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Large Wildfires are increasing in the western US over recent decades

Greater frequency

2020 California wildfire season was worst-ever of the modern era ($12B damages).

Greater area (intensity)

Projected:  more & more
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Wildfire-driven thunderstorms pump smoke into the stratosphere
Pyrocumulonimbus (PyroCb)

Stratosphere

Troposphere

• Fire smoke enters the stratosphere by PyroCb convection or self-lofting
• Smoke absorbs & reflects sunlight = long-time negative radiative forcing (RF)
• Aerosols = heterogeneous chemistry = stratospheric O3 depletion & UV-B increase

Aerosol Mass (Tg) injected into the stratosphere

                           from Wildfires and Volcanoes
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§ pyrocumulonimbus cloud

§ weakness in global climate models (GCMs):
— O(100) km is too coarse for local processes in the source 

region after wildfire emissions
— missing physics (e.g., chemical-aerosol interactions) in 

global convection-permitting models (i.e, O(0-5) km)

Multiscale framework for large wildfires

3km Regional 
Refinement Model 

(RRM)
Interactive chemistry 
(chemUCI+Linoz v3)

WRF-SFIRE
HRRR

Creek Fire 2020 CA
• 14 km pyrocumulonimbus

• duration: 1 month (active > 50%)

• Area: 290,000 acres (1,200 km2)

InWikipedia.
* GCM with the fineset resolution 
achieved 3 km & feasible for 
climate-length simulations

The largest single 
blaze in the history of 
California (until 2020)! 
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25 km

§ EAMv2 = Energy Exascale Earth 
System Model, atmosphere 
model version 2 (100 km) (Golaz 
et al, 2022)

§ RRM = Regionally Refined Model 
(Tang et al. 2019, 2023)

§ CP = Convection-Permitting (1-5 
km) SCREAM (Caldwell et al, 
2021)
— v1: dx = 3 km over Califormia and 1°

resolution covering the remainder of 
the globe

EAMv2 3km CARRM

3 km100 km

CARRM: 3 -> 100 km
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CARRM: efficient configuration

§ Global CP models are too expensive
— the global 3 km SCREAM simulation using NERSC Cori KNL 68-core 1536 nodes has a total throughput 

of about 4-5 simulation days per day (SDPD)

§ Small enough high-res domain so that climate length simulations can be performed
— 0.68 simulation years per day (240 SDPD) using LC quartz Intel(R) Xeon(R) 36-core 120 nodes

Model Element Physics Column Dynamics Timesteps

SCREAM (global 3km) 6,291,456 25,165,824 9.375

CARRM (CA 3km) 16,968 67,872 9.375

NARRM (CONUS+ 25km) 14,454 57,816 75
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UV50h6hL: nudging towards 

ERA5 winds with 50h-strato and 

6h-tropo timescale

• “U” – stratosphere (< 100 hP)

• “L” – troposphere (> 100 hPa) 

CARRM nudging strategy focusing on strat aerosol

nudging window

zonal wind

temperatrue

* deep_conv is turned off globally
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§ nudging timescales, 
components

CARRM nudging sensitivities
zonal wind

meridional wind

temperature

CA 15-60N

wind-only nudging 
gives better wind profile 

over CA

temperature-nudging 

gives more realistic 

thermodynamic conditions

* important for certain research objectives 
(e.g., BC-heating studies)
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too weak BC 
pump to the  
stratosphere

+ prescribed 
smoke 

Injection at 
high level

185 hPa

386 hPa

714 hPa

986 hPa

889 hPa

§ WRF-CHEM-SFIRE (William 
Lassman)

WRF-SFIRE smoke as initial condiations

WRF box ~ 1x1 deg

horizontal resolution: 

300m x 300m

BC after 5 days

WRF (0.013 Tg) WRF+0.3Tg at 185 hPa

total smoke mass: 

0.013 Tg
cb: 
-0.2 – 0.2 ppbm

Creek fire: 0.06 Tg (*Yang Chen, GFED5)
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Height-time evolution of BC, OC

* all for IC–CTL (box: 15N-60N)

CARRM +  
WRF-CHEM-SFIRE

CARRM +  
WRF-CHEM-SFIRE+0.3Tg at 185 hPa

BC
OC

§ WRF-CHEM-SFIRE

max: 0.06

max: 10.002

Black Carbon

Organic Carbon

max: 0.002

max: 0.1504
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Height-time evolution of BC, OC

BC
OC

§ Why smoke pumping is so weak? 
Inadequate fuel loading?    
=>WRF-SFIRE (Jungmin Lee)
* area averaged fuel mass loading X2 larger than 
the WRF-CHEM-SFIRE run

CARRM +  
WRF-SFIRE+0.3Tg

CARRM +  
WRF-SFIRE

smoke mass evolution 

total smoke mass: 

0.021 Tg

max: 0.1max: 0.005

* all for IC–CTL (box: 15N-60N)
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§ Why smoke pumping is still too 
weak? Will fire radiative power 
helps? 

HRRR-smoke as initial condiations

HRRR vs. WRF-SFIRE simulations:

• domain: CONUS vs. tiny box in CA

• resoluation: 3km vs. 300m

• HRRR: plume injection height using 

fire size and heat flux determined 

by fire radiative power (FRP) data

Smoke mass evolution 

• The plume injection height are lower than that of WRF-SFIRE

BC OC

CARRM +  
HRRR

* Provided by Eric James 
from NOAA

The High-Resolution Rapid Refresh (HRRR) - Smoke

Height-time evolution of BC, OC

max: 0.1max: 0.005
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§ WRF-CHEM-SFIRE 

§ WRF-SFIRE 

§ HRRR-smoke

Comparison of smoke burden

initial input
total smoke mass over the 
same WRF domain (Tg)

WRF-CHEM-SFIRE (Wi) 0.013

WRF-SFIRE (JM) 0.021 *

HRRR-smoke 0.017

CARRM +  
WRF-CHEM-SFIRE

CARRM +  
WRF-SFIRE

CARRM +  
HRRR-smoke

BC

* note HRRR has a much bigger domain

colorbar max: 
0.002 ppbm

colorbar max: 
0.005 ppbm

• HRRR simulation suggests that the key is not 

the smoke amount but the smoke injection 
height (been quantified in Lee et al., 2023).
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§ high frequency: 10 min

Comparison with NASA GOES-R ABI AOD

Retrieved AOT (at 0.55 micron) partioned by mode 
index (for Best solution)

* Provided by YingXi Shi in NASA

• The smoke injection 

height is crucial

0.3Tg added at 185 hPa

0.3Tg added by scaled 
with the vertical 
distribution of WRF-
smokeCARRM +  

WRF-SFIRE+0.3Tg

CARRM +  
WRF-CHEM-SFIRE+0.3Tg at 185 hPa

* 2020-09-11
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SAGE-III 18 km aerext

§ Stratospheric aerosol extinction 
coefficient

§ Stratospheric AOD

Comparison with SAGE III-ISS

SAGE-III SAOD 521 nm
CARRM simulated SAODVIS

• the simulated SAODVIS using the default smoke amount in WRF-SFIRE/HRRR are 2-3X smaller than SAGE-III SAOD at 521 nm

• WRF-SFIRE-0.3Tg is comparable to SAGE-III

* note the sampling 
process are different:

hourly 
15-60N 
mean

hourly data 
points within 

15-60N
vs.
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§ SAGE III-ISS solar L2 v5.2: height with aerosol 
extinction coefficient > 1.5 x 10-4 km-1

§ CALIOP L2 v4.21: pressure with aerosol 
backscatter coefficient at 532 nm > 3 x 10-4 
km-1 sr-1

Maximum plume rise height

The random forest ML technique quantify the relative 

importance of each parameter (Lee et al. 2023).
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§ This framework enables us to capture large wildfires and explore its climate 
impacts from the high-resolution source region.

§ Implementing smoke initial conditions from WRF/HRRR still cannot pump 
enough smoke into stratosphere, suggesting for better representation of plume 
rise process.

§ Future work:
— Improve aerosol scheme to include brown carbon (Ziming Ke, implementation finished)
— Implement a plume rise parameterization to include the satellite fire radiative power (Ziming 

Ke and collaborators in UC Irvine)

Summary and future work
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