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Reduced Electron Models for Edge Simulation
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We consider the treatment of electrons in kinetic simulations of edge plasmas. A fully kinetic treatment of
electrons is expensive because of the short timescales associated with rapid streaming along field lines. Hence
we survey a number of reduced options, of varying complexity, with particular attention to the ‘“adiabatic
model” commonly used for core plasmas. We note that the adiabatic model is the linear limit of a Boltzmann
model, whose nonlinear form is more appropriate for the large potential variations in edge plasmas, and then
consider extensions to the Boltzmann model which render it applicable to a plasma which includes end-loss in
the scrape-off layer.
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1 Introduction

There is now a number of efforts world-wide to develop whole-edge multi-dimensional kinetic simulation codes.
This was in response to the recognition that finite mean-free-path effects along magnetic field lines and finite-
ion-radial-orbit widths make the validity of fluid treatments marginal. These new codes are based on drift or
gyrokinetics. As with their cousins for core plasmas, the addition of fully kinetic electrons, while desirable,
is computationally challenging because of short timescales and difficulties associated with avoiding numerical
instabilities. So it is desirable to consider the applicability of reduced models.

2 Survey of simplifying approximations

We begin with the electron drift-kinetic equation (DKE) in total energy £ (including electrostatic potential) and
magnetic-moment p coordinates ,
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where v = [(2/m)(€ — uB +e®)] and & represents acceleration by any inductive part of the electric field. This
equation is a simplification of the full 6-dimensional kinetic equation, valid for phenomena slow compared to the
electron gyrofrequency and long in scale compared to the electron gyroradius. It is computationally challenging
because the parallel-streaming and collision terms introduce fast timescales into the complete system and also
because it introduces fast fluctuation timescales which must be resolved in an explicit code to avoid numerical
instability, and even then introduces extraneous noise into simulations. These difficulties can be addressed by
introducing implicitness into the parallel-streaming and collision times.

As a further reduction of Eq. (1) one might consider a parallel-stream-averaged (also known as “bounce-
averaged”) DKE to eliminate the fast parallel-streaming term. This makes sense for high-temperature core sim-
ulation, but not in the edge, where collisions are sufficiently strong to compete with parallel streaming over at
least parts of the boundary region. There are regimes in which the bounce-averaged DKE is justified, but the
limited applicability and computational complexity (non-locality, kinetic phase-space dimensions, and remaining
fast timescales) suggest that this equation is not worth the bother.
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The relatively high electron collisionality leads one to consider electron fluid equations (moments of the DKE,
or the high-magnetic-field limit of moments of the full kinetic equation). The full set of electron fluid equations
(for density, parallel velocity and temperature) contains fast timescales comparable to the DKE and in that regard
provides little benefit except for saving the work of advancing a full kinetic species. However, because the mass
appears in the momentum equation and not in the continuity or temperature equations one can consider a limit
where the inertia terms are negligible and obtain a useful simplification while preserving electron dynamical
terms (and hence, for example, electron-temperature-gradient instabilities).

3 Modified Boltzmann (Adiabatic) Model

The Boltzmann (or, for small perturbations, the “adiabatic electron”) model, is just the isothermal limit of the
massless electron parallel momentum equation,

enea—(I> =T, 9(ne)
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where s denotes distance along a field line and 7. is now considered constant along a field line (but can vary
across). Taking the isothermal limit is formally justified only in a low-collisionality limit in which fluid-equations
themselves are of questionable validity, so in this regard the Boltzmann-electron model is no more justified than
the parallel-averaged DKE, but its simplicity makes it an attractive electron model for kinetic simulation of ion
phenomena and is widely used in core simulations. Our objective here is to consider extensions to the common
implementation used in the core that give it some degree of physical relevance for edge plasmas.
The immediate consequence of Eq. (2) in the isothermal limit is the Boltzmann form for the electron density
variation along a field line,

@
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where C' is constant on field lines. There are various possible ways to pick the constant C' which correspond to
different approximations about electron transport across field lines. A common one is

C = (ne(t = 0))/(exp(e®/Te)) @

where ( ) denotes a field-line average. This choice is consistent with no electron particle transport across field
lines, and hence, apart from transients, no ion particle transport either. However, it is consistent with calculation
of ion neoclassical thermal and momentum transport. The linearization of Eq. (3) with this choice leads to the
commonly used adiabatic electron model,

0Mne/Neo = € (6@ — (§P)) /T . 5)

For the scrape-off-layer (SOL) region, the presence of open field lines means that the field-line-integrated
electron density need not be constant even in the limit of negligible cross-field electron transport. Hence we need
a different choice for the pre-Boltzmann constant C', and one is provided by considering current conservation
and the endloss-current-regulating property of the sheath in front of the divertor (or limiter) plates. Denoting the
current at each end of a field line as positive if it is toward the wall, the current conservation relation integrated
along a flux tube can be expressed as [1,2]

Jnl Jn2 / VJ_ 'JJ_
ds———— = 6
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where J | is the measured (from the simulation) ion radial current density, sin € is the angle between the magnetic
field and its projection onto the divertor plate, 3,,; is the magnetic field strength at end j (j = 1,2), and the
endloss current density at end j, measured normal to the divertor surface, is given by

Inj = Jni,j —sinbjenc;ve exp (—eg; /Te) @)

and where J,,; ; is the measured (from the simulation) ion endloss current density measured normal to the divertor
plate at end j. Here ¢; is the difference between the plasma potential ® and the wall potential (usually, zero)
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atend j, and v, = (T./ 27rm)1/ 2. Note that since Jni,; comes from the simulation, it will naturally include the
drift currents that contribute to endloss [1-3] as well as loss from ion flow along field lines. Equation (7) coupled
with a statement of current conservation has been used numerous times in the past (though usually with a specific
approximation for J,; ;) in a transversely local (i.e. drift-kinetic ions) approximation to determine the potential
and net parallel current in the presence of differing plasma conditions at the two ends, biased divertor plates,
and/or divertor plates tilted with respect to endwalls; see for examples Refs. [4-7].

Here, we relate the local electron density n, to the gyro-center ion density N; including polarization density.
In the limit of small ratio of ion gyroradius to potential scale length, this relationship is

’rLe:Ni—FVJ_KVJ_(I)/e ()

where k = o.) i/ 47rw . We can now explicitly write the form for the constant (on field lines) C' in Eq. (3) for the
SOL as

C=(N;+V_ kV, D/e)exp(—ed/T,) . 9

where the right-hand side must now be the same evaluated anywhere along a field line within the plasma (ex-
cluding the regions within the divertor sheaths). In particular, it can be evaluated on the plasma side of the
(gyro)sheath at either of the divertor plates.

Now we close Eq. (6) via the endloss expression (7) using the adiabatic relationship (3) and (9) to obtain the
following differential equation:
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where 0; = exp(e®,,;/T.) and ®,,; is the wall potential at divertor j (j = 1 or 2), so o; = 1 in the usual case of
grounded walls. Equation (10) can be interpreted in two ways: It can be interpreted as the full PDE to be solved
once boundary conditions have been specified, or it can be viewed, when evaluated at the entrance to the divertor
sheaths, as an equation that gives us guidance about boundary conditions.

Focusing first on the latter interpretation, we note that the polarization term is generally small, O(¢), where ¢
is the square of ratio of the ion gyroradius to L, the macroscoppic scale length for variation of ®, compared to
the other terms in the equation. € is O(1) inside the gyrosheath but is small outside. This estimate is obtained
by noting that, from the leading-order solution we discuss below, & ~ T, /e, and, outside of the gyrosheath, its
scale length is of order of that for the electron temperature. We obtain similar estimates for either the equilibrium
or fluctuation potential solutions; in the latter case, L is the inverse of a characteristic wave number; and in any
case, the smallness of ¢ is a requirement for validity of the differential form of polarization used in Eq. (8).

Hence to a good approximation ® at the divertor plates is given by ignoring the polarization term, taking
N; to be the value of the gyro-center ion density adjacent to (but on the plasma side of the gyro sheath at) the
divertor plate in question, and evaluating ® from the resulting algebraic equation. Once ® along the divertor
plates is known from this procedure and an appropriate choice is made for the potential at the radial boundaries,
it can be determined everywhere else using (the first interpretation of) Eq. (10). Or, if more convenient, it can be
determined, equivalently, by noting the constancy of the left and right hand sides of Eq. (9) along a field line to
write:

V1KV ®/e = Nyexp(e(®— &) /T.) — N; (1D

where the subscript “1” denotes evaluation on the plasma side of the gyrosheath at divertor plate 1. Here N;;, T,
and ®; are just known functions of the field-line-label coordinates. (The equation could equally well be written
with the subscript “2” everywhere). By construction, the resulting solution to either (10) or (11) will consistently
have the polarization term vanishing at the divertor plates.

It should be noted that positing instead a finite polarization at the boundaries (of order € times the ion charge
density) would lead to boundary values and a global solution for ® which differ from the one above by O(e).
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Hence the prescription above suffices to determine a potential solution with adequate accuracy in the SOL. Com-
pared to the alternative of discarding the polarization term everywhere in the SOL, our prescription has the advan-
tage of providing a solution which matches on with continuous value and slope and with a physically significant
second derivative to the potential in the closed-flux-surface edge region. The latter is important for calculating
phenomena that depend on the electric-drift velocity shear.

The formulation presented above can be applied to a multi-ion-species plasma with the substitution N; —
Y- ZiN; and redefining & = Y w?; /(47w?;).

One might be concerned that the solution for ® obtained from (10) or (11) might be inconsistent with a solution
of the gyrokinetic Poisson Equation [Eq. (8) viewed as an equation for ®] . But in fact the gyrokinetic Poission
Equation (8) with the substitution of n. from (3) and C from (9) is identically satisfied. It can also be verified
that we obtain the same potentials at a given physical location if we interchange the identity of the end labels “1”
and “2”.

4 Modified adiabatic model in the closed-flux-surface region

An issue arises in applying an adiabatic model to a simulation that spans the separatrix: if we apply the standard
“core” model [defined by Eq. (4)]. in the closed-flux-surface region, there is (aside from transients) no particle
flux in that region, which then implies that, in the absence of local sources, the SOL region must decay to zero
density. A sustained SOL requires replenishment via transport from the closed-flux-surface region and/or sources
local to the SOL. One way to achieve this is to modify the core model to provide some particle flux. And, one way
to achieve that within the framework of the Boltzmann-electron model is to add an (ad-hoc) ambipolar diffusion
to both the core electron and ion models. So for example we can add to the ion gyrokinetic equation a term of the
form DV2 f; where V,. denotes the gradient with respect to the flux-surface coordinate at constant perpendicular
and parallel velocity, f; is the ion gyro-center distribution, and D is a constant. We then add an auxiliary equation
for the flux-surface average of n.:

d(ne)
ot

= DVZ(n,) (12)

with (n.) specified on the inner boundary of the simulation. Optionally we can add charge-neutral sources to
the equations for f; and (n.). This prescription is not unique; there are many possible forms for the (possibly
velocity-dependent) diffusion term that would yield the same ion particle transport. Here we have picked the
simplest possible form. For a more complicated form, Eq. (12) would be modified as needed to ensure ambipolar
transport.

5 Summary/Conclusions

We have developed a modified Boltzmann electron model for the closed- and open-flux-surface regions of an
edge simulation that are consistent with SOL end-loss, the gyrokinetic-Poisson formulation of the electrostatic
potential, and a steadily sustained SOL density profile. This is likely the simplest possible model of electrons
for use in kinetic ion simulations that is consistent with basic SOL physics. It should be noted that, to obtain
reasonable simulation results from it (in particular, sensible results for the potential solution), the ion simulation
model also needs to be sufficiently complete; in particular, it requires sufficient complexity (e.g. an ionization
source, collisions with neutrals, neoclassical orbits) to seed a density variation along field lines so that a pre-
sheath develops.

We would argue that the modified Boltzmann electron model is part of a relatively small heierarchy of rea-
sonable electron models for edge simulation. Specifically, moving up in complexity, one can consider a full set
of inertia-less fluid equations, and then the full drift-kinetic equation (DKE). We argue that little else is worth
implementation: in particular electron fluid equations with inertia contain the same timescale challenges as the
full DKE, while a bounce-averaged DKE is only applicable to hot or tenuous regions within an edge plasma and
introduces the additional complication of nonlocality.
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