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• Aerosol and climate sensitivity were relatively unaffected by resolution change; resolution-27

related tuning had a larger impact.28
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Abstract29

This study provides an overview of the coupled high-resolution version 1 of the En-30

ergy Exascale Earth System Model (E3SMv1) and documents the characteristics of a 5031

year long high-resolution control simulation with time-invariant 1950 forcings following32

the HighResMIP protocol. In terms of global root-mean-squared error metrics, this high-33

resolution simulation is generally superior to results from the low-resolution configura-34

tion of E3SMv1 (due to resolution, tuning changes, and possibly initialization procedure)35

and compares favorably to models in the CMIP5 ensemble. Ocean and sea ice simula-36

tion is particularly improved, due to better resolution of bathymetry, the ability to cap-37

ture more variability and extremes in winds and currents, and the ability to resolve mesoscale38

ocean eddies. The largest improvement in this regard is an ice-free Labrador Sea, which39

is a major problem at low resolution. Interestingly, several features found to improve with40

resolution in previous studies are insensitive to resolution or even degrade in E3SMv1.41

Most notable in this regard are warm bias and associated stratocumulus deficiency in42

eastern subtropical oceans and lack of improvement in El Nino. Another major finding43

of this study is that resolution increase had negligible impact on climate sensitivity (mea-44

sured by net feedback determined through uniform +4K prescribed sea surface temper-45

ature increase) and aerosol sensitivity. Cloud response to resolution increase consisted46

of very minor decrease at all levels. Large-scale patterns of precipitation bias were also47

relatively unaffected by grid spacing.48

Plain Language Summary49

The Energy Exascale Earth System Model (E3SM) is a relatively new fully-coupled50

Earth system and climate model used in major international model simulation projects51

and mission-defined efforts for the US Department of Energy. This paper describes the52

first simulation of the model in its high-resolution configuration. This higher-resolution53

version is able to capture the most energetic motions in the ocean, which are poorly rep-54

resented in standard resolution coupled climate models, as well as the largest of storms55

in the atmosphere. Evaluation of this simulation confirms the benefits of high resolution56

found by other models with a few notable exceptions. These discrepancies with other57

studies are interesting because they provide a richer understanding of how and why res-58

olution affects model bias. Another key finding is that climate and aerosol sensitivity in59

E3SM is unaffected by resolution change. This affirms the usefulness of coarser-resolution60

models for understanding global-scale climate change. This study also confirms the ben-61

efits of increased resolution for studying fine-scale features such as hurricanes and oro-62

graphic precipitation. Finally, the high-resolution version of E3SM is shown to compare63

favorably to its low-resolution counterpart and to the models participating in Phase 564

of the Coupled Model Intercomparison Project.65

1 Introduction66

Earth System Models (ESMs) are one of our most important tools available for pre-67

dicting, reconstructing, and understanding climate change. They can be used both to68

provide projections of future climate and to test proposed physical explanations for cli-69

mate system behavior. ESMs are created by coupling global models of the physical pro-70

cesses governing the temporal evolution of the atmosphere, ocean, land, and cryosphere.71

These components are typically modeled by breaking the planet into a large number of72

interdependent grid cells from the bottom of the ocean to nearly the top of the atmo-73

sphere.74

Global coverage, combined with the need to run for centuries at a time, puts se-75

vere restrictions on ESM grid resolution. Coarse resolution is a major problem for ESMs76

because a lot of important climate processes occur on scales smaller than a typical ESM77
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grid cell. Sub-grid scale variations must be parameterized in terms of grid-cell averages.78

Clouds, for example, are often smaller than the O(100 km) grid spacing typical for GCMs79

in 2019 (Wood & Field, 2011). Ocean mesoscale eddies, a critical mechanism for heat80

advection, occur at scales of less than 10 km in high latitudes (Maslowski et al., 2008).81

This is far smaller than the ∼50 km resolution often used at high latitudes to generate82

ensembles of 21st century Arctic sea ice loss (Snape & Forster, 2013; Jahn et al., 2016).83

These are just a few examples of resolution-dependent mechanisms that remain prob-84

lematic in most fully-coupled simulations of Earth’s climate.85

Recognition of the uncertainties caused by coarse resolution has prompted many86

studies evaluating the impact of increased spatial resolution. For the atmosphere, res-87

olution sensitivity of many aspects of climate seems to be model dependent. Some com-88

monalities do emerge, however. Precipitation, snowpack, and streamflow in hilly or moun-89

tainous terrain improves with increasing horizontal resolution (Pope & Stratton, 2002;90

Duffy et al., 2003; Iorio et al., 2004; Delworth et al., 2012) due to better resolution of91

the terrain itself. Extreme precipitation also improves with increasing horizontal reso-92

lution (Kiehl & Williamson, 1991; Iorio et al., 2004; Wehner et al., 2010, 2014; Terai et93

al., 2018) because smaller grid cells support more concentrated vertical motions and there-94

fore larger condensation and fallout. The ratio of stratiform-to-convective precipitation95

also increases with horizontal resolution as more scales are explicitly resolved (Pope &96

Stratton, 2002; Hagemann et al., 2006; Bacmeister et al., 2014; Demory et al., 2014; Her-97

twig et al., 2015; Terai et al., 2018). In general, precipitation seems to improve more in98

winter than in summer because summertime rainfall tends to occur in the form of con-99

vective events which are smaller than even the high resolution grid cells commonly used100

for GCMs (Duffy et al., 2003). The impact of model resolution on clouds is more com-101

plicated. High resolution has been shown to reduce bias in tropical high cloud but in-102

crease bias in low cloud (H. Wang et al., 2018). Blocking of flow with resulting air stag-103

nation problems is also better resolved as mountains and valleys come into focus (Mat-104

sueda et al., 2009; Jung et al., 2012; Berckmans et al., 2013; Schiemann et al., 2017). Sea105

breeze effects, which are important near the coasts in warm areas, also begin to be re-106

solved as horizontal resolution improves (Boyle & Klein, 2010; Love et al., 2011). Be-107

cause average eyewall radius for strong Atlantic hurricanes (Cat 2 or higher) is about108

23 km (Knaff et al., 2003), resolution at least this fine is expected to be a necessary con-109

dition for accurately resolving tropical cyclones. Shaevitz et al. (2014) confirmed this ex-110

pectation in an analysis of 11 simulations from 8 distinct climate models ranging in res-111

olution from 130km to 28km. They found that tropical cyclone intensity was only well112

captured (relative to observations) by the model with 28km resolution. Several other stud-113

ies have affirmed the ability of ∼ 25 km atmosphere models to reproduce the frequency114

and intensity of tropical storms (Atlas et al., 2005; Bacmeister et al., 2014; Wehner et115

al., 2014).116

Ocean and sea ice model fidelity are particularly affected by the ability of a model117

to resolve eddies and deformation, respectively. The impact of permitting oceanic mesoscale118

eddies in fully coupled models is dramatic, affecting, among many things, the spread of119

near-inertial energy (Zhai et al., 2007), water mass modification (Gnanadesikan & Hall-120

berg, 2006), and modulation of sea ice extent and thickness (McGeehan & Maslowski,121

2011; McPhee, 1992). Resolving the Gulf Stream improves the simulation of meridional122

heat transport in the Atlantic (Volkov et al., 2008; T. M. Joyce & Zhang, 2010), may123

increase the strength of the Atlantic Meridional Overturning Circulation (AMOC), and124

may improve simulated AMOC variability (e.g., Marti et al., 2010; Stepanov & Haines,125

2014; Cheng et al., 2013; Hirschi et al., 2013). High-resolution also helps to resolve fine-126

scale sea-ice deformation, which is important for simulating coupled fluxes against a cold127

atmosphere. Until recently, ocean models were most often coupled daily to atmospheric,128

land and sea ice components, filtering out the semi-diurnal ice-ocean response to storms,129

especially in the Southern Ocean (A. Roberts et al., 2015), and adversely affecting mixed130

layer depth in the high north (Holdsworth & Myers, 2015; M. Jin et al., 2018). Even with131
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sub-inertial (∼hourly) coupling switched on, regions of intense ocean-atmosphere flux132

exchange are adversely affected in coarse-resolution models by horizontal diffusion in the133

wind stress curl (DuVivier & Cassano, 2013) and spreading of freshwater fluxes from land134

models (Garcia Quintana et al., 2019). Increased horizontal resolution improves upwelling135

of ocean water off the west coast of continents (McClean et al., 2011; Delworth et al.,136

2012; Small, Bacmeister, et al., 2014) due to improved surface wind stress from better-137

resolved coastal topography (Gent et al., 2010). This increased upwelling is particularly138

important because it is expected to increase stratocumulus, the lack of which is a com-139

mon feature in climate models. Improved atmospheric resolution enhances Antarctic kata-140

batic winds (Lenaerts et al., 2012) and their forcing of a properly-resolved slope current141

surrounding that continent, which require a minimum oceanic resolution of 0.5◦ (Math-142

iot et al., 2011). The benefits of high-resolution bathymetry are most keenly felt where143

narrow passages are critical to water mass exchanges, such as through Nares Strait be-144

tween Greenland and Ellesmere Island, which can have a significant sea ice flux (Kwok145

et al., 2010), and is often too wide or completely closed off in course-resolution ESMs.146

El Nino Southern Oscillation often also improves with resolution (Sakamoto et al., 2012;147

Delworth et al., 2012). However, we note that a key mechanism for model improvement148

of ENSO, tropical instability waves (M. J. Roberts et al., 2009), are already well sim-149

ulated in the standard resolution configuration of E3SMv1 (Golaz et al., 2019).150

While many aspects of climate do improve with increasing horizontal resolution,151

some seem to be robustly insensitive to resolution. Resolution does not seem to be a panacea152

for double ITCZ problems (McClean et al., 2011; Bacmeister et al., 2014), except per-153

haps in the Eastern Pacific where water advected by the trade winds has more reason-154

able SST due to improved upwelling (Delworth et al., 2012). Resolutions of 25 km in the155

atmosphere also don’t seem to improve simulation of the Madden-Julian Oscillation (Jung156

et al., 2012; Bacmeister et al., 2014).157

It is worth noting that the above discussion focuses on global atmosphere models158

running in the hydrostatic regime and ocean models able to resolve only the largest ed-159

dies. A new class of global atmospheric models that explicitly resolve cloud systems is160

gaining popularity (Satoh et al., 2014). Because these models capture such different scales,161

it is likely that their resolution sensitivity is quite different from that described above.162

Although E3SM has plans to develop such a model, running these cloud-resolving mod-163

els is unfeasible currently for decadal to centennial climate scales, and are therefore out-164

side of the scope of the current analysis.165

While past studies of the impact of changing horizontal resolution are plentiful, rel-166

atively little analysis has been made of the impact of vertical resolution. Parametric as-167

sumptions usually are entangled with the vertical grid, so changing vertical resolution168

convolves discretization error with parametric errors, oftentimes resulting in little pay-169

back in model skill from additional computational expense. This is why even though Lindzen170

& Fox-Rabinovitz (1989) provide a sound theoretical argument for high vertical resolu-171

tion in GCMs, we know of no GCMs which actually use the theoretically appropriate res-172

olution. J. H. Richter et al. (2014) study the effect of increased vertical resolution in CAM5,173

finding that an increased model top provides better quasi-biennial oscillations and im-174

proved seasonal cycle of temperature in midlatitude. Partly based on this work, E3SM175

has switched from 30 to 72 vertical layers and pushed the model top up to 60 km for all176

model resolutions. The impact of increased vertical resolution on E3SM is discussed in177

Rasch et al. (2019) and Xie et al. (2018).178

The E3SM project was launched in large part to tackle the challenge of high-resolution179

(Bader et al., 2014). The high-resolution coupled model configuration described here is180

a central part of that strategy and is a standard configuration of the v1 release. This pa-181

per is to serves as a reference for the coupled high-resolution configuration to comple-182

ment the standard resolution configuration of E3SMv1 described in Golaz et al. (2019).183

In addition, this paper assesses the impact of horizontal resolution on E3SMv1. While184
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there have already been many papers on this latter topic, the conclusions for E3SMv1185

are somewhat novel and therefore of broad interest. Sect. 2 briefly describes the E3SMv1186

model and all differences between its low- and high-resolution configurations, as well as187

the simulations used in this study. This is followed by an in-depth evaluation of the model’s188

1950 control simulation in Sect. 3. Modes of temporal variability are discussed in Sect.189

4, followed by an analysis of the climatology of extreme weather events in Sect. 5. This190

is followed by a short discussion of the high-resolution model’s sensitivity to anthropogenic191

aerosol and greenhouse gas changes in Sect. 6. Finally, conclusions are presented in Sect.192

7.193

2 Experimental Design194

2.1 Model Description195

The E3SMv1 Earth System Model is described in Golaz et al. (2019). The atmo-196

spheric component is based on the spectral-element atmospheric dynamical core (Den-197

nis et al., 2012) with 72 vertical levels. It features the Zhang-McFarlane (ZM; G. Zhang198

& McFarlane, 1995; Neale et al., 2008; J. Richter & Rasch, 2008) deep convection scheme199

and the Cloud-Layers Unified by Binormals (CLUBB; Golaz et al., 2002; Larson & Go-200

laz, 2005; Larson, 2017) for macrophysics, turbulence, and shallow convection. Morrison-201

Gettelman version 2 (MG2; Gettelman & Morrison, 2015; Gettelman et al., 2015) mi-202

crophysics, 4-mode Modal Aerosol Model (MAM4; Liu et al., 2016), and Rapid Radia-203

tive Transfer Model for general circulation models (RRTMG; Iacono et al., 2008; Mlawer204

et al., 1997) are also used. Additional details are provided in Xie et al. (2018); Rasch205

et al. (2019); Golaz et al. (2019).206

Ocean and sea-ice components in E3SMv1 are based on the Model for Prediction207

Across Scales (MPAS; Ringler et al., 2013; Petersen et al., 2019). For the high resolu-208

tion simulations presented here, the Gent-McWilliams (GM) mesoscale eddy parame-209

terization is not needed and is disabled. For the low resolution simulation with high res-210

olution tunings, the GM bolus diffusivity is set to a constant 1800 m2/s (consistent with211

Golaz et al., 2019). Neither the high resolution or low resolution simulations include a212

parameterization of submesoscale eddy transport. The land model is a slightly revised213

version of that found in CESM1 (Hurrell et al., 2013), as described in Golaz et al. (2019).214

The river transport component is the newly-developed Model for Scale Adaptive215

River Transport (MOSART; Li et al., 2013, 2015). The core of MOSART is the simpli-216

fied form of the one-dimensional Saint-Venant equation, a kinematic routing method which217

provides explicit simulation of riverine hydrologic variables such as channel velocity, chan-218

nel water depth and water surface area. Simulating these variables makes incorporat-219

ing water management, heat and biogeochemical processes straightforward. MOSART220

was developed to work with both grid- and vector-based representations (Li et al., 2013;221

Tesfa et al., 2014). In E3SMv1, the grid-based representation of MOSART is adapted.222

As noted in Golaz et al. (2019), the ocean model in E3SMv1 accounts for changes223

in heat content of water with temperature, but the atmosphere does not. Keeping track224

of the heat content of water in the atmosphere is challenging, so E3SMv1 instead applies225

an ad hoc correction where the global-average difference between the temperature at which226

water evaporates from the ocean and returns back as rain or stream outflow is applied227

as a globally-uniform sensible heat flux correction. This correction was found to have228

negligible effect on model climate and is described in more detail in Golaz et al. (2019)229

Appendix A.230
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2.2 Model Resolution231

In this section, we describe the grids used for the high-resolution (HR) and low-232

resolution (LR) configurations of E3SMv1. Details of the HR and LR grid configurations233

are described below and summarized in Table 1. To isolate the effect of resolution, we234

will focus particularly on a LR run using the same parameterization constants (tuning235

parameters) as HR; we will call this run LRtunedHR to differentiate it from the E3SMv1236

standard resolution configuration (hereafter LRv1) described by Golaz et al. (2019).237

At all resolutions, E3SMv1 uses one grid for atmosphere and land components, an-238

other grid for ocean and sea ice, and a third grid for streamflow. The atmosphere/land239

grids are based on a cubed-sphere topology. Atmospheric parameterizations and the land240

model are called on each of 16 Gauss-Lobatto nodes for each spectral element. After ac-241

counting for cells on element edges being shared between elements, this results in atmo-242

spheric and land processes being called on ∼9x more columns than used for dynamics.243

The high-resolution configuration of E3SMv1 contains 120 quadrilateral spectral elements244

in both x and y directions of each face of the cube-sphere for a total of ∼800,000 columns245

corresponding to an approximate grid spacing of 25 km. The LR atmosphere, in com-246

parison, has 302 total elements on each side of its cube for a total of ∼50,000 columns247

(110 km nominal grid spacing). At all resolutions, E3SMv1 contains 72 vertical layers248

on a sigma-pressure coordinate system. As described in Xie et al. (2018), layers are un-249

evenly spaced with finer resolution near the Earth’s surface. Atmosphere and land res-250

olution of 25 km was chosen as a compromise between computational feasibility and im-251

proved representation of topography; it is not expected to explicitly capture turbulence252

or convection.253

The MPAS ocean and sea-ice models share the same horizontal grid, which at high254

resolution contains 3.7 million horizontal cells. In the HR configuration, ocean resolu-255

tion is coarsest in the tropics and becomes finer near the poles. The grid is defined to256

well resolve the first Rossby Radius of deformation (Chelton et al., 1998) across most257

of the globe. This grid resolution is broadly similar with other high resolution ocean con-258

figurations (e.g., Small, Bacmeister, et al., 2014; McClean et al., 2011; Delworth et al.,259

2012). The LR MPAS mesh was designed such that the horizontal resolution has a sim-260

ilar meridional distribution (on average) as the standard CESM1 ocean grid, varying from261

60 km in the mid-latitudes to 30 km near the equator and poles. The high-resolution ver-262

sion of the E3SMv1 ocean model uses 80 levels in the vertical, with spacings following263

Stewart et al. (2017). This vertical grid is designed to resolve the vertical structure of264

mesoscale eddies. The LR ocean model vertical discretization is very similar to CESM1,265

with 60 layers varying from 10 m spacing at the surface to 250 m at depth. The sea ice266

model includes five thickness categories in each grid cell divided at 0.65, 1.39, 2.47, and267

4.56 m.268

For coupled simulations, MOSART employs a uniform latitude/longitude grid with272

grid spacing listed in Table 1. Only grid cells over land are active; there are 1.5 million273

active cells at high resolution and 0.1 million at low resolution. MOSART is not discretized274

in the vertical.275

Finer grids typically require shorter timesteps for stability. This is certainly true277

for E3SMv1, as evident from the timestep information in Table 2. Simultaneous mod-278

ification of grid spacing and timestep can result in model sensitivity to timestep being279

erroneously attributed to spatial resolution sensitivity (Jung et al., 2012). Due to time280

pressures, we do not decouple timestep and resolution sensitivity in this study and in-281

stead use LR timesteps for the LRtunedHR simulation. As a result, what we describe282

as resolution sensitivity should be interpreted as including all changes required to run283

at that resolution.284
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Grid ∼ ∆x # of columns vertical levels

HR atm 25 km 777602 72
HR land 25 km 777602 15
HR ocean 8-16 km 3693225 80
HR sea ice 8-16 km 3693225 5
HR river 0.125◦ 4147200 1

LR atm 110 km 48602 72
LR land 110 km 48602 15
LR ocean 30-60 km 235160 60
LR sea ice 30-60 km 235160 5
LR river 0.5◦ 259200 1

Table 1. Information about grids used in this paper. Grid spacing is given in km for near

equal-distance grids and in degrees for equal-angle grids. For the sea ice model, the number of

vertical levels refers to the number of thickness distribution categories.

269

270

271

timestep HR LR

atm radiation 60 60
atm phys/dyn coupling 15 30
atm CLUBB+microphysics 5 5
atm dyn remap 2.5 15
atm advection and dyn 1.25 5
atm hyperviscosity 0.417 1.67
ocn 6 10
ocn barotropic 0.2 0.67
ice thermodynamics 15 15
ice dynamics 7.5 15
river 60 60
river coupling 180 180
atm/ice/lnd coupling 15 30
ocn coupling 30 30

Table 2. Timesteps (in min) used in high-res and low-res configurations.276
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2.3 Tuning285

The exact values for many parameters in climate models are not precisely known.286

Values for these parameters are generally chosen to minimize model bias in reproduc-287

ing current climate or to achieve global top-of-atmosphere (TOA) radiation balance for288

pre-industrial conditions. Because empirically-chosen tuning parameters can compen-289

sate for imperfect process representations, they play a critical role in model development290

(Hourdin et al., 2017; Schmidt et al., 2017). Tuning involves testing a variety of param-291

eter settings and choosing the best configuration. Thorough tuning often requires hun-292

dreds of tests, which quickly becomes prohibitively expensive at high resolution. While293

parameters chosen for LR simulations often behave reasonably well at higher resolution,294

optimal tuning choices are generally resolution dependent. This is because parameters295

are used to compensate for unresolved physics, and more physical processes become re-296

solved at higher resolution.297

Because of computational expense, tuning of high-resolution configurations is of-298

ten accomplished by changing only one or two parameters to remove the most egregious299

model biases. As a result, it is sometimes hard to disentangle whether lack of improve-300

ment at high resolution is due to unimportance of resolution or poor tuning (Bacmeis-301

ter et al., 2014). One feature of the current study is that substantial effort was put into302

tuning the high-resolution atmosphere component, with the result (shown later) that the303

high-res version of E3SMv1 has generally lower bias than its low-resolution counterpart.304

In order to tune the high-resolution model in a computationally-efficient manner, the Cloud-305

Associated Parameterization Testbed (CAPT; H.-Y. Ma et al., 2015) was extensively em-306

ployed. CAPT takes advantage of the fact that many atmospheric biases show up in 48307

hr forecasts, which are cheaper to run and can be compared against observed weather.308

Tuning started from the LR parameter settings and targeted mainly the global-mean TOA309

radiative budget and surface precipitation. Interestingly, the biases which showed up as310

a result of increasing horizontal resolution were similar to the biases resulting from in-311

creasing the number of vertical layers in the LR configuration. This allowed us to use312

similar tuning strategies for both problems. These strategies are described in more de-313

tail in Xie et al. (2018).314

Another major difference between HR and LRv1 versions of E3SMv1 is in their treat-315

ment of heterogeneous ice nucleation. The LRv1 version of E3SMv1 employs a new pa-316

rameterization of this process based on Classical Nucleation Theory (CNT; Y. Wang et317

al., 2014). CNT depends explicitly on aerosol properties (e.g. nucleation efficiency and318

surface area) and computes ice nucleation separately for immersion, deposition, conden-319

sation, and contact modes. CNT replaces the Meyers et al. (1992) parameterization in320

CESM1. The Meyers scheme only depends on ice supersaturation for liquid-saturated321

conditions (and therefore is uniquely specified by temperature). The Meyers scheme was322

derived from northern hemisphere mid-latitude measurements. Because aerosol concen-323

trations are lower in polar regions than in northern-hemisphere midlatitudes, the Mey-324

ers scheme is expected to overestimate number concentrations of ice crystals at high lat-325

itudes. In contrast, CNT is likely to underestimate ice crystal number at high latitudes326

because E3SMv1 underestimates aerosol transport to high latitudes (shown later). At327

high resolution, ice number concentration using the CNT scheme became extremely low,328

resulting in an unrealistic blanket of supercooled liquid over polar regions during win-329

ter. This blanket warmed the wintertime polar regions by more than 10 K, wrecking the330

model’s sea ice distribution. To avoid this problem, we reverted the heterogeneous ice331

nucleation scheme back to the Meyers scheme as part of the HR tuning. We later real-332

ized, however, that CNT was behaving poorly because the rate at which liquid was be-333

ing converted to ice by the Bergeron process was being scaled by a factor of 0.1 to com-334

pensate for the Meyers scheme’s propensity to create too many ice crystals and there-335

fore too much ice. Thus, CNT behaved poorly not because of a design flaw, but because336

it disturbed a balance between compensating errors. In retrospect, a better approach337
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would have been to keep CNT and scale Bergeron to a reasonable value. We will pur-338

sue this option in E3SM version 2.339

A downside to our strategy of intensive tuning at high resolution is that our LR340

and HR configurations differ due to a mixture of resolution and tuning choices. Differ-341

ences in tuning parameters are listed in Table 3. It is also worth noting that a few mi-342

nor bugs were found and final coupled tuning was done between the time the atmosphere-343

component papers from Y. Zhang et al. (2019a), Tang et al. (2019), Xie et al. (2018),344

and Rasch et al. (2019) were published and the coupled simulations documented in Go-345

laz et al. (2019) were completed. As a result, LRv1 values of ke, c14, and so4 sz thresh icenuc346

published here differ from those in Xie et al. (2018). For the most part, these changes347

did not impact model biases. One exception is an unrealistic lack of high clouds in the348

Tropical West Pacific in earlier atmosphere-component papers which is greatly improved349

here and in the fixed-SST simulations shown by Golaz et al. (2019).350

Several more bugs were found and corrected after LRv1 was completed and before353

these HR simulations started. In particular, a bug was found and corrected in pre-computed354

values of the rrtmg sw reftra table lookup (https://github.com/E3SM-Project/E3SM/pull/2202).355

Another bug related to energy errors in land-surface water-phase change and lake/snow356

interactions (https://github.com/ESCOMP/ctsm/pull/307) was also fixed. Both of these357

bugs had little effect on model climate.

Parameter HR LRv1 Parameterization Meaning (units)

alfa 0.2 0.1 ZM ratio of upward versus downward mass flux
at downdraft initiation level (-)

c0 lnd 3.5e-3 7e-3 ZM Precip efficiency over land (m−1)
c0 ocn 4.3e-3 7e-3 ZM Precip efficiency over ocean (m−1)
dmpdz -0.2e-3 -0.7e-3 ZM parcel fractional mass entrainment rate (m−1)
ke 6e-6 5e-6 ZM Precip evaporation efficiency

((kg m−2 s−1)−1/2 s−1)
dp1 3.9e-2 4.5e-2 ZM Deep convective cloud fraction (-)

c1 1.5 1.335 CLUBB w′2 dissipation strength (-)

c8 4.73 4.3 CLUBB w′3 damping strength (-)

c14 1.75 1.06 CLUBB Strength of u′2 and v′2 dissipation (-)
dust emis fact 2.5 2.05 Dust emission Inverse of dust emission strength (-)

Table 3. List of tuning parameters which differ between low- and high-resolution versions of

E3SMv1.

351

352

358

Unlike the low-res configuration, the coupled version of the HR model uses iden-359

tical tunings to the fixed-SST HR simulations described in Y. Zhang et al. (2019a), Tang360

et al. (2019), Xie et al. (2018), and Rasch et al. (2019). This decision was made because361

the coupled model seemed to be in relatively good radiative balance without further cou-362

pled tuning and time pressures required us to start our simulation campaign. In addi-363

tion, the efficacy of our tuning parameters seemed to saturate at the values currently used364

for HR such that further tuning provided little benefit. Another tool for tuning E3SM365

at high resolution is the ability to use a variable-resolution mesh in the atmosphere (Tang366

et al., 2019). While we didn’t use this capability much for v1 tuning, we expect this tech-367

nology to play an important role in the development of future model versions.368
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2.4 Description of Simulations369

Aside from LRv1, all coupled E3SMv1 simulations described in this paper use time-370

invariant 1950 forcings and follow the HighResMIP protocol of Haarsma et al. (2016) as371

closely as possible. Using 1950 conditions instead of the pre-industrial conditions typ-372

ically used for low-resolution control runs is necessary in order to extend a control sim-373

ulation into a transient 20th century/future climate simulation - simulating the period374

between 1850 and 1950 would exhaust our computing allocation, preventing the even-375

tual simulation of the more interesting 1950-2050 period. Although the planet was not376

strictly in radiative equilibrium in 1950 (as assumed in a control simulation), most an-377

thropogenic greenhouse-gas (GHG) emissions and warming has occurred since 1950 (e.g.378

IPCC, 2014, Fig. SPM.1), so this approach is a reasonable compromise. Using anthropocene-379

era control simulations for high-resolution control runs is a common practice (Delworth380

et al., 2012; Sakamoto et al., 2012).381

Forcings for the 1950 coupled simulations are identical to the forcings used for year382

1950 of the LRv1 historical simulation (Golaz et al., 2019) with a few exceptions. The383

mean of solar insolation from 1939 through 1961 was used in order to average over 2 pe-384

riods of the 11 yr solar cycle. Tropospheric aerosol emissions were handled similarly in385

HR to LR, but use higher resolution 0.5◦ data from input4MIPS. Stratospheric volcanic386

aerosols are averaged over 1850-2014 to capture the conditions which would be observed387

if simulating a long period of time. Tropospheric oxidants are specified using 1955 val-388

ues because data for 1950 is not available and 1955 values should be negligibly differ-389

ent. Dimethyl sulfide is computed by interpolating 1849 and 2000 values to the period390

of interest; this treatment is identical to Golaz et al. (2019) but was not mentioned in391

the previous paper. Anthropogenic and fire emissions for aerosols and precursor gases392

are taken from the CMIP6 emissions data set. One exception to this is secondary organic393

aerosol (SOA) gas emissions, which are handled specially as described by Rasch et al.394

(2019) in order to improve the vertical distribution of SOA.395

While the focus of this paper is on the high-resolution configuration of E3SM, it396

is occasionally useful to compare against the E3SMv1 LR release (LRv1) configuration.397

In particular, we will occasionally examine the pre-industrial (PI) control and the 20th398

century historical simulations described Golaz et al. (2019).399

To provide crude estimates of model sensitivity to anthropogenic GHG and aerosol400

changes, we also perform short simulations with prescribed sea surface temperature (SST)401

and sea ice extent. To estimate the net climate feedback parameter, we perform a pair402

of 5 year current-climate simulations with annually-repeating forcings. SST is uniformly403

raised by 4 K in one simulation and feedback strength is inferred from the difference in404

resulting TOA radiative imbalance between runs. Aerosol sensitivity is computed from405

a pair of 15 months simulations nudged to observations with a 6 hr relaxation timescale.406

In one simulation, anthropogenic aerosols are omitted. In the other, they are included.407

Detailed explanation of these sensitivity studies and their results are provided in Sect.408

6.409

For all prescribed-SST runs, forcings representative of 2010 are used unless explic-410

itly mentioned. As recommended for HighResMIP, these runs use daily-resolution pre-411

scribed SST and sea ice extent at 25 km resolution from HadISST2 (Haarsma et al., 2016).412

GHG and volcanic forcings are taken from year 2010 of the CMIP6 Historical experiment413

for these runs. Solar forcing is the average of CMIP6 Historical data for the 22 yrs cen-414

tered on 2010.415

2.5 Initialization416

The initial ocean temperature and salinity distributions were interpolated from the417

polar hydrographic climatology (Steele et al., 2001). To generate currents and propa-418
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gate initial gravity waves, MPAS-Ocean was run in standalone mode for three months,419

restoring temperature and salinity to the initial climatology and imposing an annually420

averaged wind stress. The results were used to drive a simulation with interactive ocean421

and ice components and atmospheric forcing prescribed from the COREv2 inter-annually422

varying (Large & Yeager, 2009) dataset. Ice was originally set to a uniform thickness of423

1 m at all locations poleward of 70◦ for this calculation. Only years 1947-1950 were sim-424

ulated in this mode. This 3 year spin-up period is a compromise between minimizing the425

amount of model drift inherited by the fully-coupled simulation and preventing large shocks426

upon coupling. The resulting ocean and ice state was combined with an atmosphere ini-427

tial condition from an earlier experimental HR simulation with fixed SST and a land ini-428

tial condition interpolated from year 1950 of a LR precursor to the E3SMv1 CMIP LRv1.429

This configuration was run for 5 yrs before realizing that polar winter-time surface tem-430

peratures were unacceptable and deciding to revert from the CNT mixed-phase nucle-431

ation scheme to the old Meyers et al. (1992) scheme to fix the problem (as described in432

Sect. 2.3). Instead of discarding those 5 yrs of simulation with the CNT scheme, we de-433

cided to begin our production off the end of the 5-year CNT run in order to start the434

model from a slightly more equilibrated state. For consistency, our LR simulation with435

HR tuning follows an identical spin-up protocol, including 5 yrs of coupled simulation436

with the CNT mixed-phase nucleation scheme. For both simulations, we denote year 1437

as the first year with the Meyers rather than CNT nucleation scheme.438

2.6 Performance439

The v1 HR simulation was performed at DOE’s Argonne Leadership Computing440

Facility (ALCF) Theta supercomputer, which has 4,400 nodes of Intel KNL (“Knights441

Landing”) 1.3 GHz with 64 cores and 192 GB memory per node. The coupled E3SM model442

consists of the 5 components described in Sect. 2.1, which exchange fluxes through a top-443

level coupling driver (CPL). Overall model throughput is optimized by laying out com-444

ponents across processing cores such that none of the components is a throughput lim-445

iter, while at the same time none of the processing cores are idle. Figure 1 shows the lay-446

out used for most of our v1-HR simulation. E3SM’s component synchronization approach447

(RASM OPTION1) prevents the atmosphere model from running in parallel with sea ice,448

land, or river runoff models, but allows the ocean to run in parallel on its own compu-449

tational cores. As evident in this figure, the atmosphere and sea ice models are the main450

determinants of total run time, with the number of ocean-model cores chosen to fit within451

the time taken by these other processes. Inability of the sea-ice model to scale to large452

process counts, combined with its inability to run in parallel with the atmosphere model,453

results in unavoidable idle time (shown as white space at the center-bottom of Fig. 1).454

CPL sequences, interpolates and exchanges data among all components, and consumes455

about 20% of overall run-time. CPL scaling limitations result in the idle time indicated456

by white space in the top-right corner of Fig. 1. Overall throughput for this layout was457

∼0.7 simulated years per wall-clock day. Various performance optimizations (reduced458

synchronization, improved threading) are being added to ATM and ICE to raise through-459

put in v2. Using more processor cores would have improved simulation speed, but would460

have been more expensive (because of increased communication lag time) and would have461

resulted in more time waiting in queue. The 800 node layout shown was chosen because462

it is the smallest layout which qualified for the largest production queue and its asso-463

ciated 24-hr-wall-clock limit.464

LRtunedHR was run using 54 nodes of Argonne’s Anvil cluster, which has 36 64-470

GB Intel Xeon Broadwell cores per nodes. It achieved ∼5 simulated years per day (SYPD)471

and consumed ∼9,000 core hours per simulated year. LR runs with prescribed SST were472

run on 169 nodes of NERSC Cori Haswell nodes, which have two 2.3 GHz 16-core Haswell473

processors per node. It ran at ∼13 SYPD and cost ∼10,000 core hours per simulated year.474

Prescribed-SST HR simulations completed ∼0.80 SYPD using ∼640,000 core hours per475
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62540

48617

704

Figure 1. Typical processor layout and throughput for a typical six-month simulation on

Theta. This layout uses 32 MPI processors and 4 OpenMP threads per process for a total of

128 hardware threads per node. In this figure, the atmosphere models is called ATM, the ocean

model is OCN, the sea ice model is ICE, the land model is LND, and the river model is the small

red bar at the center-bottom of the plot.

465

466

467

468

469

simulated year on 323 NERSC Cori KNL nodes, which have one 1.4 GHz 68-core Intel476

Xeon Phi Processor 7250 per node.477

The HR configuration contains ∼ 16× more grid points than LR (Table 1) and re-478

quires a timestep which is overall ∼ 2× shorter (Table 2). As a result, we expect (and479

find) HR runs to be ∼ 32× more expensive than LR on a given machine. Resolution in-480

creases have less effect on time-to-solution because of greater opportunities for parallelism.481

Source code for the simulations has been taken from a long-term maintenance branch482

maint-1.0 (https://github.com/E3SM-Project/E3SM/tree/maint-1.0) that will be483

maintained to ensure that runs can be exactly (bit-for-bit) reproduced if run on the same484

model with the same software environment.485

3 Model Climate486

3.1 Global-Average Evaluation487

Figure 2 displays the time series over the simulation for several key large scale cli-488

mate parameters. While the LRv1 and LRtunedHR runs exhibit near TOA radiation bal-489

ance, the HR run loses energy at the rate of ∼0.5 W m−2. This slow energy loss rate re-490

sults in a slight cooling trend to bring the globally averaged surface air temperature closer491

to the 20th century observed value, whereas the LRtunedHR run is over 0.5 deg too cold.492

The small imbalance and slight global trend in our HR run is similar in magnitude to493

the imbalances found in the first several decades of many fully-coupled high resolution494

climate simulations. HR simulations tend to have larger radiative imbalances and cor-495

responding temperature trends than their low resolution counterparts because they are496

too expensive to optimize in a fine-tuned way. It is recognized in the HighResMip pro-497

tocol that the 50 year spin-up period is a compromise between computer expense and498

a drift-free model. The near-zero energy imbalance in the LRtunedHR simulation was499

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

a pleasant surprise, as it took many iterations to achieve an acceptable, drift-free climate500

for the standard resolution LRv1 run (Golaz et al., 2019). Trends in sea-ice volume are501

shown in the lower panels of 2. In both hemispheres, ice volume is relatively steady across502

the simulation, indicating that evaluating climatological averages is appropriate.503
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Figure 2. Timeseries of key global-average quantities. Zero TOA net energy balance is de-

picted as a dashed line in the top panel. In the second panel, horizontal dashed line at 13.9 C is

an estimate observed global average temperature over the 20th century (NOAA Global Climate

Report, 2018; https://www.ncdc.noaa.gov/sotc/global/201813).

504

505

506

507

Equilibration of the ocean is shown in Fig. 3. Consistent with the overall loss of511

energy of the planet, the global ocean is cooling in HR over most of the water column,512

but especially in the upper 1000 m. The deeper ocean remains fairly isolated and cools513

with time. HR is accumulating a small fresh bias in the upper ocean, but this bias is in-514

significant compared to the fresh bias in the upper 800 m of the water column of LR-515

tunedHR. A separate study is now underway to investigate this accumulating fresh bias516

at the ocean surface in v1 low-resolution simulations.517
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(a) HR Global T (b) HR Global S

(c) LR+HRtuning Global T (d) LR+HRtuning Global S

Figure 3. Trends of globally averaged ocean temperature (left panels) and salinity (right pan-

els) versus depth for a,b) HR; and c,d) LRtunedHR. Trends are computed with respect to annual

mean of the first simulated year.

508

509

510

Because of the better simulation of scale interactions, increased resolution is widely518

assumed to result in better accuracy at scales resolved by lower-resolution models. We519

test that assumption by comparing large-scale measures of model bias among the LRv1,520

LRtunedHR and HR model runs.521

To get a crude sense of HR bias relative to LRtunedHR, LRv1, and models devel-522

oped by other groups, Figure 4 provides uncentered global root-mean-squared error (RMSE)523

values for a variety of climatically-important variables for all 3 E3SMv1 models and all524

available CMIP5 models. Prior to analysis, output from all models was spatially filtered525

through area-average regridding to 2.5◦. We chose uncentered RMSE to account for global-526

mean bias in the simulations. As was seen in similar comparisons of the ECHAM atmo-527

spheric model by Hertwig et al. (2014) and CESM by Small, Bacmeister, et al. (2014),528

HR has lower error than LRv1 for most variables and seasons. In particular, HR is never529

in the lowest 25% of CMIP5 models and is among the best CMIP5 models for most vari-530

ables. Because HR differs from LRv1 due to tuning as well as resolution differences while531

LRtunedHR hasn’t been tuned to reduce bias at all, it is inappropriate to conclude that532

HR’s superior climatology is due solely to resolution changes. In addition, CMIP5 runs533

had completed many hundreds of years of simulation by the time we sampled their er-534

rors, while HR’s spin-up period was only a few decades. While short spin-up is typical535

(and perhaps unavoidable) for high-resolution simulations, this discrepancy may give high-536

resolution simulations an unfair advantage in evaluations of this type. Assessing the im-537

pact of initialization approaches on HR evaluation is the subject of important future work.538

3.2 Clouds and Radiation547

Spatial gradients in the amount of radiation absorbed or emitted by the Earth sys-551

tem drive the circulations in both the ocean and the atmosphere, control local temper-552

ature and humidity structure, and power the hydrological cycle. As noted above, HR is553

losing heat at a globally average rate of ∼0.5 W m−2 with significant inter-annual vari-554
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Figure 4. Comparison of uncentered spatial RMSE (computed following Gleckler et al., 2016)

from years 1981-2005 of 45 CMIP5 historical simulations (box-and-whiskers with boxes showing

25-75th percentile values and whiskers showing the span of the data) versus values from years

21-50 of 1950 control runs for HR (cyan) and LRtunedHR (green). Dark blue dots show RMSE

values for 1981-2005 of the first member of the E3SMv1 LRv1 historical ensemble. Error for each

variable is calculated relative to the relevant observations: CERES-EBAF for radiation (Loeb

et al., 2009), GPCP for precipitation (Adler et al., 2003) and ERA-Interim for the remaining

variables (Dee et al., 2011).
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HR - CERES-EBAF Observations

Figure 5. TOA radiative imbalance (in W m−2), positive warms planet). Panel a shows the

annual-average climatological distribution from CERES-EBAFv4.0, while panel b shows bias in

HR.

548

549

550

ability. In nature and models, the globally averaged net energy imbalance is the small555

residual of the highly variable regional TOA net energy fluxes typically 1-2 orders of mag-556

nitude larger. As shown in Fig. 5, regional TOA net energy biases are fairly small ex-557

cept for positive bias (too much absorption) in the eastern subtropical ocean basins, over558

Eastern China, in the Atlantic sector near Antarctica, and (to a lesser extent) over Africa.559

These are compensated by milder but more widespread negative biases along the west560

coasts of continents, over the East/Central tropical Pacific (probably associated with in-561

tertropical convergence zone biases described later), over the Indian Ocean, and at high562

northern latitudes. The regional scale high and low resolution radiative imbalances in563

both resolutions of E3SMv1 look extremely similar (compare Fig. 5 with Fig. 4 from Go-564

laz et al., 2019). LRtunedHR also shows very similar pattern (not shown), indicating that565

this net radiative bias structure is a robust feature of E3SMv1 physics.566

Clouds are the main source of bias in net radiation. This is evident from the fact571

that bias in shortwave (SW) cloud forcing (TOA SW radiation minus clear-sky SW ra-572

diation, hereafter SWCF) for v1 HR in Fig. 6a has a very similar bias pattern to net ra-573

diation in Fig. 5b. From these figures, we conclude that excessive absorption in the east-574

ern subtropical oceans is due to a lack of SW cloud reflection. Longwave (LW) cloud forc-575

ing (LWCF) in v1 HR is too weak almost everywhere except at high latitudes. Elimi-576

nating the LW bias through tuning proved difficult, forcing us to compensate with a smaller577

globally-averaged SWCF to maintain global-average net radiative balance. This is yet578

another example of the limitations of tuning. The problem here is an inability to cap-579

ture transitions between cloud types such that increasing stratocumulus in the eastern580
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Figure 6. Panels a-d show annual-average SWCF and LWCF bias in SWCF (left) and LWCF

(right) relative to CERES-EBAFv4.0. Panels e-f show differences between HR and LRtunedHR

simulations. Positive SWCF values mean less reflection by clouds, while positive LWCF values

mean clouds are trapping more LW radiation. Units for all panels are W m−2.
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Figure 7. Comparison of annual mean total cloud fraction between E3SM and Calipso obser-

vations. a) Observed (OBS) total cloud fraction as retrieved from the Calipso satellite with the

GOCCP v3.1.2 algorithms (Chepfer et al., 2008) for the years 2006-2017. b) Difference between

HR and Calipso observations (model minus observed) and c) the difference between LRtunedHR

and observations. Model fields are those after interpretation with the use of a lidar simulator

(Chepfer et al., 2008) and are taken from simulated years 41-50. Number above a) indicates the

global mean total cloud fraction, whereas numbers above b) and c) indicate the mean bias (model

minus observed) and the root-mean-square-error (in parenthesis).

583

584

585

586

587

588

589

590

subtropical oceans also increases low clouds in convective regions, exacerbating negative581

SWCF biases in those regions.582

While net radiation looked very similar between HR and LRtunedHR, more marked591

differences appear in SWCF and LWCF. In particular, panels e and f in Fig. 6 show that592

finer resolution generally results in SWCF becoming more positive and LWCF becom-593

ing less positive. This is fairly uniform except at high latitudes where cloudiness seems594

to increase. Both of these tendencies are consistent with a reduction in cloudiness with595

increasing resolution, which is apparent in plots of total cloud fraction (Fig. 7). This re-596

duction of cloudiness with increasing resolution was also noted in runs with fixed SST597

and sea ice (Y. Zhang et al., 2019b; Xie et al., 2018) as well as in other models (Bacmeis-598

ter et al., 2014). Reductions in both SWCF and LWCF indicate a reduction of high clouds599

with resolution, while the ∼1 W m−2 larger reduction in SWCF versus LWCF indicates600

reduction from low clouds as well. It is worth noting that although clouds are sensitive601

to resolution in E3SMv1, resolution sensitivity is greatly decreased relative to many ear-602

lier generation models (Bacmeister et al., 2014).603

Figure 7 reveals that E3SM underestimates cloudiness at low latitudes regardless604

of resolution. This finding is particularly true in the stratocumulus areas of the eastern605

subtropical oceans, but also along the equator and over low-latitude land masses. The606

marine stratocumulus errors are collocated with large SST errors (Figure 16), particu-607

larly to the west of Baja California and Namibia/Angola. E3SM atmosphere-only sim-608

ulations with observed SSTs (not shown) have very similar but somewhat smaller errors,609

demonstrating that the stratocumulus error, while originating in the atmosphere model,610

is amplified by the SST error in the coupled model, similar to the E3SM low-resolution611

LRv1 simulations (Golaz et al., 2019). Other cloud characteristics such as the cloud al-612

titude and optical depth distributions of this E3SM high-resolution model are quite sim-613

ilar to those found in atmosphere-only E3SM simulations including those analyzed in Y. Zhang614

et al. (2019a). An exception is a moderate reduction in the amount of super-cooled liq-615

uid in this high-resolution model (not shown) due to the use of CNT rather than Mey-616

ers ice nucleation at high resolution (See Section 2.3). While we have emphasized model617

errors, it is worth bearing in mind that E3SM’s simulated clouds compare favorably to618

those of other models. Scalar metrics of model performance from Klein et al. (2013) in-619

dicate that E3SM would be in the top rank of pre-CMIP6 models (Y. Zhang et al., 2019a).620
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Figure 8. Comparison of annual mean total cloud fraction between E3SM and observations

over South America. Total cloud fraction is shown from (a) ISCCP HGM data (Rossow et al.,

2016) for the years 1983-2012 at 1◦ resolution, (b) the HR at 0.25◦ resolution, and (c) the LR-

tunedHR at 1◦ resolution. Model output is for simulated years 41-50 and modeled total cloud

fraction is computed from the ISCCP satellite simulator (Klein & Jakob, 1999) using optical

depths >0.3.
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To appreciate the value of higher resolution in the climatological distribution of clouds627

requires closer examination of the fine-scale structure of simulated fields. Figure 8 shows628

this structure over South America with model fields plotted close to their native reso-629

lution after interpolation to a latitude-longitude grid. Despite the large-scale biases present630

(such as the general underestimate of cloud over South America and in the marine stra-631

tocumulus region west of the continent), much of the regional structure - particularly632

near mountain ranges and coastal boundaries - is improved. In particular, v1 HR is able633

to capture the sharp gradient between cloudy and cloud-free conditions off the west coast.634

The Atacama desert in particular shows up as an area with extremely low cloud frac-635

tion which jumps discontinuously to much larger cloudiness just offshore. Another im-636

provement is the more narrow cross-width to the northwest-to-southeast feature imme-637

diately northeast of the Cordillera Oriental portion of the Andes in Peru and Bolivia.638

3.3 Aerosols639

Because aerosol observations are lacking for the 1950s and aerosol concentrations640

have changed greatly since then, this section focuses mainly on sensitivity of simulated641

aerosol life cycle to horizontal resolution. This is one of the first studies that investigates642

both the individual and total aerosol responses to resolution change, as previous stud-643

ies have focused on either dust (Ridley et al., 2013) or carbonaceous aerosols (P.-L. Ma644

et al., 2015; Liu et al., 2016). We also examine the impact of model tuning (LRtunedHR645

vs. LRv1) on aerosol simulations.646

Table 4 summarizes the global estimates of aerosol budgets. The annual-mean aerosol647

optical depth (AOD) is estimated to be 0.123 for the HR run, nearly two thirds of which648

is contributed by naturally-emitted dust and sea-spray aerosols. In the LRtunedHR sim-649

ulations, coarser model resolution leads to smaller dust and sea-spray aerosol emissions,650

a consequence of the dependence of these emissions on grid-mean surface wind speeds.651

The HR model produces more frequent occurrences of high winds due to resolution of652

fine-scale topography and dynamics (e.g. Ridley et al., 2013). K. Zhang et al. (2016) have653

developed a parameterization that accounts for the spatial variability in the sub-grid winds654

for dust and sea spray aerosol emissions. The impact of applying such a scheme will be655

explored in future E3SM model development.656
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Increasing resolution also modifies aerosol removal (i.e., deposition) and long-range657

transport. To isolate the resolution effect on individual aerosol dry or wet removal path-658

ways, aerosol removal rate, defined as the inverse of the aerosol lifetime (in unit of day−1)659

for a particular removal pathway (Textor et al., 2006) is calculated and included in Ta-660

ble 4 (numbers in parentheses). By comparing removal rates rather than the actual val-661

ues of deposition fluxes, complications due to the different aerosol emissions and bur-662

dens in the two simulations are avoided. As a result of better-resolved sub-grid turbu-663

lent transport in HR, the dry deposition rates for dust and sea spray aerosols are smaller664

in HR than in LRtunedHR. This result is consistent with previous findings for carbona-665

ceous aerosol (Liu et al., 2016). If aerosols are removed predominantly by dry deposi-666

tion, this reduction would result in an increase of aerosol burden and residence time at667

higher resolution.668

In contrast, aerosol wet removal is enhanced in HR due to improved representa-669

tion of spatial inhomogeneity in clouds and precipitation (P.-L. Ma et al., 2015). This670

enhancement is larger for sea-spray aerosols, which are more susceptible to wet scaveng-671

ing than dust. Increased wet removal counteracts but does not overcome increased emis-672

sions and decreased dry deposition, with the net effect that increasing resolution leads673

to increased sea spray and dust burdens, AODs, and lifetime. Dust is more sensitive to674

increased resolution than sea-spray aerosols, with the resulting larger enhancement in675

dust AOD (+28%) vs sea spray (+10%).676

In comparison with natural aerosols, the resolution effects on anthropogenic aerosols677

(sulfate, black carbon (BC), particulate organic matter (POM) and SOA) are less pro-678

nounced because the emissions of the anthropogenic aerosol species or their precursors679

are inventory-based and independent of resolution. Anthropogenic aerosols are, however,680

subject to the same resolution sensitivity of removal mechanisms as described previously681

for natural aerosols. This is visible in Table 4 in the form of decreased dry deposition682

and increased wet deposition rates for anthropogenic aerosols. Note, however, that an-683

thropogenic aerosols are removed preferentially by wet deposition (in terms of total mass)684

rather than dry deposition due to their finer particle sizes. As a result, the net effect of685

increasing resolution leads to smaller aerosol burden and AOD, and shorter lifetime for686

sulfate, BC, POM, and SOA.687

In our simulations, enhancement in the natural aerosol AOD dominates the reduc-688

tion in anthropogenic AOD as model resolution increases, resulting in a net increase in689

total AOD. The estimated global and annual mean total AOD is about 6% higher in HR690

than in LRtunedHR.691

As expected from industrialization over the last 70 yrs, global AOD in LRv1 is higher692

than in both HR and LRtunedHR. As mentioned in the beginning of this section, it is693

not meaningful to compare total and anthropogenic AOD or burdens in LRv1 with HR694

or LRtunedHR. Aerosol removal rates and lifetime, however, are less dependent on the695

emission scenarios and therefore worthy of comparison. Differences between LRtunedHR696

and LRv1 reflect the impact of different tunings since both runs use the same grid spac-697

ing. It is interesting to note that the simulated dust and sea-spray aerosol removal rates698

and lifetime are very similar between LRtunedHR and LRv1, suggesting that our tun-699

ing differences have little impact on aerosol removal and lifetime. Dust and sea-spray emis-700

sions, on the other hand, were purposefully decreased during the HR tuning in order for701

their AODs to match expected real-world conditions. This explains why the global emis-702

sions of dust and sea spray aerosols are similar between HR and the LRv1 despite the703

resolution differences. Because of the resolution effect on aerosol removal, however, life-704

time of natural aerosols is longer in HR than LRv1. For anthropogenic aerosols, the HR705

simulation results in shorter aerosol lifetime than found in LRv1 or in LRtunedHR. This706

is the expected result of enhanced aerosol wet removal at higher resolution. Resolution-707

induced changes in individual aerosol lifetime may lead to further changes in correspond-708

ing aerosol distributions and radiative forcings. These changes are beyond the scope of709
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this overview paper, but are explored for dust in Feng et al. (2019). Comparison with710

the expected present-day values in the last column of Table 4 indicates that the simu-711

lated aerosol lifetime of natural and anthropogenic aerosols in HR are within the uncer-712

tainty range of the AeroCom models (Textor et al., 2006) as summarized in Liu et al.713

(2012).714

Resolution effects on aerosol simulations are much more remarkable on regional scales.720

In particular, the sign of the regional resolution effect changes depending on the predom-721

inant aerosol types. The geographical distributions of the annual mean AOD simulated722

by v1 HR and LRtunedHR are shown in Fig. 9a and 9b. The aerosol climatology in both723

figures look as expected, with the lowest AOD in polar regions and highest AOD over724

the major dust source regions such as the Taklamakan and Gobi deserts in Asia and the725

Sahara desert in Africa. Compared to the LRtunedHR, HR predicts larger AOD over726

deserts and over mid-latitude oceans, consistent with the stronger dust and sea-salt emis-727

sions at higher resolution noted in Table 4 (Fig. 9c). The maximum increase in regional728

AOD is much larger than the 6% increase in global AOD, i.e., more than a factor of 2729

over the Arabian peninsula. Regional reductions in AOD occur mainly over the trop-730

ical oceans, associated with the enhanced aerosol wet removal by precipitation and clouds.731

Changes in sulfate and SOA (not shown) also contribute to the decrease of AODs over732

some polluted areas, including the Eastern US and the adjacent North Atlantic, South-733

ern Europe and Southern Africa. A benefit of HR is the ability to capture highly-resolved734

regional-scale features, especially over the complex terrains of central Asia and south Amer-735

ica. These resolution effects on AOD are particularly clear in Fig. 9c, which shows AOD736

differences between HR and LRtunedHR simulations.737

In addition, increased horizontal resolution also results in higher aerosol concen-738

trations near the surface and lower concentrations aloft (not shown). This is consistent739

with increased sea spray and dust emissions and decreased turbulence removal of aerosols740

in the boundary layer. Weakened vertical transport by convection is also probably play-741

ing a role here; previous studies (H. Wang et al., 2018; Xie et al., 2018) have found that742

convective transport decreases at higher resolution because more grid-scale lifting is re-743

solved at a higher resolution. The resultant changes in aerosol vertical distributions are744

likely to have important implications on aerosol radiative forcing and cloud droplet ac-745

tivation - especially on the regional scales - and will be investigated in further studies.746

3.4 Hydroclimate749

Global-average precipitation is slightly lower in HR than in LRv1 (Table 5). As dis-750

cussed in Golaz et al. (2019), deriving observational uncertainty for global-average pre-751

cipitation is challenging. Thus while E3SMv1 global-average precipitation is larger than752

the Rodell et al. (2015) estimate used in Table 5 and the GPCP estimate used in Fig.753

10, it is within uncertainty bounds for Stephens et al. (2012) and Wild et al. (2012). LR-754

tunedHR has lower precipitation, as expected because it is generally colder so has less755

moisture in the air. The fraction of precipitation or evaporation coming from ocean ver-756

sus land closely matches observations, and hence moisture flux convergence over land is757

reasonable, but slightly weaker than observed (Table 5).758

Because precipitation depends strongly on topography and small scale baroclinic762

instabilities, improved precipitation is one of the main motivations for finer resolution.763

Thus it is with keen interest that we examine Figure 10, which provides global maps of764

precipitation bias. One clear benefit of higher resolution is removal of dry bias to the south765

of Greenland. This dry bias is caused by erroneous freezing of the Labrador Sea at lower766

resolutions, which shuts off moisture flux from the ocean surface and therefore starves767

South Greenland clouds of moisture. See Sect. 3.6 for further discussion of improved Labrador768

Sea ice distribution at high resolution. Further corroboration of the importance of sea769

ice extent comes from Figure 6 of Golaz et al. (2019) that shows that Greenland precip-770
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Characteristic HR LRtunedHR LRv1 Expected PD Value

Global AOD 0.123 0.116 0.14

Dust AOD 0.032 0.025 0.026
Emission (Tg yr−1) 4577. 3881. 4702. 1840.±49%
Dry depo (Tg yr−1) 3309. (0.33) 3053. (0.42) 3653. (0.43)
Wet depo (Tg yr−1) 1268. (0.13) 983. (0.12) 1048. (0.12)
Burden (Tg) 27.2 19.8 23.5 19.2 ±40%
Lifetime (days) 2.17 1.86 1.82 4.14 ±43%

Sea spray AOD 0.046 0.042 0.049
Emission (Tg yr−1) 3728. 3434. 3601. 16600. ±199%
Dry depo (Tg yr−1) 2320. (1.15) 2451. (1.46) 2551. (1.39)
Wet depo (Tg yr−1) 1404. (0.70) 983. (0.59) 1050. (0.57)
Burden (Tg) 5.52 4.60 5.04 7.52 ±54%
Lifetime (days) 0.54 0.49 0.51 0.48 ±58%

Sulfate AOD 0.013 0.014 0.023
Dry depo (Tg yr−1) 15.9 (0.035) 17.1 (0.036) 27.0 (0.035)
Wet depo (Tg yr−1) 78.0 (0.173) 78.9 (0.165) 117.2 (0.151)
Burden (Tg) 1.24 1.31 2.06 2.02 ±25%
Lifetime (days) 4.8 5.0 5.39 4.12 ±18%

BC AOD 0.002 0.003 0.005
Dry depo (Tg yr−1) 1.47 (0.059) 1.69 (0.064) 2.95 (0.056)
Wet depo (Tg yr−1) 2.84 (0.114) 2.60 (0.099) 4.78 (0.090)
Burden (Tg) 0.068 0.072 0.145 0.24 ±42%
Lifetime (days) 5.8 6.13 6.85 7.12 ±33%

POM AOD 0.005 0.005 0.01
Dry depo (Tg yr−1) 9.41 (0.047) 10.5 (0.049) 16.3 (0.038)
Wet depo (Tg yr−1) 21.4 (0.107) 20.2 (0.095) 33.7 (0.079)
Burden (Tg) 0.55 0.58 1.17 1.7 ±27%
Lifetime (days) 6.51 6.9 8.5 6.54 ±27%

SOA AOD 0.025 0.027 0.025
Dry depo (Tg yr−1) 7.32 (0.009) 7.72 (0.009) 9.83 (0.011)
Wet depo (Tg yr−1) 61.0 (0.073) 60.5 (0.068) 65.6 (0.076)
Burden (Tg) 2.3 2.46 2.36 0.57 ±117%
Lifetime (days) 12.3 13.2 11.4 6.70 ±115%

Table 4. Global aerosol budgets. The numbers in parentheses are calculated dry (or wet) re-

moval (or deposition rates) in unit of day−1, defined as dry (or wet) deposition/(burden*365.)

in (Textor et al., 2006). Also shown are the model outputs from LRv1 for simulations with year

2000 aerosol forcing. The means and normalized standard deviations of the Expected PD values

are taken from other modeling studies as collected by (Liu et al., 2012)
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718

719
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(a) HR

(b) LRtunedHR

(c) HR - LRtunedHR

Figure 9. Annual mean aerosol optical depth (AOD) at 550 nm from the v1: (a) HR, and (b)

LRtunedHR; Panel (c) shows ∆AOD (HR - LRtunedHR).

747
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Figure 10. Annual surface precipitation (in mm day−1) from (a) Global Precipitation Project

(GPCP; Adler et al., 2003) v2.2 observations at 2.5◦ × 2.5◦ resolution and model biases for (b)

HR and (c) LRtunedHR.
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760

761

itation bias in LRv1 disappears when SST and sea ice extent are prescribed. Wet biases771

over mountainous terrain (as described in Golaz et al., 2019) are slightly improved at772

large scales, but by no means alleviated. Unfortunately, increased resolution does not773

appear to correct E3SMv1’s other major precipitation biases. The double ITCZ, dry Ama-774

zon, and wet Maritime Continent problems are virtually unchanged with changing res-775

olution.776

Even though increased resolution does not improve large-scale features, it has clear785

benefit at regional scales. This is demonstrated in Fig. 11, which zooms in on the west786

coast of the US. Because snowpack is the main source of this region’s drinking water,787

capturing the spatial distribution of precipitation over the US West Coast is critical. While788

LRtunedHR is unable to capture the maxima of orographic precipitation over the region’s789

mountain ranges, HR is better able to capture these features. Nevertheless, HR over-predicts790

the maximum value in the Sierras, a problem seen in other high-resolution simulations791

of Sierra precipitation (e.g. Caldwell et al., 2009; Caldwell, 2010). The benefit of high792

resolution on stream flow is examined later in this section.793

In addition to mean precipitation rate, the intensity of precipitation is important794

for climate impacts. To show the impact of grid resolution on precipitation intensity, the795

annual mean daily precipitation intensity distributions in the tropics (25◦S to 25◦N) are796

examined in Fig. 12 with a focus on heavy precipitation. For such histograms, it is more797

useful to focus on a particular region than on global averages in order to avoid the con-798
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HR LRtunedHR DECK R15 Obs

Global-ave Pr 2.96 2.82 3.07 2.79±0.15
Ocn Pr 78.6 79.4 77.4 77.7
Ocn Evap 85.6 85.2 84.8 86.5
Land Pr 21.4 20.6 22.6 22.3
Land Evap 14.4 13.9 15.2 13.6
Ocn→Lnd Transport 7.0 5.7 7.4 8.9

Table 5. Land and ocean water budget. Global-ave Pr values are in mm day−1 and all other

terms are expressed as percents of global-average precipitation. Observational estimates (“R15

Obs”) are taken from Rodell et al. (2015), which provides estimates based mainly on satellite

measurements with help from data-integrating models and combined in a variational framework

that enforces several water and energy budget constraints.

777

778

779

780

781

Figure 11. Climatalogical pattern of precipitation (in mm day−1) over the west coast of

North America as simulated by The North American Regional Reanalysis (NARR Mesinger et

al., 2006) and E3SM v1 model versions.
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flation of disparate changes in different regions. The tropics is a useful region because799

it dominates global precipitation, it involves significant contributions from both large-800

scale and convective precipitation at all seasons, and it displays the largest sensitivity801

to resolution change. Histograms over the continental US, however, showed similar but802

muted responses to resolution change (not shown).803

The observations are from the GPCP one-degree daily (GPCP1DD) data (Huff-812

man et al., 2001), and TRMM (Huffman & Bolvin, 2018) 3B42 and CPC MORPHing813

technique (CMORPH; R. J. Joyce et al., 2004) at 0.25◦ × 0.25◦. The differences be-814

tween the observational datasets provide a crude estimate of potential observational un-815

certainty. We use years from 1998-2013. Before aggregating the distribution, CMORPH/TRMM816

and modeled precipitation rates are remapped to the same 1◦ × 1◦ grids as the GPCP1DD817

data. For each day, each tropical grid cell is assigned to a precipitation bin using 1 mm818

day−1 bin widths. Similar to Wehner et al. (2014), we placed all precipitation rates larger819

than 100 mm/day in a single bin. This results in a change in slope at the right side of820

the plot.821

Both LRtunedHR and HR models generally share the same “too frequent, too weak”822

problem as shown in other climate models (e.g. Trenberth et al., 2003; Stephens et al.,823

2010). They largely over-predict the frequency of precipitation occurrence for rainfall824

rates less than 15 mm/day and underestimate rainfall between 20 mm/day and 70 mm/day825

(Fig. 12a). The high-resolution model clearly shows an increase in the frequency of heavy826

precipitation rates (> 50 mm/day) compared to its low-resolution counterpart. For ex-827

treme precipitation rates in the tropics (> 70 mm day−1), the v1 HR simulation is within828

the range of the observations while the LRtunedHR simulation is considerably lower than829

the observed frequency.830

The increase of heavy precipitation as model horizontal resolution increases is shown831

over both land and ocean (Fig. 12b and c), though the increase over land is more sig-832

nificant, bringing the simulated distribution of intense precipitation closer to the obser-833

vations. This increase is due to resolved-scale (stratiform) precipitation (Fig. 12e), which834

increases with increasing resolution for all bins greater than < 0.2 mm day−1. Convec-835

tive precipitation, on the other hand, actually decreases with increasing resolution for836

all bins greater than 10 mm day−1.837

The diurnal cycle of precipitation is another long-standing model bias which one838

might hope is ameliorated by higher resolution. There is a slight tendency for precip-839

itation to move later in the day over larger islands of the Maritime Continent, but in gen-840

eral increased resolution does little to improve the model’s tendency for precipitation to841

peak too early in the day (not shown).842

In Fig. 13, the land-model-simulated mean annual runoff averaged across the year845

21-50 simulation period for both HR and LRtunedHR setups is compared with the half846

degree University of New Hampshire (UNH)/Global Runoff Data Centre (GRDC) Com-847

posite Monthly Runoff data (hereafter ”GRDC runoff”; Fekete & Vorosmarty, 2011). The848

10-year long (1986-1995) runoff data is essentially a data assimilation product that pre-849

serves the spatial specificity simulated by a large scale hydrologic model (Water Balance850

Model, WBM) while constrained by the in-situ streamflow discharge measurements from851

the Global Runoff Data Centre (GRDC). Therefore, it is useful for spatial pattern com-852

parisons at river basin scale level but may not be suitable as a benchmark product for853

bias identifications at the gridcell level. Our comparisons (Fig. 13a, b, and c) suggest854

that both HR and LRtunedHR capture the general spatial pattern of the GRDC runoff.855

In arid regions such as the western U.S., southern Africa, central Asia, and Australia the856

model has a wet bias, while in relatively humid areas such as the Amazon basin and cen-857

tral Africa, dry bias is observed. These findings are generally consistent with the pre-858

cipitation results (Fig. 10). The difference between HR and LRtunedHR (Fig. 13d) in-859

dicates that the HR tends to better represent runoff heterogeneity in mountainous re-860
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Figure 12. Annual mean precipitation frequency of daily precipitation as a function of pre-

cipitation intensity between the models and observations over 25S-25N: black: GPCP1DD, grey:

CMORPH, green: TRMM, blue: LRtunedHR, and red: HR. Daily mean precipitation rates (unit:

mm/day) gridded at 1◦ × 1◦ are used to derive the distribution. Any precipitation rates larger

than 100 mm/day are assigned to the last bin that results in an uptick at the end of the plot.

(a): total precipitation, (b) total precipitation over land, (c) total precipitation over ocean, (d)

convective precipitation, (e) stratiform precipitation. Note that a different scale for Y-axis is used

for convective precipitation.
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Figure 13. Mean annual runoff (mm year−1) from a). GRDC, b). HR, c). LRtunedHR, and

d). the difference between HR and LRtunedHR.

843

844

gions (e.g. Andes Mountains and Tibetan Plateau). In addition, the regions noted as861

having dry bias in LR are noticeably wetter in HR (e.g. central Africa) and regions that862

are too wet tend to be drier in HR (e.g. western U.S.).863

To evaluate the performance of the E3SM river model (MOSART), we compared866

the MOSART-simulated streamflow (year 21 to 50) with the Global Streamflow Indices867

and Metadata Archive (GSIM; Do et al., 2018) at 4515 locations (Fig. 14). These gauges868

were selected to accommodate the need for global spatial coverage and for having river869

gauge drainage areas accurately represented in both HR and LRtunedHR models. Un-870

surprisingly, Fig. 14 shows that biases in runoff carry through into streamflow. Nonethe-871

less, the overall performance of both simulations is very good, with R2 over 0.8. In sites872

with large discharge (e.g. >104 m3 s-1), HR’s performance is generally better than LR-873

tunedHR.874

In addition to the mean annual streamflow, we also examined the seasonality of the878

streamflow (Fig. 15) with color indicating the peak month of the hydrograph and the879

size of each dot indicating the seasonality index (SI) of the streamflow, which ranges from880

1 to 12 and quantifies the level of seasonal variations of the hydrograph. SI equal to one881

indicates uniformly distributed hydrograph across the year, i.e. no seasonal variation;882

SI equal to 12 indicates that peak streamflow occurs in a single month while the rest months883

are equal, i.e. strongest seasonal variability. The equations for SI calculations can be found884

in Golaz et al. (2019). The results suggest that simulated streamflow is generally a good885

match with observations in terms of both seasonality and peak timing, though simulated886

SI is slightly overestimated for most rivers (Fig. 15d). This is not surprising because the887

model did not represent dam operations which usually lower the seasonality of the hy-888

drographs. We do notice that SI is under-represented in northern Eurasia in HR for un-889

clear reasons (Fig. 15b). There otherwise doesn’t appear to be any systematic change890

in SI as a function of resolution.891

3.5 Ocean892

A representation of the global upper ocean is shown in Figures 16-18 as annual av-893

erages of Sea Surface Temperature (SST), Sea Surface Salinity (SSS), and Mixed Layer894

Depth (MLD) computed using the 0.03 kg m−3 density threshold criterion. Moving from895

low to high horizontal resolution has generally beneficial effects. In particular, the cold896

bias in the subtropical gyres is greatly reduced at HR, and the extremely cold and fresh897

biases in the Labrador Sea disappears. This latter bias is most likely related to sea ice,898
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Figure 14. Mean annual streamflow at 4515 gauge locations from a). GSIM, b). HR, c).

LRtunedHR, and d). the scatter plot between GSIM observations and simulated streamflow.

864

865

Figure 15. Seasonality index (SI, size of the dots) a). for GSIM gauge observations, b). HR,

and c). LRtunedHR. Panel d provides a scatter plot of observed SI against simulated SI with size

of the dots indicating magnitude of the discharge.

875

876

877
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as we shall see in Sect. 3.6. Also noticeable is the general improvement in SSS between899

LRtunedHR and HR, with LRtunedHR showing a fairly strong fresh bias in most of the900

global ocean. The origins of this fresh bias are being investigated in a separate study but901

that are believed to be at least partially due to ocean mixing. Biases in LRtunedHR SST902

and SSS look very similar to those shown for LRv1 in Golaz et al. (2019), implying that903

the aforementioned issues are intrinsic to the low-resolution version of the model rather904

than the result of poor atmosphere tuning.905

One problem that increased resolution does not fix is the warm SST bias in the East-912

ern Boundary Current regions (e.g. west coast of North America, off the coast of Peru,913

and in the Buenguela region of South East Africa). Warm bias is caused by an unreal-914

istic lack of stratocumulus clouds in this region (as shown in Fig. 7) combined with overly915

weak alongshore winds. Lack of improvement in eastern boundary current SST with in-916

creased resolution is surprising; all other high-resolution modeling studies we know of917

found robust improvements in this feature with increasing resolution. Improvement is918

expected due to improved fidelity of alongshore winds, which is likely the result of a bet-919

ter representation of orography (Gent et al., 2010). Upwelling does strengthen in HR,920

stratocumulus do increase, and SST biases do improve with increasing resolution in E3SMv1921

(not shown), but only along a very narrow strip just off the coast. Understanding why922

resolution sensitivity of eastern boundary upwelling has such small areal extent is on-923

going research. We also note that while the SST bias patterns suggest a global average924

warm bias, the year 21-50 average has cooled relative to the initial condition (consistent925

with Fig. 3a).926

Mixed layer depth biases with respect to an Argo based climatology (Holte et al.,932

2017, Fig. 18) reflect a variety of upper ocean processes that are not explicitly resolved933

in models and whose representation depends on mixing parameterizations as well as shifts934

in buoyancy fronts (e.g. a shift in the Antarctic Circumpolar Current (ACC) relative to935

the Argo product). Similar to other Earth System Models, E3SM simulations tend to936

have larger MLD biases at higher latitudes where strong convection tends to occur. The937

large positive bias in HR in the Weddell Sea is due to an extensive Weddell Polynya that938

lasts a little over a decade (see also Sect. 3.6) and is associated with strong oceanic con-939

vection, and a warm and salty surface anomaly. The MLD in the Labrador Sea is too940

shallow in LRtunedHR, but too deep in HR. This is also visible in the regional MLD sea-941

sonal cycle in Figure 19. While the lack of convection in the Labrador Sea in LRtunedHR942

is most likely due to the unrealistically high sea-ice coverage in this region, associated943

with the accumulation of freshwater and thereby strong stratification probably result-944

ing from too weak Irminger and West Greenland Currents, the overly convective Labrador945

Sea in HR cannot be easily explained by surface temperature and salinity biases and needs946

further investigation (a separate study focusing on the Labrador Sea is underway).947

3.6 Sea Ice948

The most important improvement to E3SM’s surface polar climate in HR relative949

to LRtunedHR manifests as a correction to the winter sea ice edge in both the north-950

ern and southern hemispheres. Figure 20 summarizes this improvement, where we have951

used the 1979-1999 Meier et al. (2014) National Oceanic and Atmospheric Administra-952

tion Climate Data Record (NOAA CDR) as an ice edge benchmark for which there are953

regular measurements, contrary to the 1950s. At the time of writing the J. E. Walsh et954

al. (2019) industrial-era ice extent dataset was being revised and is not included in this955

study. Comparing the ice edge of HR with LRtunedHR and observations from the last956

20 years of the twentieth century, sea ice extent is more realistic at high resolution ow-957

ing to reduced bias in the Labrador Sea, the Sea of Okhotsk and around most of the South-958

ern Ocean cryospheric perimeter (Fig. 21). Even though there is temporal mismatch be-959

tween the perpetual 1950 simulations and 1979-1999 measurements, sea ice extent in the960

1950 LRtunedHR run is similar to predictions from the late 20th century in the LRv1961
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(a) SST observations (Hadley/OI)

(b) Model-Obs bias (HR)

(c) Model-Obs bias (LRtunedHR)

Figure 16. Annual-mean SST from a) the Hadley/OI observational product (Hurrell et al.,

2008); b) HR bias with respect to observations (model-obs); and c) LRtunedHR bias.
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(a) SSS observations (Aquarius satellite)

(b) Model-Obs bias (HR)

(c) Model-Obs bias (LRtunedHR)

Figure 17. As for Figure 16 but for the annual-average SSS. Observations are from the

Aquarius satellite product (Wentz et al., 2014, ; years 2012-2013).
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(a) MLD observations (Argo)

(b) Model-Obs bias (HR)

(c) Model-Obs bias (LRtunedHR)

Figure 18. As for Figure 16 but for the annual-average MLD. Observations are from the

Argo-based climatology of Holte et al. (2017).
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Figure 19. March mean MLD (0.03 kg m−3 density threshold) in the Labrador Sea in HR

(upper left panel) and LRtunedHR (upper right panel). White and black contours show the 15%

and 85% sea ice fraction, respectively. Lower panel shows the seasonal cycle of MLD averaged

over the gray box as shown in the upper panels for both simulations. Gray thick curve shows the

same averaged MLD from Argo-based climatology of Holte et al. (2017).
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simulation, suggesting that the temporal mismatch in observed vs modeled eras is not962

a cause of LRtunedHR bias (Golaz et al., 2019). There is also a strong similarity between963

LRv1 historical ensemble members’ ice-edge in the Southern Ocean and LRtunedHR.964

In the case of the Labrador Sea low-resolution sea ice bias, by far the largest marginal965

sea bias, the saline ice and its melt water separate early from the west Greenland cur-966

rent and spread toward Newfoundland along the streamlines in Figure 22(e) and (f).967

As a consequence, the Labrador Sea becomes stably stratified and oceanic mixing is shut968

down (Fig. 19). By contrast, this does not occur at high resolution, where sea ice in ed-969

dies spinning off the West Greenland Current soon melt away, animated in A. Roberts970

et al. (2019b). The other significant northern hemisphere ice-edge bias occurs in the Sea971

of Okhotsk, where low-resolution bathymetry contribute to poor fidelity, and where there972

is also high observed inter-annual ice-edge variability, as indicated by the thin orange973

±1 standard deviation 15% concentration measurements in Figure 21.974

Figure 20. Seasonal evolution of sea ice for high- and low-resolution simulations for the

northern (a-c) and southern (d-f) hemispheres. Sea ice extent may be compared with the Meier

et al. (2014) NOAA Climate Data Record (CDR) for the period of 1979-1999 as an approxi-

mate guide to real-world 20th century values. Points indicate monthly median for the designated

30-year analysis period, and lines indicate the maximum and minimum monthly means. The

numeric values on the x-axes correspond of consecutive months of the year, where 1 represents

January, and 12 represents December.
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High-resolution topobathymetry, greater extremes in wind and current forcing, and991

increased oceanic eddy kinetic energy combine to elevate the median and maximum sea992

ice drift speed in HR relative to LRtunedHR. Figures 22 and 23 demonstrate that sea993

ice is accelerated in HR relative to its low-resolution analogue. In particular, sea ice reaches994

much greater drift speeds in coastal or slope currents surrounding Greenland, next to995

Baffin Island, along the East Antarctica coast and in the Weddell Sea, verified indepen-996

dently of Figures 22 and 23. These changes manifest from the sharper horizontal gra-997
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Figure 21. Mean March (a-d) and September (e-h) sea ice thickness for HR and LRtunedHR

simulations over the 30-year climate averaging period. Data is rendered on native model grid

cells with opacity (color density) determined by mean sea ice concentration, where fully saturated

colors in the legend indicate 100% ice cover. The observed 1979-1999 Meier et al. (2014) NOAA

sea ice extent is traced in bold orange, equivalent to the 15% concentration contour. Extent con-

tours appear in thin orange either side of the main measured ice edge for ±1 standard deviation

in the observed ice fraction, where a large deviation from the bold orange contour indicates high

inter-annual variability. Native model coastlines indicate the closure of Nares Strait (b,f) and

where the top of the Antarctic Peninsula is pinched off (d,h) in the low-resolution model.
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dient ∇h(f/H) in HR relative to LRtunedHR, for the Coriolis parameter f , and bathy-998

metric depth H. There is also improved steering of the winter Southern Ocean ice edge,999

including from eddies downstream of Drake Passage, relative to LRtunedHR.1000

As seen in the E3SMv0 high-resolution coupled simulation (Kurtakoti et al., 2018),1001

the HR simulation evolves intermittent Weddell Polynyas, imprinted in the model cli-1002

mate near Maud Rise (Fig. 21(j) and (k)) but not present at low resolution (Fig. 21(l)).1003

This high-resolution feature results from Taylor columns and mesoscale eddies around1004

the Maud Rise seamount, where polynyas are initiated, a further ramification of ∇h(f/H)1005

fidelity; the associated anti-clockwise surface circulation around Maud Rise is evident1006

in HR but not LRtunedHR sea ice drift (Fig.23(d) and (h)). Evolution of one such Wed-1007

dell Polynya may be seen in an animation of the last ten years of HR sea ice thickness1008

in A. Roberts et al. (2019a). Improved coastal definition also means that East Antarc-1009

tic polynyas are better resolved in HR relative to LRtunedHR; an example of the high-1010

resolution evolution of one such case, the Mertz Polynya, may be seen in A. Roberts et1011

al. (2019c). Increased ice production in polynyas at high resolution along the Antarc-1012

tic coast is a function not just of coastal topology, but also of better resolved katabat-1013

ics. In the Arctic, coastal definitions are important for refining ice and ocean fluxes through1014

the Canadian Archipelago, including in Nares Strait, estimated to have a similar oceanic1015

southward through-flow as Lancaster Sound (McGeehan & Maslowski, 2012). It may also1016

have a significant southward freshwater flux in the form of sea ice (Kwok et al., 2010).1017

However, Nares Strait is completely closed-off in low-resolution v1 E3SM simulations,1018

as seen in the native model coastlines in Figure 21(c) and (i).1019

Even though key polar surface circulation features including the Beaufort Gyre,1020

Transpolar Drift, Ross Sea Gyre and Weddell Sea circulation are better resolved at high1021

resolution (Figs. 22 and 23), HR exhibits an ice cover that is too thin. We are working1022

to quantify this bias precisely in ongoing work using ICESat, CryoSat-2 and ICESat-21023

emulators that compare satellite-derived and model sea ice freeboard. However, here, we1024

surmise that thin ice is likely the cause of a negative ice extent bias everywhere in sum-1025

mer at high resolution (Figs. 20 and 21). Mean ice thickness against the Canadian Archipelago1026

never exceeds 3.5 m in HR except in slender coastal margins, even though submarine ob-1027

servations from 1958 to 1987 indicate vast year-round ice build-up exceeding 5 m draft,1028

with mean draft of 7-8 m in some Canadian coastal margins (Bourke & McLaren, 1992).1029

In the Weddell Sea, where Southern Ocean perennial sea ice is most prevalent, upward1030

looking sonar deployed by Alfred Wegener Institute in the early 1990s revealed winter1031

build-up exceeding 3 m draft against the Antarctic Peninsula (Harms et al., 2001; Strass1032

& Fahrbach, 1998; A. Roberts, 2005) as compared with HR mean ∼1950 thickness of about1033

2 m or less. Ice advecting into the Weddell Gyre in 1992 along the West Antarctic coast1034

near 15◦W ranged in draft between about 0.9-1.7 m in March and 1.1-2.3 m in Septem-1035

ber (A. Roberts, 2005) whereas it remains thinner in E3SM in all mid-20th century high-1036

resolution cases. By these measures, a much reduced thickness bias exists in LRtunedHR1037

in both hemispheres, pointing to less bias in the polar surface heat budget, especially1038

during summer, at low resolution.1039

4 Climate Variability1045

In addition to the mean state of the model, temporal variability is important. In1046

this section we provide a short discussion of the main modes of climate variability.1047

4.1 SST/SSH Variability1048

As expected, the HR v1 ocean exhibits a robust mesoscale eddy field, with max-1049

imum SSH variability located primarily in western boundary current regions and the ACC1050

(Fig. 24). The globally averaged SSH variability of the model (4.0 cm) compares well1051

with the satellite altimetry value of 4.2 cm, and the correlation between the model and1052

–37–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 22. Seasonal mean northern hemisphere sea ice streamlines (black) and drift speed

(shading) for years 21-50 of HR and LRtunedHR, truncated at 15% sea ice concentration. Me-

dian sea ice speeds from monthly model means within the respective sea ice zones appear in

blue.

1040
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1042

1043

Figure 23. As for Figure 22, but for the Southern Hemisphere.1044
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data is 0.73. Both the Gulf Stream and Kuroshio maxima are shifted about 50 km equa-1053

torward in the model when compared to AVISO, whereas the variability pattern in East1054

Australia Current (EAC) matches very well. However, the magnitude of the variability1055

in these three Western Boundary Currents is low by about 25% for the northern hemi-1056

sphere currents, and almost 50% for the EAC. As is typical of this class of coupled mod-1057

els (McClean et al., 2011; Delworth et al., 2012; Small, Bacmeister, et al., 2014), the Gulf1058

Stream Extension reaches too far across the North Atlantic and has a weak representa-1059

tion of eddies hooking around the Northwest Corner. The model Kuroshio exhibits two1060

of the observed modes of multiyear variability; the Large Meander to the south of Japan1061

around 138E (Qiu & Miao, 2000), and periods of alternating high/low eddy energy in1062

the Kuroshio Extension (Qiu & Chen, 2005; Douglass et al., 2012).1063

The low SSH variability in the Gulf of Mexico is due to lack of eddy shedding by1064

the Loop Current for most of the simulation. Soon after the beginning of the run, the1065

stratification in the core of the current drops, resulting in a baroclinically stable flow.1066

It isn’t until year 38 that an intrusion of cooler water increases the stratification enough1067

for the Loop Current to become unstable, with the first eddy that fully detaches and prop-1068

agates westward occurring in year 42. The current then continues in a more realistic un-1069

stable state for the remainder of the simulation, detaching 3 more eddies during years1070

44-50.1071

Similarly to the Gulf Stream and Kuroshio, the SSH variability in the Agulhas Retroflec-1072

tion is shifted 50-100km equatorward compared to AVISO. Somewhat remarkably, the1073

meanders in the model match AVISO extremely well in both zonal position and wave-1074

length. Agulhas eddies crossing the South Atlantic do not follow a single dominant path1075

as appears to be the case in, for example, Delworth et al. (2012), but instead are more1076

realistically distributed over a range of latitudes.1077
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Figure 24. Sea surface height variability (m) for (a) E3SMv1 HR (years 21-50 calculated from

5 day snapshots), and (b) AVISO data (https://www.aviso.altimetry.fr) from satellite altimetry

(years 1993-2013).

1078

1079

1080

Figure 25 shows the analogous SST variability (with the mean seasonal cycle re-1085

moved) compared with AVHRR satellite observations. Unlike the SSH, which has no di-1086

rect influence on the atmosphere, mesoscale SST features do have discernible effects on1087

fluxes of heat and moisture to the atmosphere. SST variability has been shown to mod-1088

ify cloudiness, precipitation, and surface winds (Bryan et al., 2010; Byrne et al., 2015),1089

while the location and strength of oceanic fronts can influence the path of storm tracks1090

(Small, Tomas, & Bryan, 2014). The bias in globally averaged variability is about 40%,1091

or 0.1◦C, though locally the model variations can be as much as 2◦C too large. This sug-1092

gests the possibility of unrealistically high mesoscale feedbacks in the model, though it1093

is beyond the scope of this paper to quantify this. Despite the large difference in nor-1094

malized globally averaged variance, the correlation between the model and data for SST1095

(0.72) is essentially the same as for SSH.1096

–39–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

2.5

2.0

1.5

1.0

0.5

0.0

a b

Figure 25. Sea surface temperature variability (oC) with the mean seasonal cycle re-

moved for (a) E3SMv1 HR (years 21-50 calculated from 5 day snapshots), and (b) AVHRR

(http://pathfinder.nodc.noaa.gov) satellite data (years 1982-2011 calculated from 5 day snap-

shots).

1081

1082

1083

1084

4.2 El Niño - Southern Oscillation1097

El Niño Southern Oscillation (ENSO) is a dominant mode of SST variability in the1098

tropical Pacific (e.g. Fig. 26a). Given the short simulation period, ENSO power spec-1099

tra are not a reliable indicator of model performance (e.g., Wittenberg, 2009). Although1100

the HR Nino 3.4 index looks reasonable in event magnitude and spacing, a single index1101

only presents a small data point to the fidelity of ENSO in E3SM at HR. To better ex-1102

amine the influence of resolution on ENSO structure, we therefore examine the domi-1103

nant patterns of SST variability in the HadISST data (N. Rayner et al., 2003), v1 HR,1104

and v1 LRtunedHR. As expected, the ENSO SST pattern emerges as the first EOF of1105

each SST dataset (shown in Figure 26). Broadly, each model captures the ENSO pat-1106

tern, with subtle but important differences. At low resolution, the warm SST anoma-1107

lies are too strong and extend too far west relative to observations, which is a common1108

model bias (e.g., Menary et al., 2018). Surprisingly, increased resolution has little im-1109

pact on ENSO pattern in E3SMv1. This is in contrast to studies with other models, which1110

found an improvement in westward extent (e.g., Kirtman et al., 2012; Sakamoto et al.,1111

2012; Menary et al., 2018). Across resolutions, the off-equatorial ENSO response is muted,1112

with the weakest response in HR. While the total tropical SST variance in HR is too large1113

(Fig. 25), the fraction of SST variance associated with ENSO in HR is too small (as noted1114

in Fig. 26) with the net result that the magnitude of ENSO-related SST variations in1115

HR is about right. In other words, tropical SST variance in the HR model run is too large1116

due to sources other than ENSO. This is confirmed in spectra of Nino3, 3.4, and 4 SST1117

anomalies (not shown).1118

To explore possible mechanisms for the lack of improvement in ENSO in the HR1129

simulation we examine DJF thermocline depth and SST anomaly variability along the1130

equator (Fig. 27a and b), where we define the thermocline as the depth of the 20oC isotherm1131

(e.g., Kessler, 1990; Yang & Wang, 2009). The LRtunedHR simulation most faithfully1132

represents the ARGO data, while the higher resolution simulation has a mean thermo-1133

cline depth gradient which is too weak. Previous studies (e.g., Kirtman et al., 2012) show1134

that SST anomalies are better represented when model resolution is increased. This is1135

also evident in our simulations, although unlike previous work, our LR simulation has1136

more variance along the equator than observed and increasing resolution reduces bias1137

by weakening variability. We also note that the SST anomaly variance observed is con-1138

sistent with the simulated thermocline depths in Fig. 27a. The HR model has the deep-1139

est thermocline depths and a more muted SST anomaly variance than the lower reso-1140

lution simulation (but higher than observed). Despite the deeper mean thermocline depths,1141

the HR simulation has a larger range of thermocline depth variability than LRtunedHR1142

or observations.1143
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(a) HadISST

(b) LRtunedHR

(c) HR

Variance Explained = 18%

Variance Explained = 22%

Variance Explained = 13%

Figure 26. First Empirical Orthogonal Function (EOF) of sea surface temperature for (a)

HadISST data (1870-2010), (b) LRtunedHR (yrs 1-50), (c) HR (yrs 1-50). The variance ex-

plained by each EOF is shown in the respective panels.
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Figure 27. DJF averages of (a) Thermocline depth (defined as the depth of the 20oC

isotherm; Z20, where the shading represents the maximum and minimum depths observed during

the period. (b) standard deviation of monthly SST anomalies and (c) average maximum verti-

cal viscosity above the thermocline (solid lines) and standard deviation (shading). For all plots,

fields have been averaged between 1oS and 1oN . The periods of analysis are: years 1-50 for HR

and for LRtunedHR. The ARGO data (Gaillard et al., 2016) in (a) runs from 2013-2017 and the

HadISST (c) is 1870 to 2015.
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Deeper mean East Pacific thermocline depths and larger variability in the HR sim-1144

ulation may be responsible for the response seen in Fig. 26 (e.g., F.-F. Jin, 1996). Large1145

fluctuations in the thermocline depth imply large variations in oceanic heat content (OHC).1146

Excess variation in OHC could reduce the persistence and magnitude of individual ENSO1147

events, which could explain the weakened SST-precipitation extremes correlation seen1148

in Fig. 31. Physically, we would expect the deeper depths in the East Pacific to result1149

from either vertical advection or diffusion. The vertical velocity at the equator is roughly1150

consistent between high and low resolution (not shown), given that the equatorial res-1151

olution in the LR configuration captures essential processes (e.g. Tropical Instability Waves).1152

The vertical diffusivity above the thermocline in the tropical Pacific is shown in Fig. 27c.1153

In the Eastern Pacific, the maximum vertical diffusivity at and above the thermocline1154

is higher throughout the tropical Pacific and increases toward the eastern boundary. It1155

is possible that the increased diffusivity in the cold tongue results in the weaker east/west1156

thermocline gradient, weakening the ENSO response at high resolution. However, it is1157

still unclear what causes this increased diffusivity or if a reduction in diffusivity would1158

improve the model representation of high resolution. This will be investigated in a fu-1159

ture publication.1160

4.3 Atlantic Meridional Overturning Circulation1161

The Atlantic Meridional Overturning Circulation (AMOC) plays a dominant role1162

in the Earth’s climate (e.g., Cheng et al., 2013), where changes in AMOC can influence,1163

among other things: North Atlantic storm tracks, northern-hemisphere climate, and CO21164

sequestration. In LRv1 (Golaz et al., 2019), weak AMOC strength and variability was1165

one of the most prominent model biases. Here we examine the influence of resolution on1166

the modeled AMOC at the location of the RAPID array (D. Rayner et al., 2011). A few1167

studies (Hirschi et al., 2013; Stepanov & Haines, 2014) have shown a mixed influence of1168

resolution on the simulation of AMOC. These studies have found that there is a clear1169

increase in AMOC variability across resolution, but the influence on the mean AMOC1170

is less clear. Fig. 28 shows the time series of the maximum AMOC at 26.5◦N, the loca-1171

tion of the RAPID array. When resolution is increased the mean AMOC strength in-1172

creases, with v1 HR being slightly too high.1173

Previous work (e.g., Cheng et al., 2013; Stepanov & Haines, 2014) suggest the AMOC1181

strength could change in response to many variables, including: surface forcing, ocean1182

stratification, and northward heat transport. Given that the mean LRtunedHR AMOC1183

is similar to LRv1, but with a very different atmosphere, it is unlikely that surface forc-1184

ing is responsible for the change in magnitude. Fig. 17 shows that the near surface strat-1185

ification is changed dramatically with higher resolution, most notably, the Labrador Sea1186

convection is vigorous in HR and absent at LR. However, it seems unlikely that increased1187

convection in the Labrador Sea is responsible for 10 Sv of increased transport from LR-1188

tunedHR to v1 HR. We have also examined mass transport through the Florida Straits1189

in each simulation (not shown) and the HR simulation has much stronger transport through1190

this region, suggesting a possible relationship between increased northward transport (likely1191

due to better simulation of the Gulf Stream as suggested by T. M. Joyce & Zhang, 20101192

in the HR simulation) and AMOC strength. The increased northward heat transport could1193

lead to the improvement in the Labrador Sea ice thickness and extent (consistent with1194

Rugenstein et al., 2013). This possible relationship is further explored by examining the1195

Atlantic Meridional Heat Transport (MHT) for each simulation (Fig. 29). All model re-1196

sults fall within the range of observational variability. Further, consistent with previous1197

results (Volkov et al., 2008), MHT increases in magnitude due to the resolution of mesoscale1198

eddies. It is possible that the increased heat transport encourages more evaporation in1199

the North Atlantic, increasing deep convection, and hence the AMOC (e.g., Cheng et1200

al., 2013; Stepanov & Haines, 2014).1201
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4.4 Madden Julian Oscillation1202

The Madden Julian Oscillation (MJO) is the dominant signal of intra-seasonal vari-1203

ability in the the tropical atmosphere (e.g., C. Zhang, 2005). The MJO has broad reach-1204

ing impacts through various teleconnections, including North American temperature and1205

precipitation (e.g., Donald et al., 2006; H. Lin et al., 2009). Accurate simulation of the1206

MJO could also lead to improved predictability (e.g., Jones et al., 2004). Therefore it1207

is important for E3SM to exhibit skill in simulating the MJO in order to have improved1208

projections of the North American hydrological cycle. In Figure 30 we see a robust sim-1209

ulation of the MJO at both resolutions. This is similar to the LRv1 simulations shown1210

in Golaz et al. (2019). Increasing model resolution leads to no clear improvement in the1211

modeled MJO, which is consistent with previous work (e.g., Kim et al., 2018).1212

Figure 30. Filtered wavenumber frequency power spectra for total precipitation (mm2

day−2), shown as a ratio of the smoothed pseudo-red background spectra of the same field follow-

ing Wheeler and Kiladis, 1999 (15◦ S-15◦ N), for (a) TRMM, (b) LRtunedHR and (c) HR with

data interpolated to 1◦.

1213

1214

1215

1216

Figure 30 also shows a clear underestimate of the tropical wave variability in the1217

HR simulations. In particular the higher frequency Kelvin wave activity is near absent1218

compared to observations. The tunings in the HR simulations do not themselves explain1219

the lack of Kelvin Wave activity, since when these tunings are applied to a low resolu-1220

tion configuration (LRtunedHR; Fig. 30b), the wave activity remains very similar to the1221

default 1◦ configurations seen in Golaz et al. (2019), which do retain some Kelvin wave1222

activity, albeit at spuriously high frequencies.1223

Recent theoretical work on the MJO (B. Wang et al., 2016; Chen & Wang, 2019)1224

have proposed a dynamic moisture mode framework to fully encompass previous MJO1225

theories. This work suggests that models which exhibit robust MJO power preferentially1226

also have strong feedbacks between cloud radiative forcing, precipitation, and moisture1227

convergence (Chen & Wang, 2019). Chen & Wang (2019) also find that for models to1228

correctly simulate the Kelvin wave component of the MJO, the feedbacks between bound-1229

ary layer convergence and low level moisture and free tropospheric waves and convec-1230

tive heating must be correctly captured. It is possible that E3SMv1 has biases in one1231

or both of these feedbacks, leading to the anomalously weak Kelvin wave signal seen in1232

Figure 30. An exploration of these feedbacks is beyond the scope of this overview and1233

is the subject of a future manuscript.1234
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5 Extremes1235

Changes in the frequency and character of low probability events have great im-1236

pact on people and the environments in which they reside. Scaling and theoretical con-1237

siderations would favor more accurate representations of these events by higher resolu-1238

tion climate models. In this section, we test this assumption for a variety of extreme weather1239

events.1240

5.1 Extreme Precipitation over California1241

In this section, we evaluate the impact of horizontal resolution on extreme precip-1242

itation over California. California was chosen because of its large population, its impor-1243

tance to global food production, and its mountainous terrain which one might hope is1244

better captured at higher resolution.1245

Wintertime precipitation over California comes from moisture transported by the1251

large-scale circulation. This leads us to evaluate the water vapor transport and sea sur-1252

face temperature anomalies which give rise to wintertime extreme precipitation in this1253

region. To avoid the need for high-frequency output, this is done by first creating an ex-1254

treme precipitation index by taking the sum of all daily precipitation values above the1255

95th percentile (computed separately for each model grid cell) within each month and1256

calculating the DJF mean for each year, then computing the average index over Cali-1257

fornia (defined here as 35◦N-42◦N, 125◦W-118◦W). The timeseries of DJF average of SST1258

and vertically-integrated water vapor transport (IVT) for every year are then regressed1259

on this extreme precipitation index (separately for each model grid cell) and the result-1260

ing slope is plotted. This approach is presented in detail in Dong et al. (2018). Figure 311261

shows the resulting regressions of SST and the vertically integrated water vapor trans-1262

port between 1000 and 500hPa on the winter extreme precipitation averaged over Cal-1263

ifornia. Panels a and b show values expected from observations. Both precipitation and1264

water vapor transport in this figure comes from ECMWF Interim Reanalysis Data (ERA-1265

Interim) at a 1.5◦ × 1.5◦ resolution (Dee et al., 2011) and monthly SST is from the1266

Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST, 1◦ × 1◦, N. Rayner1267

et al., 2003). Observations and reanalysis products from the 1981-2010 period are used.1268

ERA-Interim data shows that extreme precipitation is associated with enhanced cyclonic1269

circulation over the North Pacific which transports moisture-laden air from the tropics1270

up the west coast of the US. Both HR and LRtunedHR simulations are able to capture1271

this basic pattern, though simulated moisture transport is a bit too strong in both mod-1272

els. In addition, moisture destined for California follows a slightly more zonal trajectory1273

in HR due to the cyclonic trajectory over the North Pacific being shifted towards the1274

coast and northward. This flow pattern is associated with an El Niño-like SST pattern1275

with warm anomalies in the tropical central-to-eastern Pacific. This tropical SST pat-1276

tern is reasonably reproduced at low resolution, but is entirely absent at high resolution.1277

To further explore why the SST anomalies related to extreme precipitation in Cal-1278

ifornia are not reproduced in high-resolution simulations, we examine the atmospheric1279

response to ENSO during boreal winter. Figure 32 shows the regression of precipitation1280

and 500 hPa geopotential height onto the Nino3.4 index. Observations (Fig. 32a-b) show1281

that El Niño conditions cause a weakened Walker circulation with reduced precipitation1282

in the tropical western Pacific and increased precipitation in the central-to-eastern trop-1283

ical Pacific. The tropical ENSO signal can be propagated to the North Pacific via the1284

Pacific-North American (PNA) pattern in geopotential height to influence precipitation1285

in California (Fig. 32b), consistent with Dong et al. (2018). The low-resolution (LRtunedHR)1286

simulation reproduces the PNA pattern as well as the mean precipitation response to1287

ENSO (Figs. 32c-d). The HR simulation, on the other hand, has a weaker precipitation1288

response over the tropical eastern Pacific and a weaker PNA teleconnection over the North1289

Pacific (Figs. 32e-h), suggesting that the low resolution better reproduces the atmospheric1290
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Figure 31. Regression onto the time series of winter extreme precipitation of (left) monthly

vertically-integrated water vapor transport (kg m−1 s−1) and (right) SST (◦ C) averaged over

DJF from (a) ERA-Interim, (b) HadISST, (c, d) LRtunedHR, and HR (e, f) runs. See text for

details. Hatched areas indicate that the regression coefficients are statistically significant at the

95% level of confidence.
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response to ENSO events. These results are consistent with the weak relationship be-1291

tween winter extreme precipitation in California and SST in the high-resolution simu-1292

lations (Fig. 31) as well as the muted ENSO response seen in Fig. 26.1293

5.2 Tropical Cyclones1298

Tropical Cyclones (TCs) are some of the most destructive weather systems in the1299

global tropics and subtropics with the potential to impact climate (Emanuel, 2003). It1300

is thus very important to improve our understanding of the response of these features1301

to changes in air/sea temperatures and shifting meteorological patterns. A rigorous anal-1302

ysis of TCs based on observations is often constrained by the length of the satellite record1303

and by the lack of direct measurements of certain ocean-atmosphere parameters (Henderson-1304

Sellers et al., 1998), motivating the use of high-resolution numerical models to fill this1305

knowledge gap. Consequently, a key driver of high-resolution climate modeling efforts1306

has been the realistic simulation of TCs and their climatology (K. Walsh et al., 2010;1307

Knutson et al., 2013; Haarsma et al., 2016). With this consideration, we now examine1308

TC simulation in E3SM.1309

In Fig. 33, 50 years of TC tracks are shown from observations (Figure 33a) and E3SMv11314

(Fig. 33b and c). Observed TC tracks from the period 1966-2015 are obtained from the1315

International Best Track Archive for Climate Stewardship (IBTrACS, Knapp et al., 2010).1316

For the low-resolution TC tracks, we use a 50-year historical run of E3SM. In the model1317

simulations, TCs are detected using TempestExtremes (Ullrich & Zarzycki, 2017; Zarzy-1318

cki & Ullrich, 2017), a scale-aware feature tracking software. TC-like vortices are detected1319

based on local minima in sea-level pressure, positive temperature anomaly at the 200 and1320

500 hPa levels to ensure a warm core, and the wind speed at the lowest model level. For1321

further details regarding the TC-detection algorithm, see Ullrich & Zarzycki (2017). Not1322

surprisingly, in the low-resolution version of the model, simulation of TCs is consider-1323

ably underestimated (Fig. 33b). On average, nearly 15 TC-like features are generated1324

globally in the low-resolution version, which is a substantial underestimation when com-1325

pared to observations (Fig. 33a) where the annual global mean is about 92. However,1326

this is in reasonable agreement with those produced by many other climate models at1327

a similar resolution of about 100 km (Camargo, 2013). The annual mean global TC fre-1328

quency is considerably improved in the high-resolution simulations of E3SM (Fig. 33c).1329

On average, about 64 TC tracks are produced in each model year. When it comes to the1330

distribution of TC tracks in different basins, we find spurious TC activity being produced1331

in the sub-tropical South Atlantic and Southeast Pacific. The model also produces TC1332

tracks in the Mediterranean region, which are likely related to Medicanes or TC-like storms1333

in that region (Cavicchia et al., 2014).1334

Next, when it comes to intensity, the strongest TC produced in the low resolution1340

E3SM is a Category 2 on the Saffir-Simpson Scale with a maximum wind speed of about1341

46 ms−1. On the other hand, the most intense TC from the high-resolution simulations1342

nearly reaches Category 5 with a maximum lifetime wind speed of nearly 70 ms−1 (Fig. 34a).1343

The track of this TC is reminiscent of Supertyphoon Haiyan, which devastated the Philip-1344

pines in 2013 (I.-I. Lin et al., 2014). The cold SST wake produced by this TC is also shown1345

in Fig. 34a. Consistent with theory, the strongest cooling occurs on the righthand side1346

of the track (Price, 1981). The magnitude of the cold wake increases with the strength1347

of the storm and a maximum cooling of about 3oC is produced just before landfall. Sim-1348

ilarly, Fig. 34b shows an example of an intense TC in the Atlantic. The track of this TC1349

is almost identical to that of Hurricane Andrew (1992), one of the most destructive hur-1350

ricanes in Atlantic history (Pielke Jr & Landsea, 1998). After forming in the Atlantic,1351

the TC goes around the Caribbean islands and makes two landfalls, first as a Category1352

3 TC over South Florida and subsequently as a high Category 1 TC over the Northern1353

Gulf of Mexico. Again, a cold SST wake can be seen, stronger on the righthand side of1354

the track, with a maximum cooling of about 5oC in the Gulf of Mexico. While we have1355
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Figure 32. Regression onto time series of the Nino3.4 index during winter (DJF) of (left)

monthly mean precipitation (mm day−1) and (right) 500 hPa GPH (m; right) from (a) GPCP,

(b) ERA-Interim, (c, d) low-resolution E3SM simulation, and (e, f) HR runs. The dotted areas

indicate that the regression coefficients are statistically significant at the 95% level of confidence.
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(a)

(b)

(c)

Figure 33. Global distribution of TC tracks from 50 years of a) Observations, b) Low-

resolution E3SM simulations and c) High-resolution E3SM simulations. Tracks are color-coded

based on the along-track intensity. The legend corresponding to the strength of the TCs is also

shown.
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Figure 34. a) Track of the most intense TC produced in the high-resolution E3SM simula-

tions, color-coded by the along-track intensity. b) An example of an intense TC produced in the

Atlantic basin. In both (a) and (b), the color in the background represents the difference between

SST on the day of the TC’s formation and SST a week later. The legend shown in B corresponds

to the along-track intensity of the TCs.
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only presented an overview of TC simulation in this manuscript, we will follow this with1356

another study focused on TCs with a more detailed description and analysis.1357

5.3 Atmospheric Blocking1358

Atmospheric blocking is a synoptic-scale weather phenomenon associated with rel-1362

atively stationary regions of anomalously high pressure. Given that this feature is as-1363

sociated with other forms of extreme weather, including heat waves, cold air outbreaks,1364

and extreme precipitation, it is desirable to capture the frequency and character of these1365

features with high fidelity. Global climate models, while able to approximate broad spa-1366

tial blocking patterns, have traditionally struggled with correctly replicating observed1367

blocking frequencies (Dunn-Sigouin & Son, 2013). Because blocking typically emerges1368

as the result of topographic drivers, improved model resolution (and subsequent improve-1369

ments in the representation of topography) is expected to give rise to an improvement1370

in model performance. However, Schiemann et al. (2017) studied the sensitivity of block-1371

ing quality to resolution and only documented significant improvements in Euro-Atlantic1372

blocking in GCMs in the summer season, with practically no improvement in the Pacific1373

basin.1374

The blocking detection algorithm used here is a modification of Dole & Gordon (1983)
that is detailed in Pinheiro et al. (2019). The algorithm searches pointwise for latitude-
adjusted 500 mb geopotential height (Z500) anomalies that are greater than 1.5 times
the standard deviation of the Z500 anomaly at that point, calculated for each day of the
year. That is, we define

Z∗ = Z − Z Z∗adj = Z∗ × sin 45◦

sinφ
, (1)

where Z∗ is the Z500 anomaly, Z is the current Z500 value, Z is the long term daily mean1375

(LTDM) of the Z500 field at each day of the year, Z∗adj is the latitude-adjusted Z500 anomaly,1376

and φ is the latitude. An additional minimum anomaly threshold of 100 m is imposed1377

at coordinates where the calculated threshold value is low (due to anomaly time series1378

with relatively low anomaly magnitudes and small standard deviation value).1379

Blocks from each dataset were identified separately for the Northern and South-1380

ern Hemispheres, using the StitchBlobs program in TempestExtremes (Pinheiro et al.,1381

2019; Ullrich & Zarzycki, 2017) with the normalized anomalies as the input. The detec-1382

tion algorithm was limited to a latitude range of 25-75 degrees in each hemisphere, with1383

blob persistence of 5 days, minimum size of 106 km2, and a minimum 50% overlap of blobs1384

between timesteps. The results of this analysis are depicted in Figure 35. Performance1385

in the southern hemisphere was largely unchanged regardless of model resolution, so we1386

focus on analyzing the northern hemisphere. Analogous to the results of Schiemann et1387

al. (2017), the NH summertime blocking density exhibits much smaller biases in HR com-1388

pared to LRtunedHR across all regions. However, there is little improvement in the NH1389

wintertime blocking density in HR compared with LRtunedHR. Further, a pattern of un-1390

derestimated blocking density at lower latitudes and overestimated density at higher lat-1391

itudes emerges in the high resolution run. This pattern suggests that blocks are form-1392

ing too far north, likely because of a bias towards weaker climatological winds that are1393

more susceptible to curving at higher latitudes, and stronger zonally directed winds at1394

lower latitudes. This pattern is particularly prominent over the Northern Pacific. Nonethe-1395

less, there is some improvement in the overestimation of wintertime blocking in the Euro-1396

Atlantic region.1397

6 Model Sensitivity1398

In Golaz et al. (2019), LRv1 was shown to reproduce the observed total warming1399

over the 20th century. This warming was, however, accomplished through a balance be-1400
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Figure 35. Pointwise frequency of 500-hPa blocking for (left) December-January-February

(DJF) and (right) June-July-August (JJA). The rows indicate (a) ERA-Interim reference, and

differences between (b) E3SM HR and reference, and (c) E3SM LR and reference.
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tween extremely high equilibrium climate sensitivity (5.3 K) and very strong aerosol re-1401

sponse as encapsulated in LRv1’s effective radiative forcing (ERF) of -1.65 W/m2. These1402

sensitivities were argued to be too large because their combined effect results in under-1403

predicted warming during years when aerosol emissions were particularly strong and overly-1404

strong warming in years when aerosol load was reduced. In this study, we will look at1405

the impact of changing resolution and tuning on these sensitivities. Aerosol sensitivity1406

is expected to decrease with resolution (P.-L. Ma et al., 2015). Climate sensitivity is also1407

likely to change because more scales are explicitly resolved at higher resolution.1408

Since we cannot afford to run the fully-coupled HR model for the hundreds of years
necessary to compute transient or equilibrium climate sensitivity, we instead diagnose
the net climate feedback parameter (λ) from the difference between a 5 yr atmosphere-
land simulation with SST and sea ice extent prescribed at current-climate conditions and
a simulation which is identical but has SST increased uniformly by 4 K. This approach,
popularized by Cess et al. (1989), allows one to compute the effective net feedback from
the change in TOA radiative imbalance ∆FTOA caused by forcing global-average sur-
face temperature Tglob ave to change:

λ = −∆FTOA/∆Tglob ave. (2)

Ringer et al. (2014) show that λ from Cess experiments provides a reasonable, though1409

slightly high, approximation to values obtained by more expensive methods. Terms on1410

the right-hand side of Eq. 2 are taken from 5 year simulations with annually-repeating1411

forcings representative of the decade centered on 2010. This choice differs from typical1412

Cess experiments (which use pre-industrial forcings) and was made because pre-industrial1413

fixed-SST model forcings were not yet available. Simulation year is unlikely to have a1414

leading-order effect on the sensitivity of λ to resolution. SST and sea ice are actually pre-1415

scribed from year 2013 because it was more representative of decadal-average behavior1416

than 2010. For more details on configuration, see Sect. 2.4.1417

The first row of Table 6 provides λ values for HR, LRtunedHR, and LRv1 simu-1418

lations. The direct effect of increasing resolution causes a slight strengthening of λ, in-1419

dicating stronger resistance to temperature change and therefore weaker climate sensi-1420

tivity. Nevertheless, changing parameterization constants has a larger impact than res-1421

olution, as can be seen by the differences between the two low-resolution simulations.1422

Aerosol sensitivity was also computed from 15-month simulations with horizontal1423

winds nudged towards ERA-Interim using a nudging timescale of 3 hrs. Kooperman et1424

al. (2012) demonstrate that nudged simulations of this type allow for accurate aerosol1425

sensitivity predictions from 1 yr runs by removing weather noise differences between the1426

simulations. Direct aerosol effects are diagnosed by calling radiation twice in each run:1427

once with modeled aerosols and again with clean conditions. Indirect aerosol effects are1428

computed by repeating our present-day nudged simulation with anthropogenic aerosols1429

and precursor gases replaced with pre-industrial values. As explained and defended in1430

Ghan (2013), this approach allows the total aerosol ERF to be decomposed into ERF1431

due to aerosol-cloud interaction (ERFaci), ERF due to aerosol-radiation interaction (ERFari),1432

and ERF due to surface albedo change. Note that changes in land use/land cover may1433

also induce resolution dependence in aerosol changes because higher resolution results1434

in stronger wind maxima which lofts more dust (Sect. 3.3; this effect is not included in1435

the present analysis.1436

ERF, ERFari, and ERFaci are provided for all 3 model configurations in Table 6.1437

ERFari is positive (warms the planet) due to the strong absorption of anthropogenic black1438

carbon (BC) in the cloudy sky, especially when BC resides above clouds and bright snow/ice.1439

The reduction in surface albedo straightforwardly leads to a positive ERF change. ERFaci1440

is strongly negative in all simulations due to cloud brightening with increased cloud con-1441

densation nuclei. Surprisingly, increased resolution has no effect on ERF. ERFaci does1442

weaken as expected, but its resolution sensitivity is very small and is counterbalanced1443
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Table 6. Net climate feedback parameter (λ, unit: W/m2/K) and aerosol-related effective

radiative forcing (ERF, unit: W/m2) of different E3SM versions

1449

1450

HR LRtunedHR LRv1

λ -1.29 -1.20 -1.36
ERF -1.37 -1.37 -1.64
ERFaci -1.49 -1.51 -1.76
ERFari 0.04 0.05 0.03
Surf. albedo ERF 0.09 0.08 0.10

by a corresponding weakening of ERFari. Tuning has a much larger effect on ERF than1444

resolution change. ERFaci in particular is weakened by ∼15% due to tuning changes be-1445

tween LRtunedHR and LRv1. This emphasizes the need to understand aerosol sensitiv-1446

ity to parametric choices. More detailed analyses of E3SMv1 aerosol distribution and1447

sensitivity will be presented in a future paper.1448

7 Conclusions1451

In this study, we describe the high-resolution (HR) configuration of E3SMv1 and1452

document its simulation characteristics in a 50 year long climatological control run with1453

time-invariant 1950 forcings following the HighResMIP protocol. The atmosphere and1454

land components have a horizontal resolution of approximately 0.25 degrees longitude1455

and latitude, which is adequate for realistically simulating most weather phenomena. The1456

variable resolution ocean and sea ice grid employs an 18 km horizontal grid spacing near1457

the equator, which smoothly reduces to approximately 6 km near the poles. This is suf-1458

ficient to capture the most energetic motions in the ocean, which are poorly represented1459

in standard resolution coupled climate models.1460

The HR version of E3SMv1 is superior to its low-resolution counterpart (and most1461

CMIP5 models) in global root-mean-square error for most important variables. Improve-1462

ment results from a combination of resolution increases, related tuning changes, and per-1463

haps from using a short initialization period. Improved resolution was particularly ben-1464

eficial to ocean and ice components. Most strikingly, the excessive sea ice extent in the1465

low-resolution (LR) simulation is eliminated in our HR run, with a resulting reduction1466

of cold and fresh biases in that region. Increased resolution also strengthened (improved)1467

the Atlantic Meridional Overturning Circulation and associated meridional heat trans-1468

port, due to the improved Gulf Stream. Reduced ice coverage in the Labrador Sea also1469

has important beneficial impacts on precipitation bias south of Greenland. In this re-1470

gion and elsewhere, improvements come from better-resolved bathymetry, greater extremes1471

in winds and currents, and strengthened ocean eddy kinetic energy. Unlike its low-resolution1472

counterpart, the HR model is also able to capture large polynas typical of those observed1473

in the Weddell Sea. Unfortunately, improvements in ice extent do not translate to im-1474

provements in ice thickness, which is generally too thin in our HR simulations. Another1475

major improvement in HR relative to LR is in the spatial distribution of SST and salin-1476

ity.1477

As expected, regional cloudiness and precipitation patterns are improved by intro-1478

ducing finer-scale topographic detail. Likewise, hurricanes are better captured, runoff1479

and streamflow are generally improved, extreme precipitation events are better simulated,1480

and the ratio of convective to stratiform precipitation decreases at higher resolution. For1481

aerosol, increased extremes in winds at higher resolution result in higher dust and sea-1482

salt emissions, while enhanced spatial inhomogeneity in clouds and precipitation at finer1483
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resolution increases aerosol wet removal. Shift from parameterized convective transport1484

to resolved-scale vertical advection reduces dry deposition at the surface as more aerosols1485

are lofted into the upper troposphere. The net effect is an increase in global-average nat-1486

ural aerosol and a decrease in anthropogenic aerosol. The regional picture is more com-1487

plicated. Clouds are relatively unaffected by resolution, though there is a slight tendency1488

for cloudiness to decrease at all levels as resolution increases.1489

Interestingly, several features found to improve with resolution in other studies didn’t1490

do so in our simulation. Most notably, stratocumulus and associated warm SST biases1491

in the eastern subtropical oceans were not substantially improved at higher resolution.1492

This lack of improvement occurs because unlike other studies, increased wind stress-induced1493

oceanic upwelling with finer resolution is confined in E3SMv1 to an area which is neg-1494

ligibly small compared to the size of the region of deficient low clouds. Another surprise1495

was degradation in the westward extent of ENSO with increasing resolution. Overly deeper1496

East Pacific thermocline depths in the HR simulation offer one possible explanation for1497

the lack of ENSO improvement, but more study is needed. Oddly, MJO-related Kelvin1498

wave energy also disappears in E3SMv1 as resolution increases. Another surprise was1499

that the diurnal cycle of precipitation was almost completely unaffected by resolution1500

change, even in areas where sea breezes are expected. Additionally, while better topog-1501

raphy did improve the frequency of northern-hemisphere summertime blocking events,1502

wintertime frequency actually got worse.1503

Another interesting finding is that large-scale patterns of climatological-average cloudi-1504

ness and precipitation were relatively insensitive to resolution change. Climate and anthropogenic-1505

aerosol sensitivity are also almost completely unaffected by changes in resolution when1506

tuning parameters were held fixed. Lack of aerosol sensitivity change occurred even though1507

ERFaci is expected to weaken with resolution (P.-L. Ma et al., 2015) because that weak-1508

ening was slight and was completely compensated by increased ERFari. The tuning needed1509

to maintain energy balance and model skill with changing resolution, in contrast, had1510

a relatively large effect on climate and aerosol sensitivity. Improved prediction at global1511

scales due to resolution of important fine-scale processes is a major motivator for the push1512

to higher resolution. In this context, the finding that model sensitivity in E3SMv1 is rel-1513

atively insensitive to resolution is important and perhaps reassuring. There are, how-1514

ever, several caveats to this result worth keeping in mind. First, this finding is from a1515

single model. Other models may respond differently. In particular, models whose stra-1516

tocumulus increases with resolution are likely to have stronger changes in climate and1517

aerosol sensitivity with resolution because stratocumulus changes have such a powerful1518

impact on TOA radiation. Second, this finding is specific to the transition from 100 km1519

to 25 km atmospheric grid spacing. It could be that even higher resolution is needed in1520

order to capture the processes governing model sensitivity.1521

In summary, the high-resolution coupled version of E3SMv1 is a world-class climate1522

model. Many aspects of model climate benefit from finer resolution. Ocean and sea-ice1523

behavior and fine-scale atmospheric features are particularly improved by increased grid1524

spacing. Surprisingly, several features which improved with resolution in previous high-1525

resolution studies did not improve in this study. In addition, anthropogenic-aerosol and1526

climate sensitivity were almost completely unaffected by resolution change. These re-1527

sults suggest that while beneficial, increased resolution does not solve all model prob-1528

lems.1529
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