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Overview 
The DESI Commissioning Instrument (CI) off-line image reduction/analysis package is 

implemented in Python. The code is being developed through a publicly accessible ​GitHub 

repository​ on my personal account. “ci_reduce” is the name I gave the Python package. The 

ci_reduce Python package is intended to be run at NERSC. 

Dependencies always play an important role in the development and maintenance of 

software. I have taken the following approach to ci_reduce dependencies: any Python module 

available via the standard​ ​"DESI at NERSC"​ environment can be considered available for use 

by ci_reduce, but no dependencies beyond the DESI at NERSC environment are permitted. In 

particular, this means that the general-purpose Python utilities available from Dustin Lang’s 

astrometry.net package are off-limits. 

The ci_reduce code has object oriented features and is organized into submodules, e.g. 

one can do “import ci_reduce.analysis.util as util”. The code design was in part modeled after 

aspects of legacysurvey  pipelines including “legacypipe”, “obsbot” and “legacyzpts”. There is a 

main “driver” script called ci_proc.py that launches the production pipeline from the command 

line (with various optional flags available). This can be thought of as the ci_reduce counterpart 

to legacypipe’s “runbrick.py”. The ci_reduce/py/scripts directory houses various relevant pieces 

of Python analysis code that are not part of the production ci_proc pipeline to be run on every 

exposure. The ci_proc production pipeline uses auxiliary files such as master flats, master 
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biases, etc. The directory containing these files is accessed through an environment variable 

called “CI_REDUCE_ETC”. 

Simulated CI Images 
At present, there are no on-sky CI observations available, and only a very limited set of 

engineering data has been provided to me (the so-called “forDK.tar.gz” samples”). Thus, to test 

and validate the ci_reduce pipeline, it is necessary to created a set of simulated CI images. 

There are several ingredients that enable the creation of simulated CI images with the correct 

properties. 

For one, we must know the zeropoint in order to determine how many electrons per 

second will be detected for a source of a given AB magnitude. I have investigated this in 

substantial detail, with my “​ci_throughput​” GitHub repository providing all of the code, auxiliary 

files, output files, and associated plots. I find a zeropoint whereby a source with total detected 

flux of 1 electron per second corresponds to an AB magnitude of 26.56. This zeropoint is used 

to scale the summed flux of fake sources injected into my simulated images. My simulations use 

the WCS solutions I created for Dustin Lang’s online CI viewer tool. 

The first step taken by my image simulation code is to calculate the number of measured 

electrons per pixel. To do this, I take into account many factors/effects: bias, flat field variation, 

dark current (including temperature dependence), read noise, sky background, injected compact 

sources, and Poisson noise. Once the image has been fully simulated in units of e-, division by 

the gain converts to ADU, and the resulting array is cast to an integer data type matching that of 

the forDK.tar.gz samples. 

My CI image simulation software is roughly a thousand lines of throwaway IDL code, 

located in my “​ci_sim​” GitHub repo. This is intentional: it would be less informative/useful to test 
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the ci_reduce pipeline on inputs generated with the very same Python package that performs 

the reductions, as doing so would be prone to circularity. 

CI “Data Challenge” 
Using the positions and brightnesses of real sources, I simulated a CI exposure for each 

of the 2,010 IN_DESI=1, PASS=0 desi-tiles.fits pointings. The plot below shows the locations of 

these pointings. 

 

I then reduced all 2,010 simulated exposures using the ci_reduce package (actually I did 

this dozens of times while iterating on the ci_reduce codebase). No failures are encountered 

with the current version of the code. All of the forthcoming validation plots are drawn from CI 

data challenge outputs. 

Pixel Level Calibrations 
Please refer to the ci_reduce.exposure.calibrate_pixels() method if interested in details. 

The steps undertaken are: subtract bias, subtract dark current estimate, and divide by flat field. 

Additionally, an image-level inverse variance “weight map” is also created. All ci_reduce 

functionality validated in the remainder of this write up (source detection, flux measurement, 



centroid measurement, sky mag estimation) is based upon downstream analysis of the 

calibrated pixels delivered by ci_reduce. Therefore, those same analyses also validate the 

pixel-level calibration. 

Source Detection 
Source detection is performed by calculating a detection significance map, ​not​ by using 

a SExtractor-like approach that requires a certain number of contiguous pixels above a certain 

threshold. 

Detailed Validation Plots/Descriptions 
 

CI data challenge completeness plots:

 





 

 

 

 

 

description of CI data challenge completeness plots: 

I restricted to injected point sources at least 20 pixels from any image edge and 

lacking a neighboring injected source within 30 asec. These plots show the results of 



performing source detection with a "detection map" significance threshold of 5, i.e. 5 sigma 

source detection. The plots incorporate results from all ~2,000 simulated exposures worth 

of data challenge reductions. The blue dashed line is 50% completeness, meant only to 

guide the eye. The red dashed line is the predicted 5 sigma point source sensitivity based 

on calculating the n_eff value of the injected source profiles, the zeropoint (mag AB 

corresponding to total flux of 1 ADU), and the per-pixel background noise in the reduced 

images. The roll-off of the measured completeness coincides well with the predicted 5 sigma 

detection limit. All completeness plots show differential completeness. 

CI data challenge reliability plot: 

 

description of CI data challenge reliability plot: 

I restricted to detected sources at least 20 pixels from any image edge, and also 

removed detections having more than 1 injected source within 30" (proxy for 

crowding/blending). These plots show the results of performing source detection with a 

"detection map" significance threshold of 5, i.e. 5 sigma source detection. The plots 



incorporate results from all ~2,000 simulated exposures worth of data challenge reductions. 

The green dotted line is 100% reliability. The sharp drop-off in the single bin with 5 < SNR 

< 6 is a bit surprising, but overall this plot demonstrates essentially perfect reliability for 

high S/N sources that aren't blended/confused or near image boundaries. Note the 

logarithmic scale on the x axis. Data points are independent bins of width 1 in terms of 

detection map peak value. 

CI data challenge astrometry plots: 





 

 

description of CI data challenge astrometry plots: 

The CI data challenge outputs include extracted source catalogs for ~10,000 

simulated CI images (~2,000 exposures, with 5 per-camera images for each exposure). I 



randomly chose a subset of 200 of the corresponding ci_reduce catalogs and plotted pull 

distributions of the source centroids (in each coordinate) relative to truth, which is simply 

taken from the catalogs of injected sources. These pull distributions normalize the pixel 

coordinate differences to the quantity (FWHM/SNR), with FWHM expressed in pixels and 

SNR coming from the detmap_peak column in my ci_reduce output catalogs. Under various 

assumptions, the optimal centroid uncertainty is FWHM/(2*SNR). These assumptions 

include an optimal PSF-based modeling of the sources, which is not currently being done by 

the ci_reduce pipeline. So we do not expect to saturate the FWHM/(2*SNR) bound based on 

the current ci_reduce implementation. A relevant point of comparison is the widely used IDL 

routine "djs_photcen", which returns reliable flux-weighted centroid measurements despite 

not performing an optimal PSF-fitting analysis. Running djs_photcen on the ci_reduce 

"_reduced" image outputs drawn from my CI data challenge, I find that the robust standard 

deviation of the per-coordinate pull distributions is very nearly FWHM/SNR. The ci_reduce 

centroid residuals relative to truth also display pull distributions with similar robust standard 

deviations of very nearly FWHM/SNR. Therefore I consider the ci_reduce centroid 

measurements to be acceptably valid. 

The above pull distributions do not include all sources for all 200 catalogs analyzed. I 

made various cuts in attempt to restrict to isolated, unsaturated point sources not nearby 

any image boundary. These cuts include: a minimum distance from any image edge of at 

least 40 pixels, exactly one injected source catalog match within 30 asec, a nearest 

neighbor interpolated ci_reduce "_bitmask" value of zero (no bitmask data quality flags set 

at the location of the centroid), SNR < 1000, and no neighboring extracted sources in the 

ci_reduce "_catalog" output within 30 asec. The SNR < 1000 cut is implemented to avoid 

large pull values in cases of huge SNR, where the FWHM/SNR becomes a tiny number that 

may be comparable to the centroid estimation convergence criterion. These cuts could 

potentially have been further tuned/refined but I did not bother to do so. 

CI data challenge photometry plots: 



 

The above plot validates the ci_reduce aperture photometry. For this plot, I chose to 

use the aperture with diameter most closely matching the injected source FWHM. I then 

corrected the measured aperture fluxes to be total fluxes. Note that there is no uncertainty 

or systematic error associated with this correction, since I know the aperture size used and 

I know the profile of each source that I injected. The vertical axis is the difference between 

the aperture-corrected magnitudes measured by ci_reduce and the true magnitudes. The 



horizontal axis is the true source magnitude, shifted so that the 5 sigma limit is always at x 

= 0. This plot combines measurements from all CI cameras. 

The white plus marks and connecting white lines show the median differences 

between aperture-corrected measured magnitudes and true magnitudes, in bins 0.2 

magnitudes wide. The red plus marks and connecting red lines are the corresponding 25th 

percentile values. The yellow plus marks and connecting yellow lines are the corresponding 

75th percentile values. The horizontal dotted green line indicates perfect agreement 

between aperture-corrected measured magnitudes and truth. The vertical dotted blue line 

denotes the SNR = 5 magnitude. 

In total 33,591 injected stars drawn from a large number of exposures worth of 

ci_reduce outputs contribute to this plot. This comparison source sample is a subset of the 

full list of ci_reduce detections. Notably, I restricted to isolated stars at least 50 pixels from 

any image edge (using the ci_reduce catalog column min_edge_dist_pix) and required that 

the ci_reduce catalog column dq_flags have a value equal to zero, i.e. no data quality flags 

set. This latter cut removes saturated sources. 

As indicated by the magenta arrow and associated annotation, the effect of 

Malmquist bias can be seen to set in near the 5 sigma detection limit, as expected. Sources 

near the detection limit are preferentially detected when they coincide with positive valued 

random noise, leading the measured magnitudes to be preferentially bright, i.e. lower in 

value than truth, which is why the red, white and yellow curves dip negative at the faint 

end. 



 

This is a yet more heavily annotated version of the prior plot. Now I have added in 

the orange lines, which show the +/- 1 sigma uncertainty envelopes based on the SNR as a 

function of abscissa value. The very close matching of these orange envelopes with the 

measured 25th and 75th percentile curves is a coincidence -- with optimally measured 

fluxes, the 16th and 84th percentile curves should coincide with the orange lines. Therefore 

we can see that, as expected, the ci_reduce aperture fluxes are slightly suboptimal -- the 

16th percentile curve for this set of data challenge outputs would presumably fall below the 



lower orange envelope, and the 84th percentile curve for this set of data challenge outputs 

would presumably fall above the upper orange envelope. 

 

The prior two magnitude comparison plots are crowded with annotations, making it 

difficult to perceive the bright end accuracy and scatter. The above plot shows a bright-end 



histogram of the aperture-corrected measured magnitude minus true magnitude difference. 

The robust standard deviation indicates a bright end scatter of just 1.6 mmag. The full 

range of abscissa values is shown -- there are no outliers beyond the bounds of the plot. 

There is a very clear bright end offset of 3.4 mmag, in the sense that the aperture-corrected 

measured magnitudes are very slightly fainter than truth. One hypothesis that may be able 

to explain this phenomenon is that small astrometric scatter in the measured centroids 

adopted for aperture photometry causes a small net loss of flux from within the aperture. 

This hypothesis could be tested by subsetting the 936 stars in the above histogram based 

on how close/far their ci_reduce measured centroids are from truth, but I have not 

performed this test. Another way to test this hypothesis would be to feed the ci_reduce 

aperture photometry module a list of the exact centroid positions of the injected sources 

(ci_reduce does not currently offer such forced aperture photometry functionality). 



 

The above plot shows a pull distribution based on the aperture fluxes and their 

uncertainties reported by ci_reduce. The same sample of ~34k isolated stars as discussed in 

previous figure descriptions was also used for this plot. The robust standard deviation of the 

aperture flux pulls is very close to unity, indicating that the aperture flux uncertainties 

quoted by ci_reduce are reasonable. The small positive bias may again be related to the 

small bright end bias discussed previously, and has the correct sign to arise from net loss of 

flux within the aperture due to imperfect centroid determination. 

CI data challenge sky mag: 



 

Although sky magnitude estimation is not formally on the checklist of image analysis 

items required for this review, I have implemented it anyway. The above plots shows a 

histogram of the difference between the simulated "true" sky level in AB magnitudes per 

square arcsecond and the sky level in AB magnitudes per square arcsecond computed by 

the ci_reduce pipeline. The agreement is excellent overall. The sky estimation is 

contaminated slightly by the presence of compact sources, which is why the deviations from 

zero are essentially all negative (sky flux per pixel estimate is slightly elevated by flux from 

compact sources). The most strongly discrepant point alone at left is the globular cluster 

M53: 



​http://legacysurvey.org/viewer?ra=198.2310&dec=18.1716&zoom=13&layer=decals

-dr7 

The ci_reduce pipeline offers a command line option --careful_sky which attempts to 

use image segmentation to remove the influence of compact sources on overall sky 

background level estimation. Running the M53 image with this option makes the sky 

magnitude agreement 2x better (within ~0.1 mag of truth), but still clearly discrepant 

relative to the distribution of the other ~10,000 images analyzed. In any case, the affected 

pointing has 4 other CI cameras worth of correct sky mag estimates. 
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