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NERSC: Mission HPC for the Dept. of Energy Office of Science

Large compute and data systems
● Perlmutter: ~7k A100 GPUs
● 128PB Community Filesystem ....
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Broad science user base
● > 9,000 users, 
● 1000 projects, 



Outline
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● AI for science is maturing and becoming transformative 

● It benefits from supercomputing centres like NERSC

● Work still need across model development, approaches 
to scaling, compute systems and software

● Enabling scientific AI at scale requires developing 
cutting-edge applications and computing together



NERSC AI Strategy 
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Systems w/     
Accelerators

EmpowermentDeploymentMethods and Applications 

Software Frameworks and Libraries

Automation Interactivity

● Deploy optimized hardware and software systems 
○ Currently Perlmutter >6000 A100 GPUs; Work with vendors for optimized AI software
○ >10x increase in number of users of DL frameworks from 2017 to 2021
○ Improve performance, e.g through benchmarking (e.g. MLPerf HPC)) 

● Apply ML for science using cutting-edge methods 
○ “NESAP for Learning” application readiness program with postdocs, early access etc.
○ Other targeted engagements that push model development, scale and performance
○ Leverage lessons learned for all users

● Empower through seminars, training and schools 
○ E.g. Deep Learning at Scale tutorial at Supercomputing ( SC21 material here)

https://mlcommons.org/en/training-hpc-10/
https://github.com/NERSC/sc21-dl-tutorial


Transformative AI for new science - powered By Perlmutter
FourCastNet
Pathak et al. 2022  arXiv:2202.11214
Forecasts global weather at 
high-resolution. Hybrid data/ 
model parallel @ 4000 GPUs
First deep-learning with skill of 
numerical weather prediction

Self-supervised sky surveys
Stein et. al. (2021)  arXiv:2110.00023

Uncovered thousands of undiscovered strong-lenses

Unfolding for particle physics 
H1 Collaboration ([...] Mikuni et. al.): recent press release  
New ML approach extracts new physics insights. 
Requires Perlmutter for 1000s of bootstrapping and UQ runs

CatalysisDL
Chanussot et al. 2021  
arXiv:2010.09990
Largest catalysis dataset 
(OC20 and OC22); 
Graph-parallel NN 
approaches and NeurIPS 
2021 + 2022 Competitions

Pre-trained models now 
used with DFT - e.g. 
FineTuna; AdsorbML 

https://arxiv.org/abs/2202.11214
https://arxiv.org/abs/2110.00023
https://newscenter.lbl.gov/2022/10/25/solving-the-proton-puzzle/
https://arxiv.org/abs/2010.09990
https://opencatalystproject.org/
https://arxiv.org/pdf/2203.09697.pdf
https://arxiv.org/pdf/2203.09697.pdf
https://neurips.cc/Conferences/2021/CompetitionTrack
https://neurips.cc/Conferences/2021/CompetitionTrack
https://github.com/ulissigroup/finetuna
https://arxiv.org/abs/2211.1648


Deployment: 
NERSC AI Systems, Workload and 

Software



Perlmutter: A Scientific AI Supercomputer 

HPE/Cray Shasta system 
Phase 1 (Dedicated May `21):
● 12 GPU cabinets with 4x NVIDIA A100

GPU nodes; Total >6000 GPUs 
● 35 PB of All-Flash storage

Phase 2 (Integrated in 2022):
● 12 AMD CPU-only cabinets
● HPE/Cray Slingshot high performance 

ethernet-based network

Optimized software stack for AI
Application readiness program (NESAP)
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NVIDIA blog May 2021

https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/
https://blogs.nvidia.com/blog/2021/05/27/nersc-perlmutter-ai-supercomputer/


See a growing scientific AI workload at NERSC

● Instrument user python imports
○ DL users >10x from 2017 to 2021

● Also track ML trends through 2-yearly survey
○See similar trend in framework popularity
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NERSC Survey: 2018 2020 2022

https://conference.scipy.org/proceedings/scipy2021/rollin_thomas.html
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Current workload focuses on data analysis and image-like deep 
learning
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Large problems

Large scale 
training

Need for AI at scale 



Scientists need performant and flexible software installations

● Demand for both:
○ Performant installations of the most popular 

frameworks and libraries
○ Flexibility for users to customize their 

solutions

● On Perlmutter we chose to deploy both compiled 
modules and NVIDIA’s NGC containers
○ Container environment optimized for A100s 

and was crucial during deployment
○ Effectively debugged several deployment 

issues through close engagement with 
NVIDIA 

https://docs.nersc.gov/machinelearning/ 11

https://docs.nersc.gov/machinelearning/


Scientists need productive interfaces for experimentation
JupyterHub service provides a rich,
interactive notebook ecosystem on Cori
● Now over 2000 users at NERSC!
● A favorite way for users to develop ML code

Users can run their deep learning workloads
● on dedicated Perlmutter GPU nodes
● using our pre-installed DL software kernels
● or using their own custom kernels
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https://docs.nersc.gov/services/jupyter/#conda-environments-as-kernels


Scientific DL also needs HPC-enabled optimization tools

● Model selection/tuning is still critical for getting 
the most out of deep learning

● Computationally expensive: need for HPC 
● Many methods and libraries exist for tuning 

model hyper-parameters
○ Enable users to use whatever tools work 

best for them
● Tools can need adaption to work well on HPC

Multi-node RayTune HPO on Graph Neural Network 
models for catalysis applications (B. Wood et al.) 
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https://medium.com/distributed-computing-with-ray/ray-tune-at-nersc-fa63bc350925
https://medium.com/distributed-computing-with-ray/ray-tune-at-nersc-fa63bc350925


ML compute performance requires benchmarking and tuning
MLPerfTM is the industry standard benchmark for ML performance
For Science and Supercomputers: MLPerf HPC benchmark suite
● Push on HPC systems in important ways. Currently including:

○ CosmoFlow - 3D CNN predicting cosmological parameters
○ DeepCAM - segmentation of phenomena in climate sims
○ OpenCatalyst - GNN modeling atomic catalyst systems
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● MLPerf HPC v1.0  release at SC21 conference:
○ Time-to-train and “Weak-scaling” (models/min) metrics
○ Strong-scaling submission scale up to 2,048 GPUs
○ “Weak-scaling” submission up to 5,120 GPUs (Perlmutter) 

and 82,944 CPUs (Fugaku)
● Deeper analysis paper at the SC21 MLHPC workshop 
● MLPerf HPC v2.0 presented at SC22 

https://mlcommons.org/en/get-involved/

https://mlcommons.org/en/training-hpc-10/
https://arxiv.org/abs/2110.11466
https://mlcommons.org/en/get-involved/


Applications and Empowerment: 
Powered By Perlmutter



         Analyze

Transforming science with AI

Pathak et al. 2022  arXiv:2202.11214Hayat et al. 2021  arXiv:2012.13083
Chanussot et al. 2021  
arXiv:2010.09990

Parallels with industry applications but scientific AI approaches 
increasingly incorporate science-specific structures

         Accelerate          Automate
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https://arxiv.org/abs/2202.11214
https://arxiv.org/abs/2012.13083
https://arxiv.org/abs/2010.09990


Evolution of deep learning for science and supercomputing
Some example projects: 

● 2017 SC17 conference  Deep learning at 15PF 
● 2018 Gordon Bell Prize Exascale DL for Climate Analytics
● 2019 Etalumis: bringing probabilistic programming to scientific simulators at scale 
● 2020 SC20 MeshfreeFlowNet: a physics-constrained deep continuous space-time 

super-resolution framework
● 2022 FourCastNet: Accelerating Global High-Resolution Weather Forecasting using 

Adaptive Fourier Neural Operators 
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This period showed a very rapid growth in 
● Available Compute 

○ 15 PetaFlops in SC17 -> ‘Exascale’ (half-precision) in SC18

● Sophistication of models and methods
● Availability of software 

○ Custom hand-rolled Caffe/MPI SC17
○ Tensorflow/Horovod and Cray DL Plugin SC18
○ Pytorch DDP SC19 

https://dl.acm.org/doi/10.1145/3126908.3126916
https://dl.acm.org/doi/10.5555/3291656.3291724
https://dl.acm.org/doi/10.1145/3295500.3356180
https://dl.acm.org/doi/10.5555/3433701.3433712
https://dl.acm.org/doi/10.5555/3433701.3433712
https://arxiv.org/abs/2208.05419
https://arxiv.org/abs/2208.05419


Analyze: Self-supervised sky surveys
● Sky surveys image billions of galaxies that need to be understood
● Limited “labels”, so can learn in semi-supervised way
● Pre-training on entire dataset on HPC, downstream task can be on laptop/edge
● Recently used to find > 1000 previously undiscovered strong-lens candidates
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Detect & 
discover 
rare 
objects

Initial approach: Hayat et. al. (2020) 
arXiv:2012.13083
Strong-lens analysis: Stein et. al. (2021)  
arXiv:2110.00023

Peter Harrington
NERSC ML 
Engineer 

 

https://arxiv.org/abs/2110.00023
https://arxiv.org/abs/2012.13083
https://arxiv.org/abs/2110.00023


Similarity search

Query

Similar galaxies 

Query

Similar galaxies 
● Given just a single 

example, instantly search 
for similar objects.

● Discover new lenses or 
other phenomena given 
just a few queries

Direction for future deep 
learning for science: 
● Community can benefit 

from multipurpose 
models trained on 
large-scale computing

Try it out yourself: 
share.streamlit.io/georgestein/galaxy_search
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http://share.streamlit.io/georgestein/galaxy_search


● Data-driven modeling of atmospheric flows using 
a state-of-the-art transformer-based “Fourier 
Neural Operator” 

● Collaboration with NVIDIA, Caltech and others 
● Forecasts global weather at 0.25◦ resolution

○ Order of magnitude greater resolution than 
state-of-the-art deep learning models

○ Forecasts wind speeds, precipitation and 
water vapor close to the skill of numerical 
weather prediction models up to 8 days

○ Produces a 24hr 100-member ensemble 
forecast in 7 seconds on a Perlmutter GPU 
node

○ Traditional NWP: 5 mins on thousands of 
CPU nodes for equivalent ensemble

Data-driven forecast of an atmospheric river

Jaideep Pathak
former NERSC 

Postdoc now NVIDIA

Accelerate: Data-driven atmospheric modeling
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Shashank 
Subramanian
NERSC Postdoc 

 

Peter Harrington
NERSC ML 
Engineer 

 

Pathak et al. 2022  
arXiv:2202.11214

https://arxiv.org/abs/2202.11214


FourCastNet: Large-compute scaling 
Scales to e.g. 3808 GPUs on Perlmutter with model parallel on 4-gpus
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Train large models on ~1hr timescales
compared to 40 hrs on 32 nodes or  
>~45days on a single GPU  :

Model and weights made available to community at 
https://github.com/NVlabs/FourCastNet

Pathak et al. 2022  
arXiv:2202.11214
Kurth et al. 2022  
arXiv:2208.05419

https://github.com/NVlabs/FourCastNet
https://arxiv.org/abs/2202.11214
https://arxiv.org/abs/2208.05419


● GraphNNs to accelerate catalyst discovery for energy 
storage and climate change mitigation

● Collaboration with CMU and Facebook/Meta 
● Largest catalysis datasets to date (OC20 and OC22) 

○ Challenges in NeurIPS 2021 and 22  
● Perlmutter helps push to larger better performing models
● Exploiting Graph-parallel NN approaches 

Automate: discovering new catalysts

Performance comparison of Perlmutter (PM) with Cori CPU and GPU nodes. 
Optimizations carried out in collaboration with NVIDIA DevTechs 

Brandon Wood 
NERSC Postdoc now 

Meta AI 
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https://opencatalystproject.org/
Chanussot et al. 2021  arXiv:2010.09990

● Public pre-trained models on OC20 now used by CMU group for 90% faster 
relaxation fine-tuned by DFT in active learning framework  https://github.com/ulissigroup/finetuna

https://opencatalystproject.org/
https://neurips.cc/Conferences/2021/CompetitionTrack
https://arxiv.org/pdf/2203.09697.pdf
https://opencatalystproject.org/
https://arxiv.org/abs/2010.09990
https://github.com/ulissigroup/finetuna


Unfolding for particle physics 
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H1 Collaboration ([...] Mikuni et. al. 2002 Phys. Rev. Lett. 128, 132002,  2022 
Deep Inelastic Scattering (DIS) Conference. and recent press release  

● “Unfolding” of fundamental particle interactions from 
observation in complex building-size experiments 

● Collaboration with LBL Physics Division and H1 Collaboration
● Combines novel iterative ML approach OmniFold with 

GraphNN to extracts new physics insights 
● Uses Perlmutter for 1000s of bootstrapping and UQ runs each 

using 128 GPUs for training

Vinicius Mikuni
NERSC Postdoc 

 

▰ Other projects to replace full detector simulation (expensive 
and not easily scalable)
▻ Using ML surrogate models incorporating diffusion 

generative models for the first time in particle physics
▻ More info here: arXiv:2206.11898

https://doi.org/10.1103/PhysRevLett.128.132002
https://www-h1.desy.de/psfiles/confpap/DIS2022/H1prelim-22-034.pdf
https://www-h1.desy.de/psfiles/confpap/DIS2022/H1prelim-22-034.pdf
https://newscenter.lbl.gov/2022/10/25/solving-the-proton-puzzle/
https://arxiv.org/abs/1911.09107
https://arxiv.org/abs/2206.11898


Deep Learning on Supercomputers for Science resources
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The Deep Learning for Science School at Berkeley Lab https://dl4sci-school.lbl.gov/
● Lectures, demos, hands-on sessions, posters: 2019 in person (videos, slides, code) 
● 2020 summer webinar series focussed on science and computing. 

Recorded talks: https://dl4sci-school.lbl.gov/agenda

The Deep Learning at Scale Tutorial
● Run since 2018 with Cray, Intel and now OCLF and NVIDIA
● 2021 was powered by Perlmutter with hands-on material 

for distributed training 
○ Full SC21 material here and videos 

● Back in person for SC22 - material here

https://dl4sci-school.lbl.gov/
https://sites.google.com/lbl.gov/dl4sci2019
https://dl4sci-school.lbl.gov/agenda
https://github.com/NERSC/sc21-dl-tutorial
https://drive.google.com/drive/folders/1TGV6N2Dpj6IZ_sYiSQxlQXCbrmqPkMBZ?usp=sharing
https://sc22.supercomputing.org/program/tutorials/
https://github.com/NERSC/sc22-dl-tutorial


The future
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NERSC-10 will provide on-demand, dynamically 
composable, and resilient workflows across 

heterogeneous elements within NERSC and extending 
to the edge of experimental facilities and other user 

endpoints

Complexity and heterogeneity managed using 
complementary technologies

● Programmable infrastructure: avoid downfalls of 
one-size-fits-all, monolithic architecture

● AI and automation: sensible selection of default 
behaviours to reduce complexity for users

NERSC-10 

Cloud

Experimental Facility

Home Institution

ASCR Facility



What we have
● Current best-in-class AI system - Perlmutter
● Flexible deep-learning frameworks: PyTorch; Tensorflow; and adding JAX

○ Optimised on Perlmutter through close collaboration with vendors
○ Detailed (and somewhat unique) tutorials with best practises on distributed scaling and 

performance profiling
● Productionized AI Models for Science in various domains

○ Trained at large-scale on Perlmutter
○ Workflows for uncertainty quantification and optimization using custom or open source tools

Because of this AI and Deep learning is being used now in production or 
near-production use cases for multiple order of magnitude speedups as well as 
totally new science results. 
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Numerous opportunities for R&D remain
● Hardware constraints limit size of AI models and/or push users to complex 

model and data-parallel strategies which require careful tuning
○ As well as compute, I/O can also be a bottleneck and data management tooling is limited

● Moving from single device to distributed AI resources requires user expertise 
and re-optimization

● AI models are expensive to train and specific to a domain and even to a 
sub-field/instrument and application

○ No Foundation models for science
● No standard frameworks or approaches for optimization, UQ and sharing 
● Integration with HPC simulations or experimental data pipelines is limited, 

ad-hoc and very domain specific 

With progress on these, AI for science can reach its transformative potential 
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5 year AI Directions
World-leading open-science AI ecosystem with
● System hardware and software that liberate 

scientists in application of AI models: including 
AI-acceleration, workflow and data management 

● Service platform that offers:
○ Interactivity for large-scale model exploration 
○ “Foundation” model hosting and retraining

■ Incorporating novel AI4Sci techniques
■ Accessible to AI novices and experts

○ Coupled AI, simulation and data pipelines
● Science applications with AI approaches that 

incorporate large-scale, science-informed, 
uncertainty-aware and transferable models 

● Expertise, consulting and education

HPC+AI
ecosystem

AI-enlightened user

AI enhanced 
operations

AI-acceleration 
hardware 

AI-API / 
Model 
bank

Expertise 

AI integrated 
inference 
pipelines

AI augmented 
simulations



Ongoing AI Pathfinding at NERSC

● Evaluating the potential of AI-focussed hardware for science
○ Defining benchmarks and metrics for scientific ML - leading AI 

benchmarks on HPC systems: e.g. MLPerf HPC
○ Collating science experiences and deepening understanding of 

performance on AI-accelerated hardware - e.g. HPC DL 
Architectural requirements (PMBS 2021); MLPerf HPC analysis 
(MLHPC 21);

● Developing novel applications that fully exploit Perlmutter, current 
state-of-the-art AI system

○ Refresh NESAP applications - focus on production and scale
○ Joint projects with new LBL Machine Learning & Analytics 

CS-research Group, other LBL divisions and labs/universities
■ Scalable, transferable “Foundation” models for science

● Prototyping, evaluating and developing AI service platforms 
○ Vendor collaborations; market surveys; integrate open solutions 

Exploring AI Acceleration and ecosystems 

E.g New Fair Universe Project

https://mlcommons.org/en/training-hpc-10/
https://ieeexplore.ieee.org/document/9652793
https://ieeexplore.ieee.org/document/9652793
https://ieeexplore.ieee.org/document/9653178
https://ieeexplore.ieee.org/document/9653178
https://cs.lbl.gov/news-media/news/2022/new-fair-universe-project-aims-to-build-supercomputer-scale-ai-benchmarks-for-hep-and-beyond/


Conclusions
● Transformative AI for science should leverage supercomputing: 

○ Hardware, software, application engagement, and training 
● Usage of AI frameworks on HPC is growing. Need to:

○ Provide optimized scalable software 
○ Utilize benchmarking for detailed performance tuning 
○ Allow for flexibility and interactivity as well as automation

● Science AI projects reaching maturity with step-changes in performance
○ Trends to training large models at scale that can be applied broadly
○ And utilizing sophisticated science-specific architectures
○ Recent results powered by Perlmutter - much more coming

● Future HPC systems optimized to embed AI in workflows 
○ Hardware design, system software, features and tools
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Questions?
Collaboration? 

Wahid Bhimji
wbhimji@lbl.gov

Deep-learning@NERSC: 
https://docs.nersc.gov/machinelearning/

https://docs.nersc.gov/machinelearning/

