d",dtype); return 0; } //______________________________________________________________________ void AliITSgeom::PrintData(FILE *fp,Int_t lay,Int_t lad,Int_t det)const{ // This function prints out the coordinate transformations for // the particular detector defined by layer, ladder, and detector // to the file pointed to by the File pointer fp. fprintf statements // are used to print out the numbers. The format is // layer ladder detector Trans= fx0 fy0 fz0 rot= frx fry frz // Shape=fShapeIndex // dfr= fr[0] fr[1] fr[2] // dfr= fr[3] fr[4] fr[5] // dfr= fr[6] fr[7] fr[8] // By indicating which detector, some control over the information // is given to the user. The output it written to the file pointed // to by the file pointer fp. This can be set to stdout if you want. // Inputs: // FILE *fp A file pointer to an opened file for // writing in which the results of the // comparison will be written. // Int_t lay The layer number. Starting from 1. // Int_t lad The ladder number. Starting from 1. // Int_t det The detector number. Starting from 1. // Outputs: // none // Return: // none. AliITSgeomMatrix *gt; Double_t t[3],r[3],m[3][3]; gt = this->GetGeomMatrix(GetModuleIndex(lay,lad,det)); gt->GetTranslation(t); gt->GetAngles(r); fprintf(fp,"%1.1d %2.2d %2.2d Trans=%f %f %f rot=%f %f %f Shape=%d\n", lay,lad,det,t[0],t[1],t[2],r[0],r[1],r[2], gt->GetDetectorIndex()); gt->GetMatrix(m); fprintf(fp," dfr= %e %e %e\n",m[0][0],m[0][1],m[0][2]); fprintf(fp," dfr= %e %e %e\n",m[1][0],m[1][1],m[1][2]); fprintf(fp," dfr= %e %e %e\n",m[2][0],m[2][1],m[2][2]); return; } //______________________________________________________________________ Int_t AliITSgeom::GetNearest(const Double_t g[3],Int_t lay)const{ // Finds the Detector (Module) that is nearest the point g [cm] in // ALICE Global coordinates. If layer !=0 then the search is restricted // to Detectors (Modules) in that particular layer. // Inputs: // Double_t g[3] The ALICE Cartesian global coordinate from which the // distance is to be calculated with. // Int_t lay The layer to restrict the search to. If layer=0 then // all layers are searched. Default is lay=0. // Output: // none. // Return: // The module number representing the nearest module. Int_t i,l,a,e,in=0; Double_t d,dn=1.0e10; Bool_t t=lay!=0; // skip if lay = 0 default value check all layers. for(i=0;i<fNmodules;i++){ if(t){GetModuleId(i,l,a,e);if(l!=lay) continue;} if((d=GetGeomMatrix(i)->Distance2(g))<dn){ dn = d; in = i; } // end if } // end for i return in; } //______________________________________________________________________ void AliITSgeom::GetNearest27(const Double_t g[3],Int_t n[27],Int_t lay)const{ // Finds 27 Detectors (Modules) that are nearest the point g [cm] in // ALICE Global coordinates. If layer !=0 then the search is restricted // to Detectors (Modules) in that particular layer. The number 27 comes // from including the nearest detector and all those around it (up, down, // left, right, forwards, backwards, and the corners). // Input: // Double_t g[3] The ALICE Cartesian global coordinate from which the // distance is to be calculated with. // Int_t lay The layer to restrict the search to. If layer=0 then // all layers are searched. Default is lay=0. // Output: // Int_t n[27] The module number representing the nearest 27 modules // in order. // Return: // none. Int_t i,l,a,e,in[27]={0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,}; Double_t d,dn[27]={1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10, 1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10, 1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10, 1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10, 1.0e10,1.0e10,1.0e10}; Bool_t t=(lay!=0); // skip if lay = 0 default value check all layers. for(i=0;i<fNmodules;i++){ if(t){GetModuleId(i,l,a,e);if(l!=lay) continue;} for(a=0;a<27;a++){ d = GetGeomMatrix(i)->Distance2(g); if(d<dn[a]){ for(e=26;e>a;e--){dn[e] = dn[e-1];in[e] = in[e-1];} dn[a] = d; in[a] = i; } // end if d<dn[i] } // end for a } // end for i for(i=0;i<27;i++) n[i] = in[i]; } //_______________________________________________________________________ void AliITSgeom::DetLToTrackingV2(Int_t md,Float_t xin,Float_t zin, Float_t &yout,Float_t &zout) const { //Conversion from local coordinates on detectors to local //coordinates used for tracking ("v2") // Inputs: // Int_t md Module number // Float_t xin Standard local coordinate x // Float_t zin Standard local coordinate z // Output: // Float_t yout Tracking local coordinate y // Float_t zout Tracking local coordinate z // Return: // none. Float_t x,y,z; Double_t rt[9],al; GetTrans(md,x,y,z); GetRotMatrix(md,rt); al = TMath::ATan2(rt[1],rt[0])+TMath::Pi(); yout = -(-xin+(x*((Float_t)TMath::Cos(al))+y*((Float_t)TMath::Sin(al)))); if(md<(GetModuleIndex(2,1,1))) yout *= -1; zout = -zin+z; } //_______________________________________________________________________ void AliITSgeom::TrackingV2ToDetL(Int_t md,Float_t yin,Float_t zin, Float_t &xout,Float_t &zout) const { //Conversion from local coordinates used for tracking ("v2") to //local detector coordinates // Inputs: // Int_t md Module number // Float_t yin Tracking local coordinate y // Float_t zin Tracking local coordinate z // Output: // Float_t xout Standard local coordinate x // Float_t zout Standard local coordinate z // Return: // none. Float_t x,y,z; Double_t rt[9],al; GetTrans(md,x,y,z); GetRotMatrix(md,rt); al = TMath::ATan2(rt[1],rt[0])+TMath::Pi(); xout = yin; if(md<(GetModuleIndex(2,1,1))) xout = -xout; xout += (x*((Float_t)TMath::Cos(al))+y*((Float_t)TMath::Sin(al))); zout = -zin+z; } //----------------------------------------------------------------------