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ABSTRACT8

We review the well-known matched filter method for the detection of point sources in astronomical9

images. This is shown to be optimal (that is, to saturate the Cramér–Rao bound) under stated10

conditions that are very strong: an isolated source in background-dominated imaging with perfectly11

known background level, point-spread function, and noise models. We show that the matched filter12

produces a maximum-likelihood estimate of the brightness of a purported point source, and this leads13

to a simple way to combine multiple images—taken through the same bandpass filter but with different14

noise levels and point-spread functions—to produce an optimal point source detection map. We then15

extend the approach to images taken through different bandpass filters, introducing the SED-matched16

filter, which allows us to combine images taken through different filters, but requires us to specify the17

colors of the objects we wish to detect. We show that this approach is superior to some methods18

traditionally employed, and that other traditional methods can be seen as instances of SED-matched19

filtering with implied (and often unreasonable) priors. We present a Bayesian formulation, including20

a flux prior that leads to a closed-form expression with low computational cost.21

1. INTRODUCTION22

There are few operations in astronomy more important than the detection of stars or point sources. Indeed, many23

astronomical discoveries come down to point-source detection. What is the best method for performing such detection?24

Here we answer that question, in the limited context of isolated sources, uniform sky-limited noise, and well-understood25

point-spread function. Even in this limited context, the subject is rich and valuable; more general—and more difficult—26

cases will be illuminated if we can understand the simplest case first.27

Fundamentally, when much is understood about a signal latent in noisy data, the best detection methods are (or look28

like) matched filters. A matched filter is a model of the expected signal with which the data are cross-correlated. Peaks29

in the cross-correlation are candidate signal detections. In point-source detection in astronomical images, the expected30

signal is the point-spread function (PSF), and the cross-correlation operation is often wrongly called “convolution by31

the PSF”. Matched filters are well used in astronomy, in contexts ranging from spectroscopy (Bolton et al. 2012) to32

galaxy clusters (Rykoff et al. 2014; Melin et al. 2006) to ultra-faint galaxies (Willman et al. 2005) to exoplanets (Doyle33

et al. 2000) to gravitational radiation (Abbott et al. 2016).34

In what follows, we will argue for matched filtering for point-source detection. This is not new (it has been reviewed35

recently by Zackay & Ofek (2017)); what is new is that we consider the common context of heterogeneous (in point-36

spread function and sensitivity) multi-epoch, multi-band imaging. While the optimality of matched filtering for37

single-image point source detection is well known by astronomers, the straightforward mathematics behind it is often38

not, leading to a misconception that it is simply an algorithmic choice. Here, we show that this method is optimal39

in the technical sense that it saturates the Cramér–Rao bound under stated assumptions. The mathematics are40

straightforward and the resulting procedure is simple and computationally inexpensive.41

Perhaps more controversially, we go on to argue that when imaging in multiple bands is available, one should again42

use a matched filter, now matched to the spectral-energy distribution (SED) of the sources to be detected. This43

SED-matched filtering, as we will call it, makes explicit the assumptions that are implicitly embedded in any method44

that attempts to detect sources by combining imaging from multiple bands.45

In the Real World, astronomers never precisely know their point-spread function, their noise model, their flat-field46

(or other calibration parameters), nor the spectral-energy distributions of the sources of greatest interest. Also, often,47

the sources of interest aren’t point sources or perhaps vary with time. In these cases, we advocate parameterizing48
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ignorance, and operating with the union of all possibly appropriate matched filters. We will fully execute this idea here49

when it comes to spectral-energy distributions, but there are natural extensions to deal with point-spread function,50

noise-model, calibration, and time-domain uncertainties.51

A “traditional” approach for detecting sources in multi-epoch imaging is to co-add the images and then run a52

detection algorithm on the resulting coadd. When the images have different point-spread functions or noise properties,53

this method results in needless loss of sensitivity; producing a coadd effectively forces the use of a mismatched filter54

rather than a matched filter. We will show that the correct procedure involves creating a weighted co-addition of55

matched-filtered (smoothed) images.56

That is, in what follows, we will detect sources as above-threshold pixels or regions in a weighted co-add of PSF-57

correlated input images. We will call this object a “detection map”. This detection map is the best thing to use for58

source detection. Once sources are detected, of course, the detection map should be put aside, and source properties59

(positions, colors, and so on) ought to be measured (inferred) from the raw pixels in the collection of input images via60

a likelihood function. That measurement and likelihood function is beyond the scope of this paper, but the subject of61

a parallel research program (eg, Lang et al. (2016), Dey et al. (2019)).62

2. OUR IMAGE MODEL63

We consider idealized astronomical images such as those obtained from a CCD in typical broadband optical imaging.64

Specifically, we will make the following strong assumptions (and later we will relax many of them):65

• the noise (coming from such sources as the Poisson distribution of the sky background, dark current, and66

read noise) is zero-mean, Gaussian, pixelwise independent, and of known constant variance. The zero-mean67

assumption can be seen as assuming perfect background subtraction (sky estimation);68

• the image is well sampled;69

• the (perhaps tiny) image contains at most one point source with an unknown flux and position;70

• the source is centered within a pixel;71

• the point-spread function is spatially constant (across the possibly small image patch of interest) and known72

perfectly;73

• the device is linear and the photometric calibration of the image is known perfectly; that is, that it is possible74

to map from image “count” units back to physical units or a photometric standard;75

• the image is perfectly astrometrically calibrated;76

• the image is not contaminated by cosmic rays, stray light, bad pixels, bad columns, electronic artifacts, or any77

other of the many defects in real images.78

Throughout this paper we assume a “pixel-correlated” PSF; we consider the point-spread function to include the79

effects of pixelization. In well-sampled images, we think of the image as being a continuous function which, after80

being correlated by the PSF, is sampled at delta-function pixel locations. There is no need to think of pixels as “little81

boxes”; they are simply samples of an underlying smooth two-dimensional signal.82

With these strong assumptions, we can write down the probability distribution of each pixel value, which allows us83

to prove the optimality of the methods we present. We will consider a discrete image made up of a square array of84

pixels indexed by j, each of which has value Ij , where we use j as a two-dimensional focal-plane position, measured in85

integer pixel units. If the image contains a single point source, centered on the pixel at position k and with constant86

flux resulting in a total number of counts f , then the image is87

Ij = f ψj−k + Ej , (1)

where ψj−k is the point-spread function evaluated at offset j − k and Ej is per-pixel noise drawn from a zero-mean88

Gaussian with known, constant, per-pixel variance σ2. We can also write this as89

Ij ∼N
(
f ψj−k , σ

2
)

,

meaning that Ij is drawn from a Gaussian distribution with mean f ψ(j − k) and variance σ2.90
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3. DETECTING A POINT SOURCE IN A SINGLE IMAGE91

The matched filtering operation, also known as “smoothing by the PSF” or “correlating by the PSF”1 can be written92

as93

Mj =
∑
i in A

ψi Ii+j ,

where A is the support of the PSF and ψi = ψ(i) is an image of the PSF model evaluated at integer pixel offset i,94

where the PSF is centered at the origin. This operation can be seen as “gathering up” the signal that is dispersed into95

many pixels by the PSF, weighting by the fraction of the flux that went into the pixel. In Appendix A we derive the96

matched filter and show that it saturates the Cramér–Rao bound.97

We define the detection map Dj as the matched filter, scaled to be in convenient units:

Dj =
1

‖ψ‖2
∑
i in A

ψi Ii+j , (2)

where the summation operation is the correlation of image I by its PSF ψ. The PSF norm ‖ψ‖ is defined as

‖ψ‖ =

√ ∑
i in A

ψ2
i , (3)

and as shown in Appendix A.2, a Gaussian PSF with standard devation w pixels has a norm approximately:∥∥ψG∥∥ ' 1

2
√
πw

. (4)

The per-pixel uncertainty in the detection map is given by

σD =
σ

‖ψ‖ . (5)

We have scaled the detection map so that each pixel contains the maximum-likelihood estimate of the total flux of

a source centered at that pixel. That is, if we compute at pixel j the flux f∗j that minimizes the chi-squared (χ2)

residual within the support of the PSF:

f∗j = arg min
f

∑
i

(
Ii+j − f ψi

σ

)2

we find98

f∗j =

∑
i Ii+j ψi∑
i ψ

2
i

f∗j =Dj

as defined above. That is, a significant peak in the detection map indicates the likely position of a point source, and99

the value of the detection map at a pixel is the maximum-likelihood estimate of the flux for a source centered at that100

pixel.101

3.1. Threshold and Peaks102

Once we have computed a detection map, we typically wish to produce a list of detected sources. Standard practice103

is to apply a threshold at, say, 5σD, and accept any peak above that threshold as a source (or a blended group104

of sources).2 In regions containing no sources, the detection map contains Gaussian noise. Due to the correlation105

operation, the detection map pixels are not pixelwise independent, but as weighted sums of Gaussian samples they are106

1 Or, often, “convolving by the PSF”, being slightly careless with terminology.
2 “Deblending” nearby groups of sources is a challenging task that is beyond the scope of this paper.
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still distributed as Gaussians. As such, the expected number of pixels above a threshold τ is the integral of the high107

tail of the normal distribution. For τ = 5σD, the fraction of pixels above threshold due to noise is about 2.9 × 10−7,108

which seems tiny except that we will be evaluating millions of pixels; in a 4k×4k image we would expect approximately109

5 false positive detections due to statistical fluctuations.110

There is nothing special about 5σD as a detection threshold; it is simply a choice of tradeoff between allowing some111

false positives while preventing too many false negatives (lost detections). In different situations, higher or lower112

thresholds could be preferable.113

Formally, in a frequentist statistical setting, we consider the problem of devising a test that will maximize the114

probability of true detections while holding the probability of false detections fixed. The Neyman–Pearson lemma (?)115

states that for two simple hypotheses, a likelihood-ratio test yields maximal power (true detection rate) given a fixed116

size (false-positive detection rate). In traditional discussions of source detection, the foreground hypothesis—that117

a source exists—is left implicit, and we simply talk about rejecting the null hypothesis that there is no source. In118

order to apply the Neyman–Pearson lemma, we must put forward a specific simple (non-parameterized) foreground119

hypothesis. That is, our foreground hypothesis could be “there is a source with a flux of 1 count per second centered in120

this pixel”. It turns out that the threshold (decision region) prescribed by the Neyman–Pearson lemma is determined121

solely by the false-positive criterion, a property of the null hypothesis alone, so the same threshold is chosen regardless122

of the (positive) flux level of the foreground hypothesis! Specifically, for the case of the Gaussian probabilities we are123

considering, we must choose a false positive rate that we are willing to accept. For instance, if we want our test to124

produce only one false positive per 109 tests, then we can use the inverse survival function for the Gaussian to calculate125

that we should set our threshold to approximately 6σD. With that threshold, the positive tail of the null-hypothesis126

distribution (the integral above 6σD) is less than 10−9.127

In a Bayesian setting, we can formalize the detection task as a Bayesian decision theory problem (as in ?). In128

Bayesian decision theory, we must first write down the utility of each outcome—true detection, false detection, true129

rejection,and false rejection—and then we compute a threshold that will yield the greatest expected utility. The table130

of utilities is shown in Table 1.131

Source exists?

Yes No

Decision
Detect u(TP) u(FP)

Reject u(FN) u(TN)

Table 1. Table of utilities for a Bayesian decision theory framing of the source detection problem. We must write down how
good or bad each outcome is in order to arrive at a threshold that will maximize our expected utility. The utilities u(·) are in
arbitrary linear units of subjective goodness.

In addition to our table of utilities, we also need the posterior probability distributions for both the “foreground”

model (there is a star), p(F |data), and “background” model (there is no star), p(B |data). The expected utility of

detecting a source is:

E [u |Detect,data ] = u(TP) p(F |data) + u(FP) p(B |data) (6)

while the expected utility of not claiming a detection is:

E [u |Reject,data ] = u(FN) p(F |data) + u(TN) p(B |data) . (7)

We should claim a detection if:

E [u |Detect,data ] > E [u |Reject,data ] (8)

u(TP) p(F |data) + u(FP) p(B |data) > u(FN) p(F |data) + u(TN) p(B |data) (9)

p(F |data)

p(B |data)
>
u(TN)− u(FP)

u(TP)− u(FN)
(10)

p(data |F )

p(data |B)
>
p(B)

p(F )

u(TN)− u(FP)

u(TP)− u(FN)
, (11)
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where the term on the left-hand side is a likelihood ratio—the same quantity used in the frequentist test. The term132

on the right-hand side depends on both the priors of the foreground and background models—which is related to the133

fraction of pixels that truly contain stars—and the utilities, which describes how we are willing to trade true detections134

against false positives.135

Typically, in source detection we want to be relatively conservative: false positive detections are considered to be

quite bad, so we can set u(FP) to be a very negative number. True positive detections are quite good, so u(TP) is a

moderate positive value. True negatives (correctly deciding that there is no source in a pixel) are slightly good (u(TN)

is slightly positive), and false negatives (missing a true source) are moderately bad (u(FN) is moderately negative).

The ratio is then
u(TN)− u(FP)

u(TP)− u(FN)
=

+small−−big

+moderate−−moderate
(12)

Similarly, the priors push us to be somewhat conservative: in wide-field optical imaging such as the DESI Legacy136

Imaging Surveys (Dey et al. 2019) data release 9, there are roughly 2 billion source detections in roughly 20, 000 square137

degrees of imaging, which corresponds to roughly 1 source per 2000 pixels. A higher-density survey such as the Dark138

Energy Camera Plane Survey 2 (DECaPS2) (?) has a density of roughly one source per 300 pixels. The ratio of priors139

p(B)/p(F ) should therefore be set based on the properties of the images to be handled, but likely on the order of 1000.140

We have not yet specified our foreground model, that a source exists. Since we must be able to write down a141

likelihood function, this will require us to specify a flux for the star. In practice, and as described below, we would142

place a prior over fluxes and integrate it out, but for the purposes of building intuition, assume that the foreground143

model is that the star has a flux corresponding to 5σD. For utilities, take u(FP) = −$1000, u(TN) = u(TP) = $1, and144

u(FN) = −$1, and set the ratio of priors to p(B)/p(F ) = 2000. This yields a likelihood ratio threshold of 106, which145

occurs at roughly 5.3σD.146

3.2. Comments147

PSF model —Computing the detection map requires correlation of the image by a model of its point-spread function. In148

practice, the PSF model is never known exactly, and since correlation by large pixelized models can be expensive, it is149

common to approximate the PSF by a Gaussian for the purposes of detecting sources. The impact of this approximation150

on detection efficiency is apparent in the derivation of the matched filter; in equation A5, the detection map signal-to-151

noise is proportional to the cosine distance between the true PSF and the correlation kernel. In typical ground-based152

images, this results in only a few percent loss in signal-to-noise. For example, in our DESI Legacy Imagine Surveys153

images (Dey et al. 2019), if we assume that our pixelized model of the PSF is correct, then a Gaussian approximation154

typically yields above 97% efficiency. A considerable side benefit of making this assumption is that one can use a fast155

separable real-space filtering routine to perform the correlation operation.156

Biases —In this paper, we have assumed that backgrounds due to atmospheric emission (“sky”) and detector effects157

such as bias and dark current have been perfectly estimated and subtracted. In real images, however, errors in these158

estimates can leave spatially coherent residual biases, and these can have a considerable effect on source detection. For159

example, a background that is elevated by 0.05σ per pixel can double the false positive rate (with a 5σD threshold) in160

good seeing, and has an even greater effect in worse seeing.161

Sub-pixel peaks —The detection map defined above is computed by correlating the image with its PSF, on the image162

pixel grid. As the PSF becomes narrow, the detection efficiency varies depending on the position of a source within163

the pixel. The detection map is maximized when the image is a scaled version of the PSF (matched filter), but if the164

image is shifted within a pixel relative to the PSF model, then the peak value attained by the detection map is lower165

(because the filter is slightly mismatched). For example, with a Gaussian PSF with standard deviation of 1 pixel, the166

detection map drops as low as 88% efficiency for a source midway between pixels in both dimensions.167

To reduce this effect, one could compute multiple detection maps, using for each a different subpixel-shifted versions168

of the PSF model. Alternatively, one could lower the detection threshold to compensate, then fit for the best source169

position and drop sources with best-fit values below threshold.170

Sufficient statistic —Correlation by the PSF summarizes all relevant information regarding the presence of a point171

source at each pixel; the detection map and its variance are sufficient to describe our knowledge. In some astronomical172

source detection packages (including SourceExtractor), there is a notion of requiring more than one neighboring pixel173
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to exceed a detection threshold. This is not necessary or useful; in effect it imposes a larger detection threshold that174

varies based on the source morphology and PSF, which is typically undesirable.175

Galaxies —We have focused only on point sources, but the same arguments can be used to develop a detector for176

galaxies. The matched filter by which the image must be correlated is then the intrinsic galaxy profile correlated with177

the PSF. It turns out (Zackay & Ofek 2017) that a matched-filtered image for a given galaxy profile can be computed178

by correlation with the PSF detection map. Of course, a matched-filtering approach is only optimal for a single galaxy179

profile. As with using an approximation for the PSF model, the non-optimality due to using an incorrect galaxy profile180

is related to the cosine distance between the true and model galaxy profiles.181

In practice, our mixture-of-Gaussians approximations to standard exponential and deVaucouleurs galaxy profiles182

(Hogg & Lang 2013) are convenient for this task, since they allow efficient separable real-space correlation operations.183

4. DETECTING A POINT SOURCE IN MULTIPLE IMAGES184

In this section we will assume we have a stationary point source whose flux is constant over time, and a series of185

images taken through different bandpass filters and with different noise levels, exposure times, point-spread functions,186

and telescope pointings. We can achieve optimal detection of the source by building a detection map for each image187

and combining them with weights as described below.188

4.1. Identical bandpass filters189

We first present the simpler case where all the images are taken through identical bandpass filters.190

As we have seen, the detection map defined in equation 2 is a maximum-likelihood estimate of the total counts191

contributed by the source, in the units of the original image. In order to combine information from multiple images,192

we must calibrate them so that they are in the same units. Since this calibration is simply a linear scaling, it can193

be applied to the original image or to the detection map. Similarly, if the images are on different pixel grids—either194

from different pointings of the same CCD, or from different CCDs—then we must resample the detection maps to a195

common pixel grid. If the original image is well-sampled, then the detection map (which has been further smoothed196

by PSF correlation) will also be well-sampled, so resampling to a pixel grid of the same or finer resolution results in197

no loss of information. Since the pixel values in the detection map represent the total flux from a point source, the198

detection map does not need to be rescaled when resampled to a different pixel scale.199

Once the detection map for each image has been calibrated and resampled to a common pixel grid, we have multiple200

independent maximum-likelihood estimates of the source flux in our chosen filter, each with a known standard deviation201

and Gaussian statistics. That is, we have multiple Gaussian likelihood functions that we wish to combine. Since they202

are independent, the combined likelihood is the product of the individual likelihoods. For Gaussian distributions, the203

resulting aggregate maximum likelihood estimate is the inverse-variance-weighted sum of the individual estimates.204

If the calibration factor κi scales image i to flux in common units, and Ri represents resampling to the common205

pixel grid, then the flux estimate Fi is206

Fi=Ri(κiDi) (13)

with per-pixel uncertainty207

σFi =
κi σi
‖ψ‖i

(14)

and we combine the estimates from multiple images via208

F ?=

∑
i

Fi σ
−2
Fi∑

i

σ−2Fi

(15)

which has per-pixel uncertainty209

σF?
=

(∑
i

σ−2Fi

)− 1
2

. (16)
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This is simply the maximum-likelihood estimate of the flux based on a set of independent Gaussian estimates.210

In summary, the procedure to produce an optimal detection map given multiple images (in the same filter) is:211

1. correlate each image by its PSF model212

2. calibrate each resulting detection map (and its variance) to common units213

3. resample each calibrated detection map to a common pixel grid214

4. coadd the calibrated detection maps weighted by their inverse variances.215

Assuming well-sampled images, the correlation, calibration, and resampling steps can occur in any order. Importantly,216

however, the coaddition stage must occur after correlation by the point-spread functions of the individual images; each217

image must be correlated by its own matched filter to produce detection maps which are then coadded.218

4.2. Comments219

Optimality —In appendix B.1 we show that the estimator F ? saturates the Cramér–Rao bound and is therefore220

statistically optimal.221

Coadds —Occasionally, astronomers attempt to construct image coadds and then detect sources by correlating the222

coadd with an estimate of its PSF. It is straightforward to show that this is necessarily sub-optimal unless the images223

have the same PSF. Intuitively, the PSF of the coadd is not equal to the PSF of either image, therefore this approach224

uses a “mismatched filter” rather than a matched filter, resulting in loss of signal-to-noise or detection efficiency.225

0.0 0.2 0.4 0.6 0.8 1.0

Coadd weight

70

75

80

85

90

95

100
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et
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ti

on
S

/N

2-image detection map

Coadd 2 images then detect

Single-image detection maps

Figure 1. The benefit of constructing a detection map versus coadding the images and then detecting sources on the coadd.
Here, we have two images with PSF widths different by a factor of two, and exposure times such that the depths are similar. The
signal-to-noise at which a source is detected in the individual images is shown by the dotted lines at the bottom. By constructing
a detection map, we extract all the available signal in the combination of the two images; the detection map signal-to-noise
(dashed line at top) equals the sum-in-quadrature of the two images. However, if we instead coadd the images and then detect
the source in the coadd (solid curve), we lose a significant fraction of the signal-to-noise, regardless of the weighting factor
applied to the two images. This is, the solid line never reaches the dashed line; creating a coadd and then detecting on it always
loses signal-to-noise when the PSFs are not identical.

As an illustration, we simulated two images with similar detection signal-to-noise but Gaussian PSFs that differed226

by a factor of two. We computed the detection map, and also created a series of coadds (trying different weights for the227

two images), computing the detection map for each, using the correct coadded PSF. As shown in Figure 1, regardless228

of the coadd weight chosen, detecting on the coadd results in a loss of efficiency compared to the detection map.229
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4.3. Different bandpass filters: the SED-matched filter230

Everything we have said up to now has been based on facts about statistical distributions and should be uncontro-231

versial. In this section we propose a method that is, to our knowledge, new to astronomy, though it flows naturally232

from the multi-image matched filtering we have discussed. While it is fully defensible, it involves Bayesian priors so233

we expect will be slightly controversial. We argue that other proposed methods presume stronger and usually unstated234

priors.235

As we saw in the single-bandpass case, we can combine multiple individual exposures into an aggregate estimate236

of the flux of a point source. In order to do this, it was essential to calibrate the images so that each one was an237

estimate of the same underlying quantity. The multiple-bandpass case is similar: For each bandpass, we first combine238

the images taken in that bandpass into an aggregate estimate. Then, to combine the bandpasses we must scale them239

so that they are estimates of the same quantity. This requires knowing the spectral energy distribution, or at least240

the colors in the filters of interest, of the source to be detected; this allows us to scale the various bandpasses so that241

they are estimates of a common quantity: perhaps the flux in a canonical band, or some other linear quantity such as242

the integrated intensity.243

The intuition here is that if we know that our sources of interest are twice as bright in bandpass A as in bandpass244

B, then we can convert an estimate of the brightness in band B into an estimate of the brightness in band A by245

multiplying by two. The variance of the scaled estimate increases appropriately (by a factor of four), so a bandpass in246

which a source is expected to be faint will contribute an estimate with a large variance and will be downweighted when247

the estimates are combined. We can also view the problem as one of estimating a total flux that has been split into248

the different bandpasses, and in that view the SED-matched filter is analogous to the way flux is spread into pixels by249

the point-spread function (and re-collected by correlating with the matched filter).250

Assume we have computed detection maps Dj , with per-pixel standard deviation σDj
, for a number of different251

bandpasses. Assume each bandpass has a known conversion factor sj to the canonical band; that is,252

Dj ∼N
(
Fsj , σ

2
Dj

)
(17)

for flux F in the canonical band. Given a number of such detection maps, we first scale them so they are all estimates253

of the same quantity, by dividing by sj :254

Fj =
Dj

sj
(18)

Fj ∼N
(
Dj

sj
,
σ2
Dj

s2j

)
(19)

and assuming that the images are independent, we combine them by inverse-variance weighting to produce the255

maximum-likelihood estimate for F :256

F̂ =

∑
j

Dj

sj

s2j
σ2
Dj∑

j

s2j
σ2
Dj

=

∑
j

Dj sj σ
−2
Dj∑

j

s2j σ
−2
Dj

(20)

with per-pixel uncertainty257

σ̂F =

∑
j

s2jσ
−2
Dj

− 1
2

. (21)

For example, if we treat r band as the canonical band and our objects of interest have color r− i = 1 mag, then we258

expect the flux in i to be a factor of ∼ 2.5 greater than the flux in r; si = 2.5, and we will scale our i-band detection259

map Di by 1/si = 0.4 to produce a prediction for the r-band flux. Since the sources are expected to be brighter in i260

band, we must scale down the i-band estimate to produce an r-band estimate. The i-band variance is also reduced in261

a corresponding way, so this does not dilute the weight of high-precision measurements.262
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In practice, for those unwilling to use the Bayesian method presented below, we would advocate computing SED-263

matched detection maps for a set of spectral energy distributions that sparsely sample the space of sources of interest,264

and take the union of sources detected. By performing multiple significance tests, more false positives will be generated,265

so it will be necessary to slightly increase the detection threshold to maintain false positives at an acceptable level. Since266

the SED-matched filter effectively extracts more of the available signal-to-noise by weighting the bands appropriately,267

this method should still achieve superior completeness at a given purity.268

More broadly, we argue that source detection should be used as in initial seed of the likely position of a source, but269

that only after inference of the proposed source’s properties using the individual images should one decide whether270

the source should be kept. This leads toward using slightly lower detection thresholds (that will produce more false271

positives due to noise), plus additional thresholding after fitting to determine which sources should be kept.272

4.4. Comments273

Chi-squared coadd. —Szalay et al. (1999) present the idea of using the χ2 statistic of a set of images taken through274

different bandpass filters. That is, they take pixel-aligned and possibly PSF-filtered images (here we will use detection275

maps) and compute χ2 pixelwise over bands j,276

χ2 =
∑
j

D2
j

σ2
Dj

(22)

and a sufficiently large set of connected pixels with χ2 above a detection threshold is taken as evidence for a source.277

See Figure 2.278

As Szalay et al. (1999) state, the χ2 detection method represents the probability that a pixel is drawn from the279

Gaussian sky background distribution (independently in each band). A large value is considered to reject this null280

hypothesis. The “source” hypothesis is not stated, but implicitly, by choosing a constant χ2 threshold, a source is281

assumed to have any non-zero flux uniformly distributed on the surface of the signal-to-noise (hyper-)sphere. As noted282

in the paper, this includes sources with negative fluxes in every band. While they suggest heuristics to trim such283

sources (for example, demanding > −1σ of flux in each band), the fact that these sources are detected in the first place284

hints at the primary issue with this method: that rejecting the null hypothesis (that a large χ2 value is simply due to285

a statistical fluctuation) does not capture our knowledge about what astronomical sources look like—most trivially,286

that astronomical sources contribute positive flux; the implicit “source” hypothesis is not physical.287

Lacking a source model means that it is not always helpful to add more data: Consider the case where we have288

one informative band and several noisy (but still somewhat informative) bands. The chi-squared method treats all289

bands equally, thus mixes the one informative band with all the uninformative bands. When using multiple bands, the290

detection threshold must be increased to maintain a constant false detection rate (as detailed below), and therefore291

the number of true detected sources will be lower.292

As shown in Figure 2, there is one additional caveat for the chi-squared detection method: a (5σ)2 threshold yields293

a larger false positive rate than a standard single-band detection filter with a threshold of 5σ; in order to achieve294

a desired false positive rate, the detection threshold must be set by analysis (with two bands, the survival function295

of the chi distribution at the equivalent of 5σ for a Gaussian is roughly 5.5; with three bands it is roughly 5.75) or296

simulations (as suggested by Szalay et al. (1999)).297

Szalay et al. (1999) in fact also suggest a method for detecting objects of a specific color that is similar but not298

identical to the approach we present here; they suggest projecting the multiple bands into subspaces and using their299

chi-squared approach in those subspaces, which means that the issues identified above still hold.300

4.5. Going Bayesian301

The SED-matched filter presented above tells us how to find likely source positions given a source spectral energy302

distribution. It is then natural (in a Bayesian framework) to marginalize over the SED using a prior distribution. We303

can also marginalize over the flux of the source, allowing us to compare the hypothesis that a source exists, versus the304

hypothesis that the observed flux is due to a noise fluctuation.305

We can write the likelihood for a single pixel in the set of detection maps Dj for bands j, given the existence of a

source, as

pS({Dj}) =

∫∫
p({Dj}|F, s) p(F ) p(s) dF ds (23)
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Figure 2. SED-matched versus “chi-squared” detection filters. The data points are (chi-squared) detections above 4.5σ in
one g-band and one r-band image taken with the Dark Energy Camera, plotted in signal-to-noise space. Points that are not
detected in deeper data are marked as “False”; these are mostly clustered around zero (due to noise), with some scattered points
near the axes due to single-band artifacts such as cosmic rays. The main locus of “Real” peaks correspond to real stars and
galaxies with typical colors. The Chi-squared detection method selects all sources outside the circle (including, in the naive
formulation, sources with negative flux in both bands). A single-band detection filter selects all sources above a vertical or
horizontal detection threshold. Our “Red” SED-matched filter selects sources where the fluxes in the two bands are consistent
with a red SED (in this case, a g− r color of 1). Note that the threshold line is roughly orthogonal to the line between the false
positives and the true positives; it separates them efficiently. We have shown the chi-squared detection filter with a threshold
of (5σ)2, which yields a higher false positive rate than a 5σ threshold in a single-band or SED-match filter.

where F is the flux of the source in some canonical band, and s is the SED of the source; here, we have made the strong306

assumption that the flux and SED priors are independent. We will assume that the SED prior p(s) is represented as307

a weighted sum of discrete SEDs: a gridding of SED space, for example. We then have308

pS({Dj}) =
∑
i

wi

∫
p({Dj}|F, si) p(F ) dF (24)

=
∑
i

wi

∫ ∏
j

N
(
Dj |F · si,j , σ2

Dj

)
p(F ) dF (25)

=
∑
i

wi

∏
j

1√
2πσ2

Dj

∫ exp

∑
j

(Dj − F · si,j)2
−2σ2

Dj

 p(F ) dF (26)

where we have written out the indepedent Gaussian likelihoods of the detection maps3, and the SEDs are represented309

as scalings of the canonical flux F : for SED i, band j is predicted to have flux F · si,j .310

We must now specify a prior over the flux to make progress. One option that leads to a closed-form result is an311

exponential prior, p(F ) = α exp(−αF ) and F > 0, with α a free variable (to be chosen). We caution that this prior312

3 The notation N
(
x |µ, σ2

)
indicates the likelihood of drawing value x from the Gaussian distribution N

(
µ, σ2

)
.
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does have some undesirable properties, discussed below. With this exponential flux prior, we have313

pS({Dj}) =Kα
∑
i

wi

∫
exp

F∑
j

Djsi,j
σ2
Dj

 exp (−Fα) exp

F 2
∑
j

s2i,j
σ2
Dj

 dF (27)

where we have pulled out the constant314

K=
∏
j

1√
2πσ2

Dj

exp

∑
j

−
D2
j

2σ2
Dj

 = N
(
Dj | 0, σ2

Dj

)
(28)

which will be recognized as the zero-mean Gaussian probability of {Dj}: the likelihood that data values Dj are drawn315

from the background distribution (i.e., the null hypothesis that there is no source)!316

Defining variables317

ai=α−
∑
j

Djsi,j
σ2
Dj

(29)

bi=
1

2

∑
j

s2i,j
σ2
Dj

(30)

we get an integral in which the flux prior can be integrated analytically:318

pS({Dj}) =Kα
∑
i

wi

∫ ∞
0

exp(−aiF ) exp(−biF 2) dF (31)

pS({Dj}) =Kα
∑
i

wi

√
π

2
√
bi

exp

(
a2i
4bi

)(
1− erf

(
ai

2
√
bi

))
(32)

which can be evaluated numerically with modest computational cost as long as the number of SEDs i is not too large.319

In practice, a coarse gridding of SED space yields good results, as shown below.320

In order to select sources, we can compare this likelihood to the null-hypothesis likelihood: that there is no source321

and the observed values are due to noise. Conveniently, the null-hypothesis likelihood is exactly the factor K in the322

above expression! Determining the threshold at which to accept a peak in the pS/K map as a source can be framed323

as a Bayesian decision theory problem, or can be tuned on simulations to yield an acceptable false positive rate.324

To illustrate the method, we consider a case where we have two bands of imaging, g and r bands. In Figure 3, we325

plot the probability contours of the background model (equation 28) and the foreground model (equation 32), for the326

simplest case where our SED prior p(s) is a delta function at sg = 1
3.5 , sr = 2.5

3.5 : this is a “Red” detection filter that327

assumes a g−r color of ∼ 1 magnitude. As expected, the probability contours of the foreground model shift away from328

negative fluxes and toward fluxes that are consistent with the expected color. The exponential prior on flux causes the329

foreground model to prefer sources with small fluxes, and therefore the probability mass of the foreground model is330

clustered around zero. The probability ratio contours—which are what would be used to accept or reject a proposed331

source—are, as expected, orthogonal to the expected SED vector.332

In Figure 4, we show probability contours for a three-SED model, including the “Red” SED and a “Flat” SED (r333

flux equals g flux) with equal weights of 0.49, plus an SED that has only flux in the r band, with weight 0.02. The334

probability contours of this model are, as before, extended in the directions of these SEDs. The probability ratio335

contours transition smoothly between being orthogonal to these three SED directions.336

As mentioned previously, there is an issue with the flux prior we are using: it is not scale-free, or rather, it is337

degenerate with the choice of α. That is, the posterior probability is sensitive to the numerical values for the quantity338

F , the “canonical flux”, which we have marginalized out of the expression. We did not put any restrictions on the339

SED values si,j ; we only stated that the predicted flux in band j is given by F · si,j . If we were to scale up all our340

si,j values, this would imply a decrease in F , which would have higher prior probability, leading to larger posterior341

probability values. This problem is illustrated in Figure 5. This is obviously undesirable, but thus far we have not342

been able to find a scale-free prior that leads to tractable integrals.343
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Figure 3. Bayesian SED-matched source detection with a single-SED prior, for illustration. The foreground model is that
sources have fluxes that lie along a “Red” SED with color g − r ' 1. Left: Probability contours for the foreground model are
inclined in the direction of the prior. The flux prior prefers small fluxes, but has some probability mass extended toward larger
fluxes. The background model (null hypothesis) is that there is no source, only noise; these contours are circles centered on
zero. The probability contours are spaced in powers of 10. Right: Probability ratio contours for the foreground divided by
background model. When performing source detection, these lines mark decision boundaries; points above and to the right of
a decision boundary are considered to be detected. The contours are spaced in powers of 10.
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Figure 4. Bayesian SED-matched source detection with a three-SED prior. The prior is that astronomical sources are a mixture
of 49% “Red” (color g − r ' 1 mag), 49% “Flat” (color g − r = 0 mag), and 2% r-band only (g flux is zero). Left: Probability
contours for the foreground model are extended in the directions of the three components of the prior. The background model
(null hypothesis) is that there is no source, only noise; these contours are circles centered on zero. The probability contours are
spaced in powers of 10. Right: Probability ratio contours for the foreground divided by background model. When performing
source detection, these lines mark decision boundaries; points above and to the right of a decision boundary are considered to
be detected. The contours are spaced in powers of 10.
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Figure 5. The effect of the flux prior in Bayesian SED-matched source detection. In order to produce closed-form integrals, we
use an exponential prior on the flux; here we show the effect of the exponential scale factor (α) on the results. Left: Probability
contours for the “Red” foreground model, as before, and with a flux prior that prefers brighter sources—larger observed fluxes
are considered more probable. Right: A one-dimensional example showing the effect of changing the flux prior by a factor of
two. The dashed model places more prior belief in larger fluxes, and therefore must produce smaller probabilites at low flux
levels. This illustrates that care must be taken with the scale factor of the flux prior.

5. EXPERIMENTS344

We present experiments using data from the Dark Energy Camera (Flaugher et al. 2015) taken as part of the345

Supernova program (Bernstein et al. 2012) of the Dark Energy Survey (The Dark Energy Survey Collaboration 2005).346

We selected the deep field “SN X3” near RA,Dec = (36.45,−4.6), which has a large number of exposures in bands g,347

r, i and z. For these experiments, we use data from bands g, r and i only. We select a set of 25 exposures in each348

band from the 2016B semester, keeping at most one exposure per night per band. The exposure times for each image349

are 200 seconds in g, 400 seconds in r, and 360 seconds in i. The images have a range of seeing and sky transparency350

values. The list of exposures is available in Tables 2 and 3.351

We use the standard NOIRLab DECam Community Pipeline (Valdes et al. 2014) for calibration of the images,352

and then compute astrometric and photometric zeropoints, sky background models and PSF models, using the DESI353

Legacy Surveys pipeline (Dey et al. 2019), legacypipe4. The astrometric calibration uses Gaia (DR1) as the reference354

catalog (Gaia Collaboration et al. 2016b,a), and the photometric calibration uses the Pan-STARRS DR1 reference355

catalog (Chambers et al. 2016). The PSF models use PsfEx (Bertin 2011).356

5.1. SED-matched detection357

We select a 4000-by-4400 pixel region, at the approximate DECam pixel scale of 0.262 arcsec/pixel, covering DECam358

chips N4 and S4 in the center of the focal plane. We produce detection maps for each band as described above, and359

run several SED-matched filters: a “Blue” filter matched to a source with colors g − r = r − i = 0; a “Yellow” filter360

matched to g − r = 1, r − i = 0.3; and a “Red” filter matched to g − r = 1.5, r − i = 1.361

For the plots shows here, we select sources in the Yellow filter with signal-to-noise above 100, taking as a source362

the peak pixel within each connected component of pixels above the threshold; we do not try to resolve or deblend363

nearby peaks. We drop any source near the edge of the image or where there are fewer than 12 exposures in any364

of g, r, or i bands. This results in 2092 detected sources. For each source position, we sample the Red and Blue365

SED-matched maps so that we can compare the relative sensitivities of the different SED-matched filters. We also366

4 Publicly available at https://github.com/legacysurvey/legacypipe.

https://github.com/legacysurvey/legacypipe
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Figure 6. Left: A 600× 600-pixel zoom-in of a tiny fraction of the DECam data used in this experiment, coadded and shown
with an RGB color scheme and arcsinh stretch. Detected sources are marked with symbols indicating which of the SED-matched
filters yields the strongest detection; for clarity here we are using an extremely high detection threshold of 30σ. Right: The
positions in color-space of detected sources, classified by the SED-matched filter that yields the strongest detection. The bold
circles mark the color to which each filter is tuned. Each SED-matched filter most strongly detects sources nearby in color
spaces, where the exact dividing line depends on the signal-to-noise in the different filters.
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Figure 7. Source that are most strongly detected by each SED-matched filter. Left: “Blue” SED (matched to color g − r =
r− i = 0). Center: “Yellow” SED (matched to g− r = 1, r− i = 0.3). Right: “Red” SED (matched to g− r = 1.5, r− i = 1).

sample the detection maps in each band at the peak pixel as an approximate estimate of the flux of the source. This367

assumes all sources are point sources, so underestimates total flux of galaxies. An image of the detected sources, and368

the locations in color space of sources that are detected by each SED-matched filter are shown in Figure 6. Figure 7369

shows a sample of sources that are most strongly detected by each of the SED-matched filters.370

We also observe that some sources are most strongly detected in one of the single-band-only SED-matched filters.371

For the g-band-only and r-band-only filters, these are almost exclusively image artifacts, such as cosmic rays that are372

not masked by the Community Pipeline; and transient sources, including asteroids. The i-band-only filter can also373

detect extremely red sources. A few examples are shown in Figure 8.374
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Figure 8. Sources that are detected most strongly in one of the single-band SED filters (top row: g-band-only; next three rows:
r-band-only; bottom two rows, i-band-only). These sources include asteroids (here, 12 observations of 6 known asteroids, some
visibly elongated during these minutes-long exposures), cosmic rays that are not masked by the Community Pipeline, and, for
i-band-only, some extremely red sources.

In Figure 9 we illustrate how the relative strength of the different SED-matched filters change with respect to375

measured source colors. We observe differences of tens of percent, which can lead to a very significant number of376

additional correctly detected sources at the lowest signal-to-noise levels.377

5.2. Bayesian SED-matched detection378

We build an empirical “library” of SEDs for these bands, which we use as a prior, by querying the Dark Energy379

Survey database in our region of interest. We convert the mag auto measurements into fluxes, compute the fraction380

of flux contributed by the g, r, and i bands, and histogram these values into a 21× 21 grid in g − r, r− i color space.381

Keeping bins containing more than 0.1% of the catalog entries, we find 63 bins populated, as shown in Figure 10. The382

prior includes some SED components that have zero flux in g band, which correspond to very red sources.383

We run the Bayesian detection proceduce described in Equation 32, computing in log space to avoid numerical384

overflow. This takes a few minutes on a single core with our unoptimized implementation.385

In order to show the performance of the Bayesian approach, we will detect sources at a high threshold and compare386

against a simple approach. For the Bayesian map, we threshold at a log-probability ratio of 2000, which yields387

approximately 3055 sources in good regions of the image. For a comparison, we run the same detection procedure first388

on our g-band map, then on the r-band map, and finally on the i-band map, with a detection threshold of 50σ for each389

band, and keeping the union of all detections. We merge detected sources if they are within 5 pixels of each other. This390

yields a total of 3201 sources in good regions. In order to find sources that are detected by one method and not the391

other, we first cut to the brightest 3055 gri-union detections (based on maximum signal-to-noise in the three bands)392

so that the two lists of sources are the same length. We then find sources that are not within an above-threshold393

region in the other map. That is, we ignore Bayesian detections where the maximum of g, r, or i signal-to-noise is394

above 50, and we drop gri-union detections where the Bayesian log-probability is above 2000. This yields 163 unique395

Bayesian detections and 112 unique gri-union detections. As shown in Figures 11 and 12, the sources detected by396

only the Bayesian method have the colors of real sources and appear to be all real galaxies, while the sources detected397

by only the gri-union method include a large number of cosmic rays and asteroids, as well as a number of real very398

red sources. If we clip outlier pixels while forming the detection maps, we can eliminate these cosmic rays before the399

detection step; the gri-union method then preferentially detects sources with extreme colors. Since real images will400

often contain artifacts and moving objects, the fact that the gri-union method prefers these objects to real sources401

is problematic; the Bayesian method, on the other hand, requires sources with such unexpected colors to have much402

higher signal than it does for real sources.403
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Figure 9. Relative strengths of the different SED-matched detection filters. We match our detected sources with the Dark
Energy Survey DR1 source database in order to show an accurately measured color for each source. We plot the detection
strength (sensitivity) of the “Blue” and “Red” SED-matched filters versus the “Yellow” filter. That is, a source with relative
strength 1.1 in the “Blue” filter would be detected at 5.5σ in the “Blue” filter if it were detected at 5σ in the “Yellow” filter.
As expected, sources with blue g − i colors are most sensitively detected by the “Blue” SED-matched filter, sources with
intermediate colors are most sensitively detected by the “Yellow” filter, and red sources are most sensitively detected by the
“Red” SED-matched filter. The g − i colors to which the detections filters are matched are marked with vertical lines. Note
that the relative sensitivities can be tens of percent, which is very significant at low signal-to-noise levels. The filters are roughly
equal at the mid-point between the colors for which they are tuned.

5.3. Galaxy detection404

While we have focused on the detection of point sources in this paper, it is a trivial extension to build a detection405

filter tuned to a source with a known spatial profile. We need only correlate the detection maps for each band by406

the spatial profile of the source to be detected, and compute the corresponding change in uncertainty in the detection407

maps. In this experiment, we assume a simple round Gaussian profile with a FWHM of 1 arcsecond. After computing408

extended-source detection maps for each of the g, r, and i image sets, as above, we run the Yellow SED-matched filter409

and detect sources as before. In Figure 13 we show sources that are more strongly detected by our extended-source410

detector than by a point-source detector. These include a few bright stars (where the saturated cores cause errors in411

estimating the signal-to-noise) but are largely real galaxies. Perhaps surprisingly, we find that using a detection filter412

tuned to a round Gaussian profile yields only a few-percent improvement in detection efficiency versus a PSF-tuned413

filter, for typical galaxies in DECam images.414

6. CONCLUSIONS415

We have reviewed the ubiquitous matched filter and shown how it can be used to detect point sources in collections416

of astronomical images. Our new contribution is to extend the matched filter to SED space in order to combine images417

taken through multiple bandpass filters. This is a natural extension, but requires specifying the color of the sources to418

be detected most sensitively. A Bayesian extension of this idea allows us to marginalize over the colors of the sources to419
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Figure 10. Empirical Bayesian prior for SED-matched detection. Left: Sources from the Dark Energy Survey catalog, in color
space. Center: Sources binned in SED space, with low-population bins dropped. The axes are the fraction of flux contributed
by the g and r bands, respectively. Implicitly, the fraction contributed by the i band is 1 - (g + r). Empty bins are shown with
a light shading. Notice that some bins with g ∼ 0 are populated; these correspond to DES catalog entries with measured g flux
consistent with zero. Right: Our discrete SED-space binning, projected to color space.
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Figure 11. Bayesian SED-matched detection method compared to the union of g, r, and i single-band detection. The color-
space locations of sources that are detected by both methods are shown as faint points, and sources that are detected by only one
method or the other are highlighted. In this experiment, the detection thresholds were tuned so that both methods produced
the same number of detections; this compares each method’s best detections. The Bayesian-only detections have the colors
of real objects, while the gri-union detections tend to be single-band sources, including cosmic rays, asteroids, and very red
sources. Cutouts of these sources are shown in Figure 12.

be detected, ideally driven by theoretical or empirical models of the sources to be detected. The Bayesian formulation420

also requires specifying a prior over the fluxes of sources. We present an exponential prior that leads to a closed-form421

expression for the fully marginalized Bayesian detection probability; this can be computed inexpensively.422

A pleasing aspect of the matched-filtering approach—including our extension to SED-matched filtering—is that it423

can correctly use all available data. Images that are known a priori to contribute little information due to their noise424

levels or because the source is known to have small flux in that band, are downweighted but not ignored entirely. This425

property will becomes increasingly useful as multi-wavelength, many-exposure, multi-instrument studies become more426

prominent.427
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Figure 12. Bayesian SED-matched detection method compared to the union of g, r, and i single-band detections, where each
method is allowed to detect the same total number of sources. Left: Examples of sources that are detected by only the Bayesian
SED-matched detection method. These have the colors of real objects and appear to be all faint galaxies. Right: Examples of
sources that are detected by only the gri-union method. These include cosmic rays, asteroids, and very red sources.
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Figure 13. Galaxy detection. Left: Detections from an extended-source detector, sorted by the difference in detection strength
between the “yellow galaxy” and “yellow point source” detectors. The bright stars are likely included because their saturated
cores cause difficulty in correctly measuring the signal-to-noise. The remaining sources are all galaxies, except for one fast-moving
asteroid that is spatially extended. Right: Relative strength of detection of sources in the extended versus PSF detection filters.
The extended-source filter used here is a 1-arcsecond FWHM round Gaussian. There is a clear line of sources with a detection
ratio around 0.95, corresponding to point sources. Sources with ratios above unity are closer in profile to the target profile than
to a point source, with the largest ratios probably corresponding to sources that are approximately equal to the target profile.
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APPENDIX469

A. DERIVING THE MATCHED FILTER470

Let us assume that there exists a linear filter whose output allows optimal detection of isolated point sources. That471

is, we seek a (two-dimensional) set of coefficients ai that, when correlated with the image Ij , produces a map Mj472

whose peak is the likely location of the point source.473

The linear filtering (correlation) operation is

Mj =
∑
i in A

ai Ii+j (A1)

where A is the support of a (integer pixel positions), and the center of a is (0, 0). We will demand that the elements474

of a are non-negative and sum to unity.475

Inserting equation 1, we get476

Mj ∼
∑
i in A

Ik ai ψi+j−k +N
(
0 , σ2

1

)
(A2)

∼N
(
Ik
∑
i in A

ai ψi+j−k ,
∑
i in A

a2i σ
2
1

)
(A3)

and the per-pixel signal-to-noise in the map is

SN(Mj) =
Ik
∑
ai ψi+j−k

σ1
√∑

i a
2
i

. (A4)

We want to choose coefficients ai to maximize the signal-to-noise at the true pixel position of the source, k. Rewriting477

the expression using dot-products and (`2) norms, treating the two-dimensional images ai and ψi+j−k as vectors478

indexed by i, we have:479

SN(Mj) =
Ik a ·ψj−k
σ1
√
a · a (A5)

=
Ik ‖a‖ ‖ψj−k‖ cos θ

σ1 ‖a‖
(A6)

=
Ik ‖ψj−k‖ cos θ

σ1
(A7)

where θ is a generalized angle between a and ψj−k. At the pixel position of the source, k,

SN(Mk) =
Ik ‖ψ0‖ cos θ

σ1
(A8)

Clearly this is maximized when θ = 0, i.e., when a is a multiple of ψ0, the PSF evaluated at a grid of integer pixel

positions. Since we have defined both the PSF and coefficients a to sum to unity, we find that the optimal linear filter

for detection is given by:

a = ψ0 , (A9)

which means that the operation of correlating the image with its PSF produces a map with optimal signal-to-noise.

Repeating equation A1, we have found that the map Mj can be computed by correlating the image with its PSF:

Mj =
∑
i in A

ψi Ii+j , (A10)

where, as before, A is the support of the PSF.480

The signal-to-noise in this map at the true source pixel position k is

SN(Mk) =
Ik ‖ψ‖
σ1

. (A11)
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A.1. Optimality481

We compute the variance of the detection map estimator (equation 2), and show that is equal to the Cramér–Rao482

bound. Substituting our image model into the detection map,483

Dj =
1

‖ψ‖2
∑
i

ψi Ii+j (A12)

∼ 1

‖ψ‖2
∑
i

ψiN
(
F ψi+j−k , σ

2
1

)
(A13)

and at the true source position, j = k;484

Dk∼
1

‖ψ‖2
N
(
F
∑
i

ψ2
i ,
∑
i

ψ2
iσ

2
1

)
(A14)

Dk∼N
(
F ,

σ2
1

‖ψ‖2

)
(A15)

so the variance of the estimator is var (D) =
σ2
1

‖ψ‖2 .485

Meanwhile, the Fisher Information for F given pixel values Ij is486

I(F ) =−EIj
[
∂2 logP ({Ij}|F )

∂F 2

]
(A16)

and with pixel values Ij the likelihood is487

Ij ∼N
(
Fψj , σ

2
1

)
(A17)

P ({Ij}|F ) =
∏
j

1√
2πσ2

1

exp

(
− (Ij − Fψj)2

2σ2
1

)
(A18)

∂2

∂F 2
logP ({Ij}|F ) =

∑
j

−
ψ2
j

σ2
1

(A19)

which is independent of Ij , so488

I(F ) =
‖ψ‖2
σ2
1

(A20)

from which we see that the estimator D saturates the Cramér–Rao bound.489

A.2. Norm of a Gaussian PSF490

For a Gaussian PSF with standard deviation w pixels,491

ψG(x, y) =
1

2πw2
exp

(
− x2

2w2

)
exp

(
− y2

2w2

)
(A21)

the norm is492

∥∥ψG∥∥=

√√√√∑
x

∑
y

(
1

2πw2
exp

(
− x2

2w2

)
exp

(
− y2

2w2

))2

(A22)

∥∥ψG∥∥'√∫∫ 1

4π2w4
exp

(
− x

2

w2

)
exp

(
− y

2

w2

)
dxdy (A23)

∥∥ψG∥∥' 1

2
√
πw

(A24)
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so the detection map has signal-to-noise at the true source position k,

SN(DG
k ) =

Ik
2
√
πwσ1

. (A25)

Note, however, that we have defined the point-spread function ψ(·) to be the pixel-convolved response, so it cannot493

be exactly Gaussian if the pixel response is assumed to be a boxcar function. In practice, however, a two-dimensional494

Gaussian with variance v2 correlated with a two-dimensional boxcar function is well approximated by a Gaussian with495

variance v2 + 1
12 , as long as v & 1

2 .496

A.3. Why not signal-to-noise-squared?497

In correlating the image with the PSF, it looks like the detection map weights pixels by their signal-to-noise, rather498

than signal-to-noise squared. This apparent conflict can be resolved by scaling the pixel values so that each pixel is an499

estimate of the same quantity. That is, we want to estimate the total source counts F , but the pixels contain estimates500

of the source counts scaled by the PSF, Fψ; we must undo this scaling by multiplying the pixels by 1/ψ.501

Given a source at position k, we define the image K whose pixels each contain an estimate of the total source502

counts:503

Kj =
1

ψj−k
Sj (A26)

Kj ∼
1

ψj−k
N
(
Ik ψj−k , σ

2
1

)
(A27)

Kj ∼N
(
Ik ,

σ2
1

ψ2
j−k

)
. (A28)

The signal-to-noise remains the same, since we have just scaled the values:504

SN(Kj) =
Ik ψj−k
σ1

(A29)

SN(Kj) =SN(Sj) . (A30)

As before, the detection map pixels are a linear combination of the (shifted) pixels of the K image with weights bi:505

D?
j =
∑
i

biKi+j (A31)

∼
∑
i

biN
(
Ik ,

σ2
1

ψ2
i+j−k

)
(A32)

∼N
(
Ik
∑
i

bi ,
∑
i

b2iσ
2
1

ψ2
i+j−k

)
(A33)

and the signal-to-noise in that detection map at pixel k is506

SN(D?
k) =

Ik
∑
i bi

σ1

√∑
i
b2i
ψ2

i

(A34)

which is maximized by setting the bi
bi ∝ ψ2

i : (A35)

proportional to the signal-to-noise squared, as expected.507

B. MULTI-IMAGE DETECTION508

B.1. Optimality509

As before, we will show that the estimator F ? in Equation 15 saturates the Cramér–Rao bound for F .510
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We will consider two images, A and B, with PSFs ψ and φ, respectively, and calibration factors κA and κB that511

scale image units to flux units. Per-pixel noise in the two images will be σA and σB . We will assume that the pixel512

grids are aligned so that no resampling is necessary.513

Given all this, the pixel value for images A and B are drawn from the distributions514

A∼N
(
F

κA
ψk , σ

2
A

)
(B36)

B∼N
(
F

κB
φk , σ

2
B

)
. (B37)

The Fisher Information is515

I(F ) =−EA,B
[
∂2 logP ({A,B}|F )

∂F 2

]
(B38)

and assuming that images A and B are statistically independent, P (A,B|F ) = P (A|F )P (B|F ). Following the analysis516

in A.1, we find that517

I(F ) =
‖ψ‖2
κ2Aσ

2
A

+
‖φ‖2
κ2Bσ

2
B

(B39)

which equals the variance of the F ? estimator, σ2
F? as given in Equation 16. Therefore, the estimator saturates the518

Cramér–Rao bound.519

B.2. Experiments520
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Filter Exposure number Date Exposure time (s) Seeing (arcsec) Depth (5σ point source)

g 563982 2016-08-14 200 1.28 24.65

g 566968 2016-08-24 200 1.79 23.02

g 567422 2016-08-25 200 1.72 23.55

g 569591 2016-08-31 200 1.55 24.39

g 571049 2016-09-05 200 1.67 24.29

g 573546 2016-09-11 200 1.42 24.49

g 574702 2016-09-14 200 2.17 22.75

g 575794 2016-09-22 200 1.20 24.17

g 577432 2016-09-26 200 1.55 24.47

g 579874 2016-10-02 200 1.37 24.51

g 582140 2016-10-09 200 1.61 23.56

g 584106 2016-10-20 200 1.64 24.05

g 585888 2016-10-25 200 2.00 24.11

g 588620 2016-11-02 200 1.39 24.43

g 591449 2016-11-09 200 1.47 23.53

g 593383 2016-11-17 200 1.53 24.39

g 595093 2016-11-22 200 1.45 24.48

g 596474 2016-11-26 200 1.07 24.80

g 598232 2016-12-01 200 1.96 23.91

g 600846 2016-12-08 200 1.20 23.69

g 601468 2016-12-17 200 1.32 23.41

g 603288 2016-12-22 200 1.55 24.35

g 604684 2016-12-28 200 1.82 24.26

g 605946 2017-01-03 200 1.75 24.11

g 609567 2017-01-17 200 1.17 24.14

r 563978 2016-08-14 400 1.37 24.51

r 566976 2016-08-24 400 1.58 23.57

r 567426 2016-08-25 400 1.53 23.99

r 569613 2016-08-31 400 1.18 24.82

r 571060 2016-09-05 400 1.64 24.51

r 573562 2016-09-11 400 1.34 24.19

r 574711 2016-09-14 400 1.47 23.82

r 575798 2016-09-22 400 1.07 24.33

r 576542 2016-09-24 400 1.67 24.44

r 578740 2016-09-29 400 1.54 24.46

r 580295 2016-10-03 400 1.62 24.34

r 582423 2016-10-10 400 1.07 24.12

r 584144 2016-10-20 400 1.55 23.91

r 585892 2016-10-25 400 1.90 24.15

r 588624 2016-11-02 400 1.25 24.61

r 591453 2016-11-09 400 1.16 24.30

r 593076 2016-11-16 400 1.15 23.52

r 593387 2016-11-17 400 1.35 24.64

r 595359 2016-11-23 400 1.85 24.20

r 597239 2016-11-28 400 1.84 24.33

r 598940 2016-12-03 400 1.43 24.46

r 600880 2016-12-08 400 2.67 23.26

r 601776 2016-12-18 400 1.20 24.98

r 604334 2016-12-25 400 1.01 25.05

r 605255 2016-12-30 400 1.50 24.64

Table 2. Exposures in g and r bands from the Dark Energy Camera used in the experiments.
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Filter Exposure number Date Exposure time (s) Seeing (arcsec) Depth (5σ point source)

i 563972 2016-08-14 360 1.77 23.49

i 566980 2016-08-24 360 1.35 23.61

i 567442 2016-08-25 360 1.05 24.20

i 567867 2016-08-26 360 1.04 24.24

i 570175 2016-09-02 360 1.81 23.10

i 571447 2016-09-06 360 1.54 23.23

i 573865 2016-09-12 360 1.66 23.01

i 574727 2016-09-14 360 1.80 22.73

i 575802 2016-09-22 360 1.09 23.13

i 576546 2016-09-24 360 1.41 23.33

i 579449 2016-10-01 360 1.15 23.41

i 581861 2016-10-08 360 1.47 23.03

i 584166 2016-10-20 360 1.27 23.01

i 585960 2016-10-25 360 1.73 22.89

i 588628 2016-11-02 360 1.20 23.93

i 591457 2016-11-09 360 1.06 24.00

i 593080 2016-11-16 360 1.03 23.51

i 595056 2016-11-22 360 1.81 23.75

i 596517 2016-11-26 360 1.61 24.00

i 598236 2016-12-01 360 1.38 23.88

i 600850 2016-12-08 360 1.04 24.12

i 601780 2016-12-18 360 1.12 24.44

i 604338 2016-12-25 360 1.14 24.23

i 605266 2016-12-30 360 1.67 23.90

i 607844 2017-01-09 360 1.34 22.65

Table 3. Exposures in i band from the Dark Energy Camera used in the experiments.
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