#include "TMath.h"
#include "Riostream.h"
#include "TH1F.h"
#include "TH2F.h"
#include "TH3.h"
#include "TF1.h"
#include "TTree.h"
#include "TChain.h"
#include "TObjString.h"
#include "TLinearFitter.h"
#include "TGraph2D.h"
#include "TGraph.h"
#include "TGraphErrors.h"
#include "TMultiGraph.h"
#include "TCanvas.h"
#include "TLatex.h"
#include "TCut.h"
#include "TSystem.h"
#include "TRandom.h"
#include "TStopwatch.h"
#include "TTreeStream.h"
#include "TStatToolkit.h"
using std::cout;
using std::cerr;
using std::endl;
ClassImp(TStatToolkit)
TStatToolkit::TStatToolkit() : TObject()
{
}
TStatToolkit::~TStatToolkit()
{
}
void TStatToolkit::EvaluateUni(Int_t nvectors, Double_t *data, Double_t &mean
, Double_t &sigma, Int_t hh)
{
if (hh==0)
hh=(nvectors+2)/2;
Double_t faclts[]={2.6477,2.5092,2.3826,2.2662,2.1587,2.0589,1.9660,1.879,1.7973,1.7203,1.6473};
Int_t *index=new Int_t[nvectors];
TMath::Sort(nvectors, data, index, kFALSE);
Int_t nquant = TMath::Min(Int_t(Double_t(((hh*1./nvectors)-0.5)*40))+1, 11);
Double_t factor = faclts[TMath::Max(0,nquant-1)];
Double_t sumx =0;
Double_t sumx2 =0;
Int_t bestindex = -1;
Double_t bestmean = 0;
Double_t bestsigma = (data[index[nvectors-1]]-data[index[0]]+1.);
bestsigma *=bestsigma;
for (Int_t i=0; i<hh; i++){
sumx += data[index[i]];
sumx2 += data[index[i]]*data[index[i]];
}
Double_t norm = 1./Double_t(hh);
Double_t norm2 = (hh-1)>0 ? 1./Double_t(hh-1):1;
for (Int_t i=hh; i<nvectors; i++){
Double_t cmean = sumx*norm;
Double_t csigma = (sumx2 - hh*cmean*cmean)*norm2;
if (csigma<bestsigma){
bestmean = cmean;
bestsigma = csigma;
bestindex = i-hh;
}
sumx += data[index[i]]-data[index[i-hh]];
sumx2 += data[index[i]]*data[index[i]]-data[index[i-hh]]*data[index[i-hh]];
}
Double_t bstd=factor*TMath::Sqrt(TMath::Abs(bestsigma));
mean = bestmean;
sigma = bstd;
delete [] index;
}
void TStatToolkit::EvaluateUniExternal(Int_t nvectors, Double_t *data, Double_t &mean, Double_t &sigma, Int_t hh, Float_t externalfactor)
{
if (hh==0)
hh=(nvectors+2)/2;
Double_t faclts[]={2.6477,2.5092,2.3826,2.2662,2.1587,2.0589,1.9660,1.879,1.7973,1.7203,1.6473};
Int_t *index=new Int_t[nvectors];
TMath::Sort(nvectors, data, index, kFALSE);
Int_t nquant = TMath::Min(Int_t(Double_t(((hh*1./nvectors)-0.5)*40))+1, 11);
Double_t factor = faclts[0];
if (nquant>0){
factor = faclts[nquant-1];
}
Double_t sumx =0;
Double_t sumx2 =0;
Int_t bestindex = -1;
Double_t bestmean = 0;
Double_t bestsigma = -1;
for (Int_t i=0; i<hh; i++){
sumx += data[index[i]];
sumx2 += data[index[i]]*data[index[i]];
}
Double_t kfactor = 2.*externalfactor - externalfactor*externalfactor;
Double_t norm = 1./Double_t(hh);
for (Int_t i=hh; i<nvectors; i++){
Double_t cmean = sumx*norm;
Double_t csigma = (sumx2*norm - cmean*cmean*kfactor);
if (csigma<bestsigma || bestsigma<0){
bestmean = cmean;
bestsigma = csigma;
bestindex = i-hh;
}
sumx += data[index[i]]-data[index[i-hh]];
sumx2 += data[index[i]]*data[index[i]]-data[index[i-hh]]*data[index[i-hh]];
}
Double_t bstd=factor*TMath::Sqrt(TMath::Abs(bestsigma));
mean = bestmean;
sigma = bstd;
delete [] index;
}
Int_t TStatToolkit::Freq(Int_t n, const Int_t *inlist
, Int_t *outlist, Bool_t down)
{
Int_t * sindexS = new Int_t[n];
Int_t * sindexF = new Int_t[2*n];
for (Int_t i=0;i<n;i++) sindexS[i]=0;
for (Int_t i=0;i<2*n;i++) sindexF[i]=0;
TMath::Sort(n,inlist, sindexS, down);
Int_t last = inlist[sindexS[0]];
Int_t val = last;
sindexF[0] = 1;
sindexF[0+n] = last;
Int_t countPos = 0;
for(Int_t i=1;i<n; i++){
val = inlist[sindexS[i]];
if (last == val) sindexF[countPos]++;
else{
countPos++;
sindexF[countPos+n] = val;
sindexF[countPos]++;
last =val;
}
}
if (last==val) countPos++;
TMath::Sort(countPos, sindexF, sindexS, kTRUE);
for (Int_t i=0;i<countPos;i++){
outlist[2*i ] = sindexF[sindexS[i]+n];
outlist[2*i+1] = sindexF[sindexS[i]];
}
delete [] sindexS;
delete [] sindexF;
return countPos;
}
void TStatToolkit::TruncatedMean(const TH1 * his, TVectorD *param, Float_t down, Float_t up, Bool_t verbose){
Int_t nbins = his->GetNbinsX();
Float_t nentries = his->GetEntries();
Float_t sum =0;
Float_t mean = 0;
Float_t sigma2 = 0;
Float_t ncumul=0;
for (Int_t ibin=1;ibin<nbins; ibin++){
ncumul+= his->GetBinContent(ibin);
Float_t fraction = Float_t(ncumul)/Float_t(nentries);
if (fraction>down && fraction<up){
sum+=his->GetBinContent(ibin);
mean+=his->GetBinCenter(ibin)*his->GetBinContent(ibin);
sigma2+=his->GetBinCenter(ibin)*his->GetBinCenter(ibin)*his->GetBinContent(ibin);
}
}
mean/=sum;
sigma2= TMath::Sqrt(TMath::Abs(sigma2/sum-mean*mean));
if (param){
(*param)[0] = his->GetMaximum();
(*param)[1] = mean;
(*param)[2] = sigma2;
}
if (verbose) printf("Mean\t%f\t Sigma2\t%f\n", mean,sigma2);
}
void TStatToolkit::LTM(TH1 * his, TVectorD *param , Float_t fraction, Bool_t verbose){
if (!param) return;
(*param)[0]=0;
(*param)[1]=0;
(*param)[2]=0;
Int_t nbins = his->GetNbinsX();
Int_t nentries = (Int_t)his->GetEntries();
if (nentries<=0) return;
Double_t *data = new Double_t[nentries];
Int_t npoints=0;
for (Int_t ibin=1;ibin<nbins; ibin++){
Double_t entriesI = his->GetBinContent(ibin);
Double_t x0 = his->GetXaxis()->GetBinLowEdge(ibin);
Double_t w = his->GetXaxis()->GetBinWidth(ibin);
for (Int_t ic=0; ic<entriesI; ic++){
if (npoints<nentries){
data[npoints]= x0+w*Double_t((ic+0.5)/entriesI);
npoints++;
}
}
}
Double_t mean, sigma;
Int_t npoints2=TMath::Min(Int_t(fraction*Float_t(npoints)),npoints-1);
npoints2=TMath::Max(Int_t(0.5*Float_t(npoints)),npoints2);
TStatToolkit::EvaluateUni(npoints, data, mean,sigma,npoints2);
delete [] data;
if (verbose) printf("Mean\t%f\t Sigma2\t%f\n", mean,sigma);if (param){
(*param)[0] = his->GetMaximum();
(*param)[1] = mean;
(*param)[2] = sigma;
}
}
void TStatToolkit::MedianFilter(TH1 * his1D, Int_t nmedian){
Int_t nbins = his1D->GetNbinsX();
TVectorD vectorH(nbins);
for (Int_t ibin=0; ibin<nbins; ibin++) vectorH[ibin]=his1D->GetBinContent(ibin+1);
for (Int_t ibin=0; ibin<nbins; ibin++) {
Int_t index0=ibin-nmedian;
Int_t index1=ibin+nmedian;
if (index0<0) {index1+=-index0; index0=0;}
if (index1>=nbins) {index0-=index1-nbins+1; index1=nbins-1;}
Double_t value= TMath::Median(index1-index0,&(vectorH.GetMatrixArray()[index0]));
his1D->SetBinContent(ibin+1, value);
}
}
Bool_t TStatToolkit::LTMHisto(TH1 *his1D, TVectorD ¶ms , Float_t fraction){
Int_t nbins = his1D->GetNbinsX();
Int_t nentries = (Int_t)his1D->GetEntries();
const Double_t kEpsilon=0.0000000001;
if (nentries<=0) return 0;
if (fraction>1) fraction=0;
if (fraction<0) return 0;
TVectorD vectorX(nbins);
TVectorD vectorMean(nbins);
TVectorD vectorRMS(nbins);
Double_t sumCont=0;
for (Int_t ibin0=1; ibin0<=nbins; ibin0++) sumCont+=his1D->GetBinContent(ibin0);
Double_t minRMS=his1D->GetRMS()*10000;
Int_t maxBin=0;
for (Int_t ibin0=1; ibin0<nbins; ibin0++){
Double_t sum0=0, sum1=0, sum2=0;
Int_t ibin1=ibin0;
for ( ibin1=ibin0; ibin1<nbins; ibin1++){
Double_t cont=his1D->GetBinContent(ibin1);
Double_t x= his1D->GetBinCenter(ibin1);
sum0+=cont;
sum1+=cont*x;
sum2+=cont*x*x;
if ( (ibin0!=ibin1) && sum0>=fraction*sumCont) break;
}
vectorX[ibin0]=his1D->GetBinCenter(ibin0);
if (sum0<fraction*sumCont) continue;
Double_t diff = sum0-fraction*sumCont;
Double_t mean = (sum0>0) ? sum1/sum0:0;
Double_t x0=his1D->GetBinCenter(ibin0);
Double_t x1=his1D->GetBinCenter(ibin1);
Double_t y0=his1D->GetBinContent(ibin0);
Double_t y1=his1D->GetBinContent(ibin1);
Double_t d = y0+y1-diff;
Double_t w0=0,w1=0;
if (y0<=kEpsilon&&y1>kEpsilon){
w1=d/y1;
}
if (y1<=kEpsilon&&y0>kEpsilon){
w0=d/y0;
}
if (y0>kEpsilon && y1>kEpsilon && x1>x0 ){
w0 = (d*(x1-mean))/((x1-x0)*y0);
w1 = (d-y0*w0)/y1;
if (w0>1) {w1+=(w0-1)*y0/y1; w0=1;}
if (w1>1) {w0+=(w1-1)*y1/y0; w1=1;}
}
if ( (x1>x0) &&TMath::Abs(y0*w0+y1*w1-d)>kEpsilon*sum0){
printf(" TStatToolkit::LTMHisto error\n");
}
sum0-=y0+y1;
sum1-=y0*x0;
sum1-=y1*x1;
sum2-=y0*x0*x0;
sum2-=y1*x1*x1;
Double_t xx0=his1D->GetXaxis()->GetBinUpEdge(ibin0)-0.5*w0*his1D->GetBinWidth(ibin0);
Double_t xx1=his1D->GetXaxis()->GetBinLowEdge(ibin1)+0.5*w1*his1D->GetBinWidth(ibin1);
sum0+=y0*w0+y1*w1;
sum1+=y0*w0*xx0;
sum1+=y1*w1*xx1;
sum2+=y0*w0*xx0*xx0;
sum2+=y1*w1*xx1*xx1;
if (sum0>0){
vectorMean[ibin0]=sum1/sum0;
vectorRMS[ibin0]=TMath::Sqrt(TMath::Abs(sum2/sum0-vectorMean[ibin0]*vectorMean[ibin0]));
if (vectorRMS[ibin0]<minRMS){
minRMS=vectorRMS[ibin0];
params[0]=sum0;
params[1]=vectorMean[ibin0];
params[2]=vectorRMS[ibin0];
params[3]=vectorRMS[ibin0]/TMath::Sqrt(sumCont*fraction);
params[4]=0;
params[5]=ibin0;
params[6]=ibin1;
params[7]=his1D->GetBinCenter(ibin0);
params[8]=his1D->GetBinCenter(ibin1);
maxBin=ibin0;
}
}else{
break;
}
}
return kTRUE;
}
Double_t TStatToolkit::FitGaus(TH1* his, TVectorD *param, TMatrixD *, Float_t xmin, Float_t xmax, Bool_t verbose){
static TLinearFitter fitter(3,"pol2");
TVectorD par(3);
TVectorD sigma(3);
TMatrixD mat(3,3);
if (his->GetMaximum()<4) return -1;
if (his->GetEntries()<12) return -1;
if (his->GetRMS()<mat.GetTol()) return -1;
Float_t maxEstimate = his->GetEntries()*his->GetBinWidth(1)/TMath::Sqrt((TMath::TwoPi()*his->GetRMS()));
Int_t dsmooth = TMath::Nint(6./TMath::Sqrt(maxEstimate));
if (maxEstimate<1) return -1;
Int_t nbins = his->GetNbinsX();
Int_t npoints=0;
if (xmin>=xmax){
xmin = his->GetXaxis()->GetXmin();
xmax = his->GetXaxis()->GetXmax();
}
for (Int_t iter=0; iter<2; iter++){
fitter.ClearPoints();
npoints=0;
for (Int_t ibin=1;ibin<nbins+1; ibin++){
Int_t countB=1;
Float_t entriesI = his->GetBinContent(ibin);
for (Int_t delta = -dsmooth; delta<=dsmooth; delta++){
if (ibin+delta>1 &&ibin+delta<nbins-1){
entriesI += his->GetBinContent(ibin+delta);
countB++;
}
}
entriesI/=countB;
Double_t xcenter= his->GetBinCenter(ibin);
if (xcenter<xmin || xcenter>xmax) continue;
Double_t error=1./TMath::Sqrt(countB);
Float_t cont=2;
if (iter>0){
if (par[0]+par[1]*xcenter+par[2]*xcenter*xcenter>20) return 0;
cont = TMath::Exp(par[0]+par[1]*xcenter+par[2]*xcenter*xcenter);
if (cont>1.) error = 1./TMath::Sqrt(cont*Float_t(countB));
}
if (entriesI>1&&cont>1){
fitter.AddPoint(&xcenter,TMath::Log(Float_t(entriesI)),error);
npoints++;
}
}
if (npoints>3){
fitter.Eval();
fitter.GetParameters(par);
}else{
break;
}
}
if (npoints<=3){
return -1;
}
fitter.GetParameters(par);
fitter.GetCovarianceMatrix(mat);
if (TMath::Abs(par[1])<mat.GetTol()) return -1;
if (TMath::Abs(par[2])<mat.GetTol()) return -1;
Double_t chi2 = fitter.GetChisquare()/Float_t(npoints);
if (!param) param = new TVectorD(3);
(*param)[1] = par[1]/(-2.*par[2]);
(*param)[2] = 1./TMath::Sqrt(TMath::Abs(-2.*par[2]));
(*param)[0] = TMath::Exp(par[0]+ par[1]* (*param)[1] + par[2]*(*param)[1]*(*param)[1]);
if (verbose){
par.Print();
mat.Print();
param->Print();
printf("Chi2=%f\n",chi2);
TF1 * f1= new TF1("f1","[0]*exp(-(x-[1])^2/(2*[2]*[2]))",his->GetXaxis()->GetXmin(),his->GetXaxis()->GetXmax());
f1->SetParameter(0, (*param)[0]);
f1->SetParameter(1, (*param)[1]);
f1->SetParameter(2, (*param)[2]);
f1->Draw("same");
}
return chi2;
}
Double_t TStatToolkit::FitGaus(Float_t *arr, Int_t nBins, Float_t xMin, Float_t xMax, TVectorD *param, TMatrixD *, Bool_t verbose){
static TLinearFitter fitter(3,"pol2");
static TMatrixD mat(3,3);
static Double_t kTol = mat.GetTol();
fitter.StoreData(kFALSE);
fitter.ClearPoints();
TVectorD par(3);
TVectorD sigma(3);
TMatrixD matA(3,3);
TMatrixD b(3,1);
Float_t rms = TMath::RMS(nBins,arr);
Float_t max = TMath::MaxElement(nBins,arr);
Float_t binWidth = (xMax-xMin)/(Float_t)nBins;
Float_t meanCOG = 0;
Float_t rms2COG = 0;
Float_t sumCOG = 0;
Float_t entries = 0;
Int_t nfilled=0;
for (Int_t i=0; i<nBins; i++){
entries+=arr[i];
if (arr[i]>0) nfilled++;
}
if (max<4) return -4;
if (entries<12) return -4;
if (rms<kTol) return -4;
Int_t npoints=0;
for (Int_t ibin=0;ibin<nBins; ibin++){
Float_t entriesI = arr[ibin];
if (entriesI>1){
Double_t xcenter = xMin+(ibin+0.5)*binWidth;
Float_t error = 1./TMath::Sqrt(entriesI);
Float_t val = TMath::Log(Float_t(entriesI));
fitter.AddPoint(&xcenter,val,error);
if (npoints<3){
matA(npoints,0)=1;
matA(npoints,1)=xcenter;
matA(npoints,2)=xcenter*xcenter;
b(npoints,0)=val;
meanCOG+=xcenter*entriesI;
rms2COG +=xcenter*entriesI*xcenter;
sumCOG +=entriesI;
}
npoints++;
}
}
Double_t chi2 = 0;
if (npoints>=3){
if ( npoints == 3 ){
matA.Invert();
TMatrixD res(1,3);
res.Mult(matA,b);
par[0]=res(0,0);
par[1]=res(0,1);
par[2]=res(0,2);
chi2 = -3.;
} else {
fitter.Eval();
fitter.GetParameters(par);
fitter.GetCovarianceMatrix(mat);
chi2 = fitter.GetChisquare()/Float_t(npoints);
}
if (TMath::Abs(par[1])<kTol) return -4;
if (TMath::Abs(par[2])<kTol) return -4;
if (!param) param = new TVectorD(3);
(*param)[1] = par[1]/(-2.*par[2]);
(*param)[2] = 1./TMath::Sqrt(TMath::Abs(-2.*par[2]));
Double_t lnparam0 = par[0]+ par[1]* (*param)[1] + par[2]*(*param)[1]*(*param)[1];
if ( lnparam0>307 ) return -4;
(*param)[0] = TMath::Exp(lnparam0);
if (verbose){
par.Print();
mat.Print();
param->Print();
printf("Chi2=%f\n",chi2);
TF1 * f1= new TF1("f1","[0]*exp(-(x-[1])^2/(2*[2]*[2]))",xMin,xMax);
f1->SetParameter(0, (*param)[0]);
f1->SetParameter(1, (*param)[1]);
f1->SetParameter(2, (*param)[2]);
f1->Draw("same");
}
return chi2;
}
if (npoints == 2){
meanCOG/=sumCOG;
rms2COG /=sumCOG;
(*param)[0] = max;
(*param)[1] = meanCOG;
(*param)[2] = TMath::Sqrt(TMath::Abs(meanCOG*meanCOG-rms2COG));
chi2=-2.;
}
if ( npoints == 1 ){
meanCOG/=sumCOG;
(*param)[0] = max;
(*param)[1] = meanCOG;
(*param)[2] = binWidth/TMath::Sqrt(12);
chi2=-1.;
}
return chi2;
}
Float_t TStatToolkit::GetCOG(const Short_t *arr, Int_t nBins, Float_t xMin, Float_t xMax, Float_t *rms, Float_t *sum)
{
Float_t meanCOG = 0;
Float_t rms2COG = 0;
Float_t sumCOG = 0;
Int_t npoints = 0;
Float_t binWidth = (xMax-xMin)/(Float_t)nBins;
for (Int_t ibin=0; ibin<nBins; ibin++){
Float_t entriesI = (Float_t)arr[ibin];
Double_t xcenter = xMin+(ibin+0.5)*binWidth;
if ( entriesI>0 ){
meanCOG += xcenter*entriesI;
rms2COG += xcenter*entriesI*xcenter;
sumCOG += entriesI;
npoints++;
}
}
if ( sumCOG == 0 ) return xMin;
meanCOG/=sumCOG;
if ( rms ){
rms2COG /=sumCOG;
(*rms) = TMath::Sqrt(TMath::Abs(meanCOG*meanCOG-rms2COG));
if ( npoints == 1 ) (*rms) = binWidth/TMath::Sqrt(12);
}
if ( sum )
(*sum) = sumCOG;
return meanCOG;
}
void TStatToolkit::TestGausFit(Int_t nhistos){
TTreeSRedirector *pcstream = new TTreeSRedirector("fitdebug.root","recreate");
Float_t *xTrue = new Float_t[nhistos];
Float_t *sTrue = new Float_t[nhistos];
TVectorD **par1 = new TVectorD*[nhistos];
TVectorD **par2 = new TVectorD*[nhistos];
TMatrixD dummy(3,3);
TH1F **h1f = new TH1F*[nhistos];
TF1 *myg = new TF1("myg","gaus");
TF1 *fit = new TF1("fit","gaus");
gRandom->SetSeed(0);
for (Int_t i=0;i<nhistos; i++){
par1[i] = new TVectorD(3);
par2[i] = new TVectorD(3);
h1f[i] = new TH1F(Form("h1f%d",i),Form("h1f%d",i),20,-10,10);
xTrue[i]= gRandom->Rndm();
gSystem->Sleep(2);
sTrue[i]= .75+gRandom->Rndm()*.5;
myg->SetParameters(1,xTrue[i],sTrue[i]);
h1f[i]->FillRandom("myg");
}
TStopwatch s;
s.Start();
for (Int_t i=0; i<nhistos; i++){
h1f[i]->Fit(fit,"0q");
(*par1[i])(0) = fit->GetParameter(0);
(*par1[i])(1) = fit->GetParameter(1);
(*par1[i])(2) = fit->GetParameter(2);
}
s.Stop();
printf("Gaussian fit\t");
s.Print();
s.Start();
for (Int_t i=0; i<nhistos; i++){
TStatToolkit::FitGaus(h1f[i]->GetArray()+1,h1f[i]->GetNbinsX(),h1f[i]->GetXaxis()->GetXmin(),h1f[i]->GetXaxis()->GetXmax(),par2[i],&dummy);
}
s.Stop();
printf("Parabolic fit\t");
s.Print();
for (Int_t i=0;i<nhistos; i++){
Float_t xt = xTrue[i];
Float_t st = sTrue[i];
(*pcstream)<<"data"
<<"xTrue="<<xt
<<"sTrue="<<st
<<"pg.="<<(par1[i])
<<"pa.="<<(par2[i])
<<"\n";
}
for (Int_t i=0;i<nhistos; i++){
delete par1[i];
delete par2[i];
delete h1f[i];
}
delete pcstream;
delete []h1f;
delete []xTrue;
delete []sTrue;
delete []par1;
delete []par2;
}
TGraph2D * TStatToolkit::MakeStat2D(TH3 * his, Int_t delta0, Int_t delta1, Int_t type){
TAxis * xaxis = his->GetXaxis();
TAxis * yaxis = his->GetYaxis();
Int_t nbinx = xaxis->GetNbins();
Int_t nbiny = yaxis->GetNbins();
char name[1000];
Int_t icount=0;
TGraph2D *graph = new TGraph2D(nbinx*nbiny);
TF1 f1("f1","gaus");
for (Int_t ix=0; ix<nbinx;ix++)
for (Int_t iy=0; iy<nbiny;iy++){
Float_t xcenter = xaxis->GetBinCenter(ix);
Float_t ycenter = yaxis->GetBinCenter(iy);
snprintf(name,1000,"%s_%d_%d",his->GetName(), ix,iy);
TH1 *projection = his->ProjectionZ(name,ix-delta0,ix+delta0,iy-delta1,iy+delta1);
Float_t stat= 0;
if (type==0) stat = projection->GetMean();
if (type==1) stat = projection->GetRMS();
if (type==2 || type==3){
TVectorD vec(10);
TStatToolkit::LTM((TH1F*)projection,&vec,0.7);
if (type==2) stat= vec[1];
if (type==3) stat= vec[0];
}
if (type==4|| type==5){
projection->Fit(&f1);
if (type==4) stat= f1.GetParameter(1);
if (type==5) stat= f1.GetParameter(2);
}
graph->SetPoint(icount,xcenter, ycenter, stat);
icount++;
}
return graph;
}
TGraphErrors * TStatToolkit::MakeStat1D(TH2 * his, Int_t deltaBin, Double_t fraction, Int_t returnType, Int_t markerStyle, Int_t markerColor){
TAxis * xaxis = his->GetXaxis();
Int_t nbinx = xaxis->GetNbins();
char name[1000];
Int_t icount=0;
TVectorD vecX(nbinx);
TVectorD vecXErr(nbinx);
TVectorD vecY(nbinx);
TVectorD vecYErr(nbinx);
TF1 f1("f1","gaus");
TVectorD vecLTM(10);
for (Int_t jx=1; jx<=nbinx;jx++){
Int_t ix=jx-1;
Float_t xcenter = xaxis->GetBinCenter(jx);
snprintf(name,1000,"%s_%d",his->GetName(), ix);
TH1 *projection = his->ProjectionY(name,TMath::Max(jx-deltaBin,1),TMath::Min(jx+deltaBin,nbinx));
Double_t stat= 0;
Double_t err =0;
TStatToolkit::LTMHisto((TH1F*)projection,vecLTM,fraction);
if (returnType==0) {
stat = projection->GetMean();
err = projection->GetMeanError();
}
if (returnType==1) {
stat = projection->GetRMS();
err = projection->GetRMSError();
}
if (returnType==2 || returnType==3){
if (returnType==2) {stat= vecLTM[1]; err =projection->GetRMSError();}
if (returnType==3) {stat= vecLTM[2]; err =projection->GetRMSError();}
}
if (returnType==4|| returnType==5){
projection->Fit(&f1,"QN","QN", vecLTM[7], vecLTM[8]);
if (returnType==4) {
stat= f1.GetParameter(1);
err=f1.GetParError(1);
}
if (returnType==5) {
stat= f1.GetParameter(2);
err=f1.GetParError(2);
}
}
vecX[icount]=xcenter;
vecY[icount]=stat;
vecYErr[icount]=err;
icount++;
delete projection;
}
TGraphErrors *graph = new TGraphErrors(icount,vecX.GetMatrixArray(), vecY.GetMatrixArray(),0, vecYErr.GetMatrixArray());
graph->SetMarkerStyle(markerStyle);
graph->SetMarkerColor(markerColor);
return graph;
}
TString* TStatToolkit::FitPlane(TTree *tree, const char* drawCommand, const char* formula, const char* cuts, Double_t & chi2, Int_t &npoints, TVectorD &fitParam, TMatrixD &covMatrix, Float_t frac, Int_t start, Int_t stop,Bool_t fix0){
TString formulaStr(formula);
TString drawStr(drawCommand);
TString cutStr(cuts);
TString ferr("1");
TString strVal(drawCommand);
if (strVal.Contains(":")){
TObjArray* valTokens = strVal.Tokenize(":");
drawStr = valTokens->At(0)->GetName();
ferr = valTokens->At(1)->GetName();
delete valTokens;
}
formulaStr.ReplaceAll("++", "~");
TObjArray* formulaTokens = formulaStr.Tokenize("~");
Int_t dim = formulaTokens->GetEntriesFast();
fitParam.ResizeTo(dim);
covMatrix.ResizeTo(dim,dim);
TLinearFitter* fitter = new TLinearFitter(dim+1, Form("hyp%d",dim));
fitter->StoreData(kTRUE);
fitter->ClearPoints();
Int_t entries = tree->Draw(drawStr.Data(), cutStr.Data(), "goff", stop-start, start);
if (entries == -1) {
delete formulaTokens;
return new TString(TString::Format("ERROR expr: %s\t%s\tEntries==0",drawStr.Data(),cutStr.Data()));
}
Double_t **values = new Double_t*[dim+1] ;
for (Int_t i=0; i<dim+1; i++) values[i]=NULL;
entries = tree->Draw(ferr.Data(), cutStr.Data(), "goff", stop-start, start);
if (entries == -1) {
delete formulaTokens;
delete []values;
return new TString(TString::Format("ERROR error part: %s\t%s\tEntries==0",ferr.Data(),cutStr.Data()));
}
Double_t *errors = new Double_t[entries];
memcpy(errors, tree->GetV1(), entries*sizeof(Double_t));
for (Int_t i = 0; i < dim + 1; i++){
Int_t centries = 0;
if (i < dim) centries = tree->Draw(((TObjString*)formulaTokens->At(i))->GetName(), cutStr.Data(), "goff", stop-start,start);
else centries = tree->Draw(drawStr.Data(), cutStr.Data(), "goff", stop-start,start);
if (entries != centries) {
delete []errors;
delete []values;
return new TString(TString::Format("ERROR: %s\t%s\tEntries==%d\tEntries2=%d\n",drawStr.Data(),cutStr.Data(),entries,centries));
}
values[i] = new Double_t[entries];
memcpy(values[i], tree->GetV1(), entries*sizeof(Double_t));
}
for (Int_t i = 0; i < entries; i++){
Double_t x[1000];
for (Int_t j=0; j<dim;j++) x[j]=values[j][i];
fitter->AddPoint(x, values[dim][i], errors[i]);
}
fitter->Eval();
if (frac>0.5 && frac<1){
fitter->EvalRobust(frac);
}else{
if (fix0) {
fitter->FixParameter(0,0);
fitter->Eval();
}
}
fitter->GetParameters(fitParam);
fitter->GetCovarianceMatrix(covMatrix);
chi2 = fitter->GetChisquare();
npoints = entries;
TString *preturnFormula = new TString(Form("( %f+",fitParam[0])), &returnFormula = *preturnFormula;
for (Int_t iparam = 0; iparam < dim; iparam++) {
returnFormula.Append(Form("%s*(%f)",((TObjString*)formulaTokens->At(iparam))->GetName(),fitParam[iparam+1]));
if (iparam < dim-1) returnFormula.Append("+");
}
returnFormula.Append(" )");
for (Int_t j=0; j<dim+1;j++) delete [] values[j];
delete formulaTokens;
delete fitter;
delete[] values;
delete[] errors;
return preturnFormula;
}
TString* TStatToolkit::FitPlaneConstrain(TTree *tree, const char* drawCommand, const char* formula, const char* cuts, Double_t & chi2, Int_t &npoints, TVectorD &fitParam, TMatrixD &covMatrix, Float_t frac, Int_t start, Int_t stop,Double_t constrain){
TString formulaStr(formula);
TString drawStr(drawCommand);
TString cutStr(cuts);
TString ferr("1");
TString strVal(drawCommand);
if (strVal.Contains(":")){
TObjArray* valTokens = strVal.Tokenize(":");
drawStr = valTokens->At(0)->GetName();
ferr = valTokens->At(1)->GetName();
delete valTokens;
}
formulaStr.ReplaceAll("++", "~");
TObjArray* formulaTokens = formulaStr.Tokenize("~");
Int_t dim = formulaTokens->GetEntriesFast();
fitParam.ResizeTo(dim);
covMatrix.ResizeTo(dim,dim);
TLinearFitter* fitter = new TLinearFitter(dim+1, Form("hyp%d",dim));
fitter->StoreData(kTRUE);
fitter->ClearPoints();
Int_t entries = tree->Draw(drawStr.Data(), cutStr.Data(), "goff", stop-start, start);
if (entries == -1) {
delete formulaTokens;
return new TString("An ERROR has occured during fitting!");
}
Double_t **values = new Double_t*[dim+1] ;
for (Int_t i=0; i<dim+1; i++) values[i]=NULL;
entries = tree->Draw(ferr.Data(), cutStr.Data(), "goff", stop-start, start);
if (entries == -1) {
delete formulaTokens;
delete [] values;
return new TString("An ERROR has occured during fitting!");
}
Double_t *errors = new Double_t[entries];
memcpy(errors, tree->GetV1(), entries*sizeof(Double_t));
for (Int_t i = 0; i < dim + 1; i++){
Int_t centries = 0;
if (i < dim) centries = tree->Draw(((TObjString*)formulaTokens->At(i))->GetName(), cutStr.Data(), "goff", stop-start,start);
else centries = tree->Draw(drawStr.Data(), cutStr.Data(), "goff", stop-start,start);
if (entries != centries) {
delete []errors;
delete []values;
delete formulaTokens;
return new TString("An ERROR has occured during fitting!");
}
values[i] = new Double_t[entries];
memcpy(values[i], tree->GetV1(), entries*sizeof(Double_t));
}
for (Int_t i = 0; i < entries; i++){
Double_t x[1000];
for (Int_t j=0; j<dim;j++) x[j]=values[j][i];
fitter->AddPoint(x, values[dim][i], errors[i]);
}
if (constrain>0){
for (Int_t i = 0; i < dim; i++){
Double_t x[1000];
for (Int_t j=0; j<dim;j++) if (i!=j) x[j]=0;
x[i]=1.;
fitter->AddPoint(x, 0, constrain);
}
}
fitter->Eval();
if (frac>0.5 && frac<1){
fitter->EvalRobust(frac);
}
fitter->GetParameters(fitParam);
fitter->GetCovarianceMatrix(covMatrix);
chi2 = fitter->GetChisquare();
npoints = entries;
TString *preturnFormula = new TString(Form("( %f+",fitParam[0])), &returnFormula = *preturnFormula;
for (Int_t iparam = 0; iparam < dim; iparam++) {
returnFormula.Append(Form("%s*(%f)",((TObjString*)formulaTokens->At(iparam))->GetName(),fitParam[iparam+1]));
if (iparam < dim-1) returnFormula.Append("+");
}
returnFormula.Append(" )");
for (Int_t j=0; j<dim+1;j++) delete [] values[j];
delete formulaTokens;
delete fitter;
delete[] values;
delete[] errors;
return preturnFormula;
}
TString* TStatToolkit::FitPlaneFixed(TTree *tree, const char* drawCommand, const char* formula, const char* cuts, Double_t & chi2, Int_t &npoints, TVectorD &fitParam, TMatrixD &covMatrix, Float_t frac, Int_t start, Int_t stop){
TString formulaStr(formula);
TString drawStr(drawCommand);
TString cutStr(cuts);
TString ferr("1");
TString strVal(drawCommand);
if (strVal.Contains(":")){
TObjArray* valTokens = strVal.Tokenize(":");
drawStr = valTokens->At(0)->GetName();
ferr = valTokens->At(1)->GetName();
delete valTokens;
}
formulaStr.ReplaceAll("++", "~");
TObjArray* formulaTokens = formulaStr.Tokenize("~");
Int_t dim = formulaTokens->GetEntriesFast();
fitParam.ResizeTo(dim);
covMatrix.ResizeTo(dim,dim);
TString fitString="x0";
for (Int_t i=1; i<dim; i++) fitString+=Form("++x%d",i);
TLinearFitter* fitter = new TLinearFitter(dim, fitString.Data());
fitter->StoreData(kTRUE);
fitter->ClearPoints();
Int_t entries = tree->Draw(drawStr.Data(), cutStr.Data(), "goff", stop-start, start);
if (entries == -1) {
delete formulaTokens;
return new TString("An ERROR has occured during fitting!");
}
Double_t **values = new Double_t*[dim+1] ;
for (Int_t i=0; i<dim+1; i++) values[i]=NULL;
entries = tree->Draw(ferr.Data(), cutStr.Data(), "goff", stop-start, start);
if (entries == -1) {
delete []values;
delete formulaTokens;
return new TString("An ERROR has occured during fitting!");
}
Double_t *errors = new Double_t[entries];
memcpy(errors, tree->GetV1(), entries*sizeof(Double_t));
for (Int_t i = 0; i < dim + 1; i++){
Int_t centries = 0;
if (i < dim) centries = tree->Draw(((TObjString*)formulaTokens->At(i))->GetName(), cutStr.Data(), "goff", stop-start,start);
else centries = tree->Draw(drawStr.Data(), cutStr.Data(), "goff", stop-start,start);
if (entries != centries) {
delete []errors;
delete []values;
delete formulaTokens;
return new TString("An ERROR has occured during fitting!");
}
values[i] = new Double_t[entries];
memcpy(values[i], tree->GetV1(), entries*sizeof(Double_t));
}
for (Int_t i = 0; i < entries; i++){
Double_t x[1000];
for (Int_t j=0; j<dim;j++) x[j]=values[j][i];
fitter->AddPoint(x, values[dim][i], errors[i]);
}
fitter->Eval();
if (frac>0.5 && frac<1){
fitter->EvalRobust(frac);
}
fitter->GetParameters(fitParam);
fitter->GetCovarianceMatrix(covMatrix);
chi2 = fitter->GetChisquare();
npoints = entries;
TString *preturnFormula = new TString("("), &returnFormula = *preturnFormula;
for (Int_t iparam = 0; iparam < dim; iparam++) {
returnFormula.Append(Form("%s*(%f)",((TObjString*)formulaTokens->At(iparam))->GetName(),fitParam[iparam]));
if (iparam < dim-1) returnFormula.Append("+");
}
returnFormula.Append(" )");
for (Int_t j=0; j<dim+1;j++) delete [] values[j];
delete formulaTokens;
delete fitter;
delete[] values;
delete[] errors;
return preturnFormula;
}
Int_t TStatToolkit::GetFitIndex(const TString fString, const TString subString){
TObjArray *arrFit = fString.Tokenize("++");
TObjArray *arrSub = subString.Tokenize("++");
Int_t index=-1;
for (Int_t i=0; i<arrFit->GetEntries(); i++){
Bool_t isOK=kTRUE;
TString str =arrFit->At(i)->GetName();
for (Int_t isub=0; isub<arrSub->GetEntries(); isub++){
if (str.Contains(arrSub->At(isub)->GetName())==0) isOK=kFALSE;
}
if (isOK) index=i;
}
delete arrFit;
delete arrSub;
return index;
}
TString TStatToolkit::FilterFit(const TString &input, const TString filter, TVectorD ¶m, TMatrixD & covar){
TObjArray *array0= input.Tokenize("++");
TObjArray *array1= filter.Tokenize("++");
TString result="(0.0";
for (Int_t i=0; i<array0->GetEntries(); i++){
Bool_t isOK=kTRUE;
TString str(array0->At(i)->GetName());
for (Int_t j=0; j<array1->GetEntries(); j++){
if (str.Contains(array1->At(j)->GetName())==0) isOK=kFALSE;
}
if (isOK) {
result+="+"+str;
result+=Form("*(%f)",param[i+1]);
printf("%f\t%f\t%s\n",param[i+1], TMath::Sqrt(covar(i+1,i+1)),str.Data());
}
}
result+="-0.)";
delete array0;
delete array1;
return result;
}
void TStatToolkit::Update1D(Double_t delta, Double_t sigma, Int_t s1, TMatrixD &vecXk, TMatrixD &covXk){
const Int_t knMeas=1;
Int_t knElem=vecXk.GetNrows();
TMatrixD mat1(knElem,knElem);
TMatrixD matHk(1,knElem);
TMatrixD vecYk(knMeas,1);
TMatrixD matHkT(knElem,knMeas);
TMatrixD matSk(knMeas,knMeas);
TMatrixD matKk(knElem,knMeas);
TMatrixD covXk2(knElem,knElem);
TMatrixD covXk3(knElem,knElem);
TMatrixD vecZk(1,1);
TMatrixD measR(1,1);
vecZk(0,0)=delta;
measR(0,0)=sigma*sigma;
for (Int_t iel=0;iel<knElem;iel++)
for (Int_t ip=0;ip<knMeas;ip++) matHk(ip,iel)=0;
for (Int_t iel=0;iel<knElem;iel++) {
for (Int_t jel=0;jel<knElem;jel++) mat1(iel,jel)=0;
mat1(iel,iel)=1;
}
matHk(0, s1)=1;
vecYk = vecZk-matHk*vecXk;
matHkT=matHk.T(); matHk.T();
matSk = (matHk*(covXk*matHkT))+measR;
matSk.Invert();
matKk = (covXk*matHkT)*matSk;
vecXk += matKk*vecYk;
covXk2= (mat1-(matKk*matHk));
covXk3 = covXk2*covXk;
covXk = covXk3;
Int_t nrows=covXk3.GetNrows();
for (Int_t irow=0; irow<nrows; irow++)
for (Int_t icol=0; icol<nrows; icol++){
covXk(irow,icol)=(covXk3(irow,icol)+covXk3(icol,irow))*0.5;
}
}
void TStatToolkit::Constrain1D(const TString &input, const TString filter, TVectorD ¶m, TMatrixD & covar, Double_t mean, Double_t sigma){
TObjArray *array0= input.Tokenize("++");
TObjArray *array1= filter.Tokenize("++");
TMatrixD paramM(param.GetNrows(),1);
for (Int_t i=0; i<=array0->GetEntries(); i++){paramM(i,0)=param(i);}
if (filter.Length()==0){
TStatToolkit::Update1D(mean, sigma, 0, paramM, covar);
}else{
for (Int_t i=0; i<array0->GetEntries(); i++){
Bool_t isOK=kTRUE;
TString str(array0->At(i)->GetName());
for (Int_t j=0; j<array1->GetEntries(); j++){
if (str.Contains(array1->At(j)->GetName())==0) isOK=kFALSE;
}
if (isOK) {
TStatToolkit::Update1D(mean, sigma, i+1, paramM, covar);
}
}
}
for (Int_t i=0; i<=array0->GetEntries(); i++){
param(i)=paramM(i,0);
}
delete array0;
delete array1;
}
TString TStatToolkit::MakeFitString(const TString &input, const TVectorD ¶m, const TMatrixD & covar, Bool_t verbose){
TObjArray *array0= input.Tokenize("++");
TString result=Form("(%f",param[0]);
printf("%f\t%f\t\n", param[0], TMath::Sqrt(covar(0,0)));
for (Int_t i=0; i<array0->GetEntries(); i++){
TString str(array0->At(i)->GetName());
result+="+"+str;
result+=Form("*(%f)",param[i+1]);
if (verbose) printf("%f\t%f\t%s\n", param[i+1], TMath::Sqrt(covar(i+1,i+1)),str.Data());
}
result+="-0.)";
delete array0;
return result;
}
TGraphErrors * TStatToolkit::MakeGraphErrors(TTree * tree, const char * expr, const char * cut, Int_t mstyle, Int_t mcolor, Float_t msize, Float_t offset){
const Int_t entries = tree->Draw(expr,cut,"goff");
if (entries<=0) {
TStatToolkit t;
t.Error("TStatToolkit::MakeGraphError",Form("Empty or Not valid expression (%s) or cut *%s)", expr,cut));
return 0;
}
if ( tree->GetV2()==0){
TStatToolkit t;
t.Error("TStatToolkit::MakeGraphError",Form("Not valid expression (%s) ", expr));
return 0;
}
TGraphErrors * graph=0;
if ( tree->GetV3()!=0){
graph = new TGraphErrors (entries, tree->GetV2(),tree->GetV1(),0,tree->GetV3());
}else{
graph = new TGraphErrors (entries, tree->GetV2(),tree->GetV1(),0,0);
}
graph->SetMarkerStyle(mstyle);
graph->SetMarkerColor(mcolor);
graph->SetLineColor(mcolor);
graph->SetTitle(expr);
TString chstring(expr);
TObjArray *charray = chstring.Tokenize(":");
graph->GetXaxis()->SetTitle(charray->At(1)->GetName());
graph->GetYaxis()->SetTitle(charray->At(0)->GetName());
delete charray;
if (msize>0) graph->SetMarkerSize(msize);
for(Int_t i=0;i<graph->GetN();i++) graph->GetX()[i]+=offset;
return graph;
}
TGraph * TStatToolkit::MakeGraphSparse(TTree * tree, const char * expr, const char * cut, Int_t mstyle, Int_t mcolor, Float_t msize, Float_t offset){
const Int_t entries = tree->Draw(expr,cut,"goff");
if (entries<=0) {
TStatToolkit t;
t.Error("TStatToolkit::MakeGraphSparse",Form("Empty or Not valid expression (%s) or cut (%s)", expr, cut));
return 0;
}
Double_t *graphY, *graphX;
graphY = tree->GetV1();
graphX = tree->GetV2();
Int_t *index = new Int_t[entries*4];
TMath::Sort(entries,graphX,index,kFALSE);
Double_t *unsortedX = new Double_t[entries];
Int_t *runNumber = new Int_t[entries];
Double_t count = 0.5;
Int_t icount=0;
unsortedX[index[0]] = count;
runNumber[0] = graphX[index[0]];
for(Int_t i=1;i<entries;i++)
{
if(graphX[index[i]]==graphX[index[i-1]])
unsortedX[index[i]] = count;
else if(graphX[index[i]]!=graphX[index[i-1]]){
count++;
icount++;
unsortedX[index[i]] = count;
runNumber[icount]=graphX[index[i]];
}
}
const Int_t newNbins = int(count+0.5);
Double_t *newBins = new Double_t[newNbins+1];
for(Int_t i=0; i<=count+1;i++){
newBins[i] = i;
}
TGraph *graphNew = 0;
if (tree->GetV3()) {
if (tree->GetV4()) {
graphNew = new TGraphErrors(entries,unsortedX,graphY,tree->GetV4(),tree->GetV3());
}
else { graphNew = new TGraphErrors(entries,unsortedX,graphY,0,tree->GetV3()); }
}
else { graphNew = new TGraphErrors(entries,unsortedX,graphY,0,0); }
graphNew->GetXaxis()->Set(newNbins,newBins);
Char_t xName[50];
for(Int_t i=0;i<count;i++){
snprintf(xName,50,"%d",runNumber[i]);
graphNew->GetXaxis()->SetBinLabel(i+1,xName);
graphNew->GetX()[i]+=offset;
}
graphNew->GetHistogram()->SetTitle("");
graphNew->SetMarkerStyle(mstyle);
graphNew->SetMarkerColor(mcolor); graphNew->SetLineColor(mcolor);
if (msize>0) { graphNew->SetMarkerSize(msize); graphNew->SetLineWidth(msize); }
delete [] unsortedX;
delete [] runNumber;
delete [] index;
delete [] newBins;
graphNew->SetTitle(expr);
TString chstring(expr);
TObjArray *charray = chstring.Tokenize(":");
graphNew->GetXaxis()->SetTitle(charray->At(1)->GetName());
graphNew->GetYaxis()->SetTitle(charray->At(0)->GetName());
delete charray;
return graphNew;
}
Int_t TStatToolkit::MakeStatAlias(TTree * tree, const char * expr, const char * cut, const char * alias)
{
Int_t entries = tree->Draw(expr,cut,"goff");
if (entries<=1){
printf("Expression or cut not valid:\t%s\t%s\n", expr, cut);
return 0;
}
TObjArray* oaAlias = TString(alias).Tokenize(":");
if (oaAlias->GetEntries()<2) {
printf("Alias must have 2 arguments:\t%s\n", alias);
return 0;
}
Float_t entryFraction = atof( oaAlias->At(1)->GetName() );
Double_t median = TMath::Median(entries,tree->GetV1());
Double_t mean = TMath::Mean(entries,tree->GetV1());
Double_t rms = TMath::RMS(entries,tree->GetV1());
Double_t meanEF=0, rmsEF=0;
TStatToolkit::EvaluateUni(entries, tree->GetV1(), meanEF, rmsEF, entries*entryFraction);
tree->SetAlias(Form("%s_Median",oaAlias->At(0)->GetName()), Form("(%f+0)",median));
tree->SetAlias(Form("%s_Mean",oaAlias->At(0)->GetName()), Form("(%f+0)",mean));
tree->SetAlias(Form("%s_RMS",oaAlias->At(0)->GetName()), Form("(%f+0)",rms));
tree->SetAlias(Form("%s_Mean%d",oaAlias->At(0)->GetName(),Int_t(entryFraction*100)), Form("(%f+0)",meanEF));
tree->SetAlias(Form("%s_RMS%d",oaAlias->At(0)->GetName(),Int_t(entryFraction*100)), Form("(%f+0)",rmsEF));
delete oaAlias;
return entries;
}
Int_t TStatToolkit::SetStatusAlias(TTree * tree, const char * expr, const char * cut, const char * alias)
{
Int_t entries = tree->Draw(expr,cut,"goff");
if (entries<1){
printf("Expression or cut not valid:\t%s\t%s\n", expr, cut);
return 0;
}
TObjArray* oaVar = TString(expr).Tokenize(":");
char varname[50];
snprintf(varname,50,"%s", oaVar->At(0)->GetName());
Float_t entryFraction = 0.8;
TObjArray* oaAlias = TString(alias).Tokenize(":");
if (oaAlias->GetEntries()<2) {
printf("Alias must have at least 2 arguments:\t%s\n", alias);
return 0;
}
else if (oaAlias->GetEntries()<3) {
}
else entryFraction = atof( oaAlias->At(2)->GetName() );
Double_t median = TMath::Median(entries,tree->GetV1());
Double_t mean = TMath::Mean(entries,tree->GetV1());
Double_t rms = TMath::RMS(entries,tree->GetV1());
Double_t meanEF=0, rmsEF=0;
TStatToolkit::EvaluateUni(entries, tree->GetV1(), meanEF, rmsEF, entries*entryFraction);
TString sAlias( oaAlias->At(0)->GetName() );
sAlias.ReplaceAll("varname",varname);
sAlias.ReplaceAll("MeanEF", Form("Mean%1.0f",entryFraction*100) );
sAlias.ReplaceAll("RMSEF", Form("RMS%1.0f",entryFraction*100) );
TString sQuery( oaAlias->At(1)->GetName() );
sQuery.ReplaceAll("varname",varname);
sQuery.ReplaceAll("MeanEF", Form("%f",meanEF) );
sQuery.ReplaceAll("RMSEF", Form("%f",rmsEF) );
sQuery.ReplaceAll("Median", Form("%f",median) );
sQuery.ReplaceAll("Mean", Form("%f",mean) );
sQuery.ReplaceAll("RMS", Form("%f",rms) );
printf("define alias:\t%s = %s\n", sAlias.Data(), sQuery.Data());
char query[200];
char aname[200];
snprintf(query,200,"%s", sQuery.Data());
snprintf(aname,200,"%s", sAlias.Data());
tree->SetAlias(aname, query);
delete oaVar;
delete oaAlias;
return entries;
}
TMultiGraph* TStatToolkit::MakeStatusMultGr(TTree * tree, const char * expr, const char * cut, const char * alias, Int_t igr)
{
TObjArray* oaVar = TString(expr).Tokenize(":");
if (oaVar->GetEntries()<2) {
printf("Expression has to be of type 'varname:xaxis':\t%s\n", expr);
return 0;
}
char varname[50];
char var_x[50];
snprintf(varname,50,"%s", oaVar->At(0)->GetName());
snprintf(var_x ,50,"%s", oaVar->At(1)->GetName());
TString sAlias(alias);
sAlias.ReplaceAll("varname",varname);
TObjArray* oaAlias = TString(sAlias.Data()).Tokenize(":");
if (oaAlias->GetEntries()<2) {
printf("Alias must have 2-6 arguments:\t%s\n", alias);
return 0;
}
char query[200];
TMultiGraph* multGr = new TMultiGraph();
Int_t marArr[6] = {24+igr%2, 20+igr%2, 20+igr%2, 20+igr%2, 20+igr%2, 20+igr%2};
Int_t colArr[6] = {kBlack, kBlack, kOrange, kRed, kGreen+1, kBlue};
Double_t sizeArr[6] = {1.4, 1.1, 1.5, 1.1, 1.4, 0.8};
Double_t shiftArr[6] = {0., 0., 0.25, 0.25, -0.25, -0.25};
const Int_t ngr = oaAlias->GetEntriesFast();
for (Int_t i=0; i<ngr; i++){
snprintf(query,200, "%f*(%s-0.5):%s", 1.+igr, oaAlias->At(i)->GetName(), var_x);
multGr->Add( (TGraphErrors*) TStatToolkit::MakeGraphSparse(tree,query,cut,marArr[i],colArr[i],sizeArr[i],shiftArr[i]) );
}
multGr->SetName(varname);
multGr->SetTitle(varname);
delete oaVar;
delete oaAlias;
return multGr;
}
void TStatToolkit::AddStatusPad(TCanvas* c1, Float_t padratio, Float_t bottommargin)
{
TCanvas* c1_clone = (TCanvas*) c1->Clone("c1_clone");
c1->Clear();
c1->cd();
TPad* pad1 = new TPad("pad1", "pad1", 0., padratio, 1., 1.);
pad1->Draw();
pad1->SetNumber(1);
c1->cd();
TPad* pad2 = new TPad("pad2", "pad2", 0., 0., 1., padratio);
pad2->Draw();
pad2->SetNumber(2);
c1->cd(1);
c1_clone->DrawClonePad();
pad1->SetBottomMargin(0.001);
pad1->SetRightMargin(0.01);
c1->cd(2);
pad2->SetGrid(3);
pad2->SetTopMargin(0);
pad2->SetBottomMargin(bottommargin);
pad2->SetRightMargin(0.01);
}
void TStatToolkit::DrawStatusGraphs(TObjArray* oaMultGr)
{
const Int_t nvars = oaMultGr->GetEntriesFast();
TGraph* grAxis = (TGraph*) ((TMultiGraph*) oaMultGr->At(0))->GetListOfGraphs()->At(0);
grAxis->SetMaximum(0.5*nvars+0.5);
grAxis->SetMinimum(0);
grAxis->GetYaxis()->SetLabelSize(0);
grAxis->GetYaxis()->SetTitle("");
grAxis->SetTitle("");
Int_t entries = grAxis->GetN();
grAxis->GetXaxis()->SetLabelSize(5.7*TMath::Min(TMath::Max(5./entries,0.01),0.03));
grAxis->GetXaxis()->LabelsOption("v");
grAxis->Draw("ap");
for (Int_t i=0; i<nvars; i++){
((TMultiGraph*) oaMultGr->At(i))->Draw("p");
TLatex* ylabel = new TLatex(-0.1, 0.5*i+0.5, ((TMultiGraph*) oaMultGr->At(i))->GetTitle());
ylabel->SetTextAlign(32);
ylabel->SetTextSize(0.025/gPad->GetHNDC());
ylabel->Draw();
}
}
TTree* TStatToolkit::WriteStatusToTree(TObject* oStatusGr)
{
TObjArray* oaMultGr = NULL;
Bool_t needDeletion=kFALSE;
if (oStatusGr->IsA() == TObjArray::Class()) {
oaMultGr = (TObjArray*) oStatusGr;
}
else if (oStatusGr->IsA() == TMultiGraph::Class()) {
oaMultGr = new TObjArray(); needDeletion=kTRUE;
oaMultGr->Add((TMultiGraph*) oStatusGr);
}
else {
Printf("WriteStatusToTree(): Error! 'oStatusGr' must be a TMultiGraph or a TObjArray of them!");
return 0;
}
const int nvarsMax=10;
const int ncritMax=5;
Int_t currentRun;
Int_t treevars[nvarsMax*ncritMax];
TString varnames[nvarsMax*ncritMax];
for (int i=0; i<nvarsMax*ncritMax; i++) treevars[i]=-1;
Printf("WriteStatusToTree(): writing following variables to TTree (maybe only subset of listed criteria filled)");
for (Int_t vari=0; vari<nvarsMax; vari++)
{
if (vari < oaMultGr->GetEntriesFast()) {
varnames[vari*ncritMax+0] = Form("%s_statisticOK", ((TMultiGraph*) oaMultGr->At(vari))->GetName());
varnames[vari*ncritMax+1] = Form("%s_Warning", ((TMultiGraph*) oaMultGr->At(vari))->GetName());
varnames[vari*ncritMax+2] = Form("%s_Outlier", ((TMultiGraph*) oaMultGr->At(vari))->GetName());
varnames[vari*ncritMax+3] = Form("%s_PhysAcc", ((TMultiGraph*) oaMultGr->At(vari))->GetName());
varnames[vari*ncritMax+4] = Form("%s_Extra", ((TMultiGraph*) oaMultGr->At(vari))->GetName());
}
else {
varnames[vari*ncritMax+0] = Form("dummy");
varnames[vari*ncritMax+1] = Form("dummy");
varnames[vari*ncritMax+2] = Form("dummy");
varnames[vari*ncritMax+3] = Form("dummy");
varnames[vari*ncritMax+4] = Form("dummy");
}
cout << " " << varnames[vari*ncritMax+0].Data() << " " << varnames[vari*ncritMax+1].Data() << " " << varnames[vari*ncritMax+2].Data() << " " << varnames[vari*ncritMax+3].Data() << " " << varnames[vari*ncritMax+4].Data() << endl;
}
TTree* statusTree = new TTree("statusTree","statusTree");
statusTree->Branch("run", ¤tRun );
statusTree->Branch(varnames[ 0].Data(), &treevars[ 0]);
statusTree->Branch(varnames[ 1].Data(), &treevars[ 1]);
statusTree->Branch(varnames[ 2].Data(), &treevars[ 2]);
statusTree->Branch(varnames[ 3].Data(), &treevars[ 3]);
statusTree->Branch(varnames[ 4].Data(), &treevars[ 4]);
statusTree->Branch(varnames[ 5].Data(), &treevars[ 5]);
statusTree->Branch(varnames[ 6].Data(), &treevars[ 6]);
statusTree->Branch(varnames[ 7].Data(), &treevars[ 7]);
statusTree->Branch(varnames[ 8].Data(), &treevars[ 8]);
statusTree->Branch(varnames[ 9].Data(), &treevars[ 9]);
statusTree->Branch(varnames[10].Data(), &treevars[10]);
statusTree->Branch(varnames[11].Data(), &treevars[11]);
statusTree->Branch(varnames[12].Data(), &treevars[12]);
statusTree->Branch(varnames[13].Data(), &treevars[13]);
statusTree->Branch(varnames[14].Data(), &treevars[14]);
statusTree->Branch(varnames[15].Data(), &treevars[15]);
statusTree->Branch(varnames[16].Data(), &treevars[16]);
statusTree->Branch(varnames[17].Data(), &treevars[17]);
statusTree->Branch(varnames[18].Data(), &treevars[18]);
statusTree->Branch(varnames[19].Data(), &treevars[19]);
statusTree->Branch(varnames[20].Data(), &treevars[20]);
statusTree->Branch(varnames[21].Data(), &treevars[21]);
statusTree->Branch(varnames[22].Data(), &treevars[22]);
statusTree->Branch(varnames[23].Data(), &treevars[23]);
statusTree->Branch(varnames[24].Data(), &treevars[24]);
statusTree->Branch(varnames[25].Data(), &treevars[25]);
statusTree->Branch(varnames[26].Data(), &treevars[26]);
statusTree->Branch(varnames[27].Data(), &treevars[27]);
statusTree->Branch(varnames[28].Data(), &treevars[28]);
statusTree->Branch(varnames[29].Data(), &treevars[29]);
statusTree->Branch(varnames[30].Data(), &treevars[30]);
statusTree->Branch(varnames[31].Data(), &treevars[31]);
statusTree->Branch(varnames[32].Data(), &treevars[32]);
statusTree->Branch(varnames[33].Data(), &treevars[33]);
statusTree->Branch(varnames[34].Data(), &treevars[34]);
statusTree->Branch(varnames[35].Data(), &treevars[35]);
statusTree->Branch(varnames[36].Data(), &treevars[36]);
statusTree->Branch(varnames[37].Data(), &treevars[37]);
statusTree->Branch(varnames[38].Data(), &treevars[38]);
statusTree->Branch(varnames[39].Data(), &treevars[39]);
statusTree->Branch(varnames[40].Data(), &treevars[40]);
statusTree->Branch(varnames[41].Data(), &treevars[41]);
statusTree->Branch(varnames[42].Data(), &treevars[42]);
statusTree->Branch(varnames[43].Data(), &treevars[43]);
statusTree->Branch(varnames[44].Data(), &treevars[44]);
statusTree->Branch(varnames[45].Data(), &treevars[45]);
statusTree->Branch(varnames[46].Data(), &treevars[46]);
statusTree->Branch(varnames[47].Data(), &treevars[47]);
statusTree->Branch(varnames[48].Data(), &treevars[48]);
statusTree->Branch(varnames[49].Data(), &treevars[49]);
Double_t graphX;
Double_t graphY;
TList* arrRuns = (TList*) ((TGraph*) ((TMultiGraph*) oaMultGr->At(0))->GetListOfGraphs()->At(0))->GetXaxis()->GetLabels();
for (Int_t runi=0; runi<arrRuns->GetSize(); runi++)
{
currentRun = atoi( arrRuns->At(runi)->GetName() );
for (Int_t vari=0; vari<oaMultGr->GetEntriesFast(); vari++)
{
TMultiGraph* multGr = (TMultiGraph*) oaMultGr->At(vari);
for (Int_t criti=1; criti<multGr->GetListOfGraphs()->GetEntries(); criti++)
{
TGraph* grCriterion = (TGraph*) multGr->GetListOfGraphs()->At(criti);
graphX = -1, graphY = -1;
grCriterion->GetPoint(runi, graphX, graphY);
treevars[(vari)*ncritMax+(criti-1)] = (graphY>0)?1:0;
}
}
statusTree->Fill();
}
if (needDeletion) delete oaMultGr;
return statusTree;
}
void TStatToolkit::MakeSummaryTree(TTree* treeIn, TTreeSRedirector *pcstream, TObjString & sumID, TCut &selection){
TObjArray * brArray = treeIn->GetListOfBranches();
Int_t tEntries= treeIn->GetEntries();
Int_t nBranches=brArray->GetEntries();
TString treeName = treeIn->GetName();
treeName+="Summary";
(*pcstream)<<treeName.Data()<<"entries="<<tEntries;
(*pcstream)<<treeName.Data()<<"ID.="<<&sumID;
TMatrixD valBranch(nBranches,7);
for (Int_t iBr=0; iBr<nBranches; iBr++){
TString brName= brArray->At(iBr)->GetName();
Int_t entries=treeIn->Draw(brArray->At(iBr)->GetName(),selection);
if (entries==0) continue;
Double_t median, mean, rms, mean60,rms60, mean90, rms90;
mean = TMath::Mean(entries,treeIn->GetV1());
median= TMath::Median(entries,treeIn->GetV1());
rms = TMath::RMS(entries,treeIn->GetV1());
TStatToolkit::EvaluateUni(entries, treeIn->GetV1(), mean60,rms60,TMath::Min(TMath::Max(2., 0.60*entries),Double_t(entries)));
TStatToolkit::EvaluateUni(entries, treeIn->GetV1(), mean90,rms90,TMath::Min(TMath::Max(2., 0.90*entries),Double_t(entries)));
valBranch(iBr,0)=mean;
valBranch(iBr,1)=median;
valBranch(iBr,2)=rms;
valBranch(iBr,3)=mean60;
valBranch(iBr,4)=rms60;
valBranch(iBr,5)=mean90;
valBranch(iBr,6)=rms90;
(*pcstream)<<treeName.Data()<<
brName+"_Mean="<<valBranch(iBr,0)<<
brName+"_Median="<<valBranch(iBr,1)<<
brName+"_RMS="<<valBranch(iBr,2)<<
brName+"_Mean60="<<valBranch(iBr,3)<<
brName+"_RMS60="<<valBranch(iBr,4)<<
brName+"_Mean90="<<valBranch(iBr,5)<<
brName+"_RMS90="<<valBranch(iBr,6);
}
(*pcstream)<<treeName.Data()<<"\n";
}
TMultiGraph* TStatToolkit::MakeStatusLines(TTree * tree, const char * expr, const char * cut, const char * alias)
{
TObjArray* oaVar = TString(expr).Tokenize(":");
if (oaVar->GetEntries()<2) {
printf("Expression has to be of type 'varname:xaxis':\t%s\n", expr);
return 0;
}
char varname[50];
char var_x[50];
snprintf(varname,50,"%s", oaVar->At(0)->GetName());
snprintf(var_x ,50,"%s", oaVar->At(1)->GetName());
TString sAlias(alias);
if (sAlias.IsNull()) {
sAlias = "varname_OutlierMin:varname_OutlierMax:varname_WarningMin:varname_WarningMax:varname_PhysAccMin:varname_PhysAccMax:varname_RobustMean";
}
sAlias.ReplaceAll("varname",varname);
TObjArray* oaAlias = TString(sAlias.Data()).Tokenize(":");
if (oaAlias->GetEntries()<2) {
printf("Alias must have 2-7 arguments:\t%s\n", alias);
return 0;
}
char query[200];
TMultiGraph* multGr = new TMultiGraph();
Int_t colArr[7] = {kRed, kRed, kOrange, kOrange, kGreen+1, kGreen+1, kGray+2};
const Int_t ngr = oaAlias->GetEntriesFast();
for (Int_t i=0; i<ngr; i++){
snprintf(query,200, "%s:%s", oaAlias->At(i)->GetName(), var_x);
multGr->Add( (TGraphErrors*) TStatToolkit::MakeGraphSparse(tree,query,cut,29,colArr[i],1.5) );
}
multGr->SetName(varname);
multGr->SetTitle(varname);
delete oaVar;
delete oaAlias;
return multGr;
}
TH1* TStatToolkit::DrawHistogram(TTree * tree, const char* drawCommand, const char* cuts, const char* histoname, const char* histotitle, Int_t nsigma, Float_t fraction )
{
TString drawStr(drawCommand);
TString cutStr(cuts);
Int_t dim = 1;
if(!tree) {
cerr<<" Tree pointer is NULL!"<<endl;
return 0;
}
Int_t entries = tree->Draw(drawStr.Data(), cutStr.Data(), "goff");
if (entries == -1) {
cerr<<"TTree draw returns -1"<<endl;
return 0;
}
if(tree->GetV1()) dim = 1;
if(tree->GetV2()) dim = 2;
if(tree->GetV3()) dim = 3;
if(dim > 2){
cerr<<"TTree has more than 2 dimensions (not yet supported)"<<endl;
return 0;
}
Double_t meanX, rmsX=0;
Double_t meanY, rmsY=0;
TStatToolkit::EvaluateUni(entries, tree->GetV1(),meanX,rmsX, fraction*entries);
if(dim==2){
TStatToolkit::EvaluateUni(entries, tree->GetV1(),meanY,rmsY, fraction*entries);
TStatToolkit::EvaluateUni(entries, tree->GetV2(),meanX,rmsX, fraction*entries);
}
TH1* hOut=NULL;
if(dim==1){
hOut = new TH1F(histoname, histotitle, 200, meanX-nsigma*rmsX, meanX+nsigma*rmsX);
for (Int_t i=0; i<entries; i++) hOut->Fill(tree->GetV1()[i]);
hOut->GetXaxis()->SetTitle(tree->GetHistogram()->GetXaxis()->GetTitle());
hOut->Draw();
}
else if(dim==2){
hOut = new TH2F(histoname, histotitle, 200, meanX-nsigma*rmsX, meanX+nsigma*rmsX,200, meanY-nsigma*rmsY, meanY+nsigma*rmsY);
for (Int_t i=0; i<entries; i++) hOut->Fill(tree->GetV2()[i],tree->GetV1()[i]);
hOut->GetXaxis()->SetTitle(tree->GetHistogram()->GetXaxis()->GetTitle());
hOut->GetYaxis()->SetTitle(tree->GetHistogram()->GetYaxis()->GetTitle());
hOut->Draw("colz");
}
return hOut;
}
void TStatToolkit::CheckTreeAliases(TTree * tree, Int_t ncheck){
Int_t nCheck=100;
TList * aliases = (TList*)tree->GetListOfAliases();
Int_t entries = aliases->GetEntries();
for (Int_t i=0; i<entries; i++){
TObject * object= aliases->At(i);
if (!object) continue;
Int_t ndraw=tree->Draw(aliases->At(i)->GetName(),"1","goff",nCheck);
if (ndraw==0){
::Error("Alias:\tProblem",aliases->At(i)->GetName());
}else{
::Info("Alias:\tOK",aliases->At(i)->GetName());
}
}
}