main Gen2->Gen3 concerns/pointers from my perspective
processCcd.py (Gen2, v19 0 0) -> Lee’s “step1” (Gen3, v23 0 1)

 Major increases in output data volume (~3x) and number of inodes (~3.7x) per raw DECam CCD
in Gen3 compared to Gen?2

* Cannot stop major contributors to Gen3 data volume increase from being written without
breaking the “Quantum Graph”

* (Gend outputs are much more heavily/deeply nested within subN-directories

* Gend file names much longer and more complex, mixture of conventions regarding how
exposure name is specified e.g., “ctdm20170818t232625” versus “670212” within the same

exposure/CCD’s Gen3 outputs

 Runtime with Gen3 default parameters much longer (factor of ~3+, on our hardware) with Gen3
default parameters

* Reverting the psfDeterminer back to PSFEX from “piff” and explicitly setting the number of
PSF iterations to 1 (default is 2) brings Gen3 runtime down to only a factor of ~1.2-1.25x
longer than Gen2 (based on tests reducing exact same raw data in both Gen2/Gen3)

main Gen2->Gen3 concerns/pointers from my perspective
processCcd.py (Gen2, v19 0 0) -> Lee’s “step1” (Gen3, v23 0 1)

* The specific config parameters used for the aforementioned two runtime
optimizations were;:

» ‘-c characterizelmage:measurePsf.psfDeterminer.name="psfex”
e ‘-c characterizelmage:psftlterations=1’

* The scaling of runtime with “-j” level of parallelism (on our hardware) seems much
worse for Gen3 than for Gen2, though this could still use some further investigation

o Off the cuff hypothesis would be that this is due to increased I/0O from much
larger numbers of inodes and ~3x larger output data volume

* Thanks to Lee for his HackMD notes and Shenming for his excellent Gen3/DECam
Google Docl!!

scaling with number of CPU'’s (-] arg)
all 1500 CCD’s from Shenming’s GW170817 data set

Gen’/

)
-
-

i
)
Q

-
.
=

e’
:

.4:
[=
=
L=
-
Q
|
O
T
L
—
Q>

|II|III|III|III
‘IIIIII|III|III

-
N
-

—j parameter (# of CPUs)

scaling with number of CPU'’s (-] arg)
all 1500 CCD’s from Shenming’s GW170817 data set

Gen’/

I 1 I 1 I 1 1 |

_ _

. i

. i

. i

. i
| 1 [| | 1 [| | I

10
—j parameter (# of CPUs)

o)
N
-

scaling with number of CPU'’s (-] arg)
all 1500 CCD’s from Shenming’s GW170817 data set

Gend

I

I

I

(minutes)

(1/71) % serial runtime

I D D D O O

I

:
=
=
=
g=
C
Q)
|
O
-
|
o
-
Q)

I

-
N
-

—j parameter (# of CPUs)

scaling with number of CPU'’s (-] arg)
all 1500 CCD’s from Shenming’s GW170817 data set

Gend

P [
s — -
‘_\ :
L N
i N
g -
"= —
1) -
(1 -
~ -
\\ :
iy N
= N

10
—j parameter (# of CPUs)

-
N

scaling relative to serial is ~2.5x worse at | = 20 for Gen3 relative to Gen2

Question

Do the LSST pipelines include some sort of “telemetry” utilities to monitor the
resource usage, for instance the peak memory and runtime (preferably for

each CCD)?

* | have my own bespoke code that parses log files and can sort of do some
stuff like this.

