pointing camera calibrations and initial reductions

Aaron Meisner, Behzad Abareshi, Arjun Dey

background info

- Everything currently in this document refers to the "El Nino" pointing camera
 - "pointing camera" is the term I use, but other terms I've seen on-list or in DocDB are "top ring imager" and "Mayall startracker"
- Behzad is setting up a second pointing camera called "La Nina", planning to have both operational in the future
- El Nino has two operating modes
 - Video mode useful visual tool for OA's and observers
 - Astrometry mode longer exposures typically saved unbinned
- We have 20,000+ archival El Nino astrometry mode pointing camera images (3/2019-3/2020), which I have been using as a testbed data set for analysis scripting, calibration studies, and GFA comparisons
- Goals include monitoring transparency and sky brightness throughout the DESI field of view
 - Potentially also flagging satellite streaks during DESI exposures

background info

components summary from David Schlegel's [desi-commiss 655]

Allied Vision Prosilica GT3300 4/3" Monochrome CCD Camera F-Mount Model Number GT 3300 B Edmund Stock Number: 87-089

Zeiss 135mm f/2 Milvus ZF.2 Lens for Nikon F Mount DSLR Cameras Manufacturer Number: 2111-635 Zeiss 77mm Carl Zeiss T* UV Filter MFR # 1933-986

	•					
nival	size:	hh	\mathbf{I}	Vh	\boldsymbol{h}	Im
DIXEL		$\mathcal{O}_{-}(\mathcal{O})$		$X \cdot X = X \cdot $	\mathbf{C}	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			\mathbf{e}_{1}		\smile r	

• max frame rate: 14.7 fps

max exposure time: 26.8 seconds

exptime (ms)	# exp	# nights
1	1	1
20	6	1
100	6	2
200	41	5
250	38	3
300	31	2
400	532	23
500	276	4
600	-1	1
750	29	1
800	504	10
1000	8817	18
1500	4465	2
2000	96	2
3000	5009	8
5000	238	14
10000	106	18
15000	16	7.
20000	35	15
25000	2	2
26000	221	16

see also Behzad's DESI-3709

example raw El Nino astrometry mode image

7.9° x 5.9° field of view 3296 x 2472 pixels 8.65" pixels

20190328; observers B. Abareshi, A. Dey, D. Schlegel; 20 seconds; M44

calibrations summary

- We have one "bias" (1 ms, which is the minimum exposure time)
- We have another 3 dark images from that same night (20190519)
- This allowed me to make per quadrant measurements of the "bias" offsets, read noise, and dark current rates (no knowledge of temperature dependence, no investigation of spatial structure)
- Darks also allowed me to make a hot pixel mask
- Details of these initial non-sky calibration analyses are in the Appendix of this document

pixel-level detrending

- Raw astrometry mode images are already quite cosmetically clean to begin with
- Currently
 - subtract per-quadrant scalar offset representing the bias
 - subtract per-quadrant scalar offset representing the dark current
 - interpolate over hot pixels
- Possible future enhancements
 - account for spatial structure in bias and dark current
 - flat fielding

additional per-exposure analysis

- Centroid refinement of Gaia stars expected to be of sufficiently high S/N
- Aperture photometry
 - Default aperture has 2.5 pixel radius (~21.6" radius)
- Full frame and per quadrant zeropoints, for seven different aperture size (2, 2.5, ..., 5 pixel radii)
- Full frame and per quadrant sky levels currently based on simple median of pixel values after detrending

zeropoint measurement

cf. David Schlegel's [desi-commiss 655]

zeropoints/transparency ("good" examples)

zeropoints/transparency ("good" examples)

zeropoints/transparency ("good" examples)

zeropoints

50

150 200 250

sky ADU/s (quadrant 3)

300

sky count rates

sky count rates

linearity

0.5

residuals versus Gaia color

current color term of 0.25×(BP-RP) suggested by David Schlegel (desi-commiss 655)

potential explanation of color-dependent residual trend

progress on throughput curve

plot/analysis courtesy of Arjun Dey

future/ongoing work

- Understand apparent zeropoint variations
- Better tested, more robust Python analysis pipeline
- Try swapping in Tycho V instead of Gaia
- Add streak detection
- Requests for more metadata in raw pointing camera image headers, e.g. camera temperature
- Running in real-time at the mountain

future/ongoing work

- Finish constructing expected El Nino throughput curve as a function of wavelength
- More non-sky calibration data ("zeros", darks)
 - Currently planning to try this during the upcoming dark time (lens cap is not on)
- More on-sky calibrations/tests
 - e.g., twilight flats
 - running pointing camera in astrometry mode simultaneously with DESI guide sequences more often in the future
- Adapt pipeline to work for both El Nino and La Nina

Appendix: Details about Non-sky Calibrations

dark current rates

quadrant	counts[15 s] / 15 s	m	b
all	0.0897	0.0820	0.143
1	0.0961	0.0968	0.033
2	0.0997	0.0912	0.107
3	0.0837	0.0772	0.129
4	0.0836	0.0689	0.268

- m (slope) and b (y intercept) come from linear fit of counts/pix versus integration time (red line in each plot).
- All values except b are in counts/pix/second; b is in counts/pix

other per-quadrant quantities

quadrant	readnoise (ADU/pix)	median bias (ADU/pix)
1	12.54	87
2	13.05	152
3	12.78	118
4	12.65	110

Gaia G cut as a function of exposure time

