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We present an approach for constructing finite-volume methods for flux-divergence forms
to any order of accuracy defined as the image of a smooth mapping from a rectangular dis-
cretization of an abstract coordinate space. Our approach is based on two ideas. The first is
that of using higher-order quadrature rules to compute the flux averages over faces that
generalize a method developed for Cartesian grids to the case of mapped grids. The second
is a method for computing the averages of the metric terms on faces such that freestream
preservation is automatically satisfied. We derive detailed formulas for the cases of fourth-
order accurate discretizations of linear elliptic and hyperbolic partial differential equations.
For the latter case, we combine the method so derived with Runge–Kutta time discretiza-
tion and demonstrate how to incorporate a high-order accurate limiter with the goal of
obtaining a method that is robust in the presence of discontinuities and underresolved
gradients. For both elliptic and hyperbolic problems, we demonstrate that the resulting
methods are fourth-order accurate for smooth solutions.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Finite-volume methods are a popular choice for the discretization of partial differential equations involving flux diver-
gences, e.g., conservation laws. In such approaches, the spatial domain is decomposed into a set of control volumes. The
boundary of each volume is represented as a union of faces, with each face shared by exactly two control volumes. Based
on this discretization of space, the average of the divergence of the flux function over each control volume is approximated
by applying the divergence theorem to express the average in terms of averages of fluxes over the faces, which are then com-
puted using some quadrature rule. The main advantage is that the resulting discretization satisfies a discrete form of the
divergence theorem. This leads to a local conservation property holding for time-dependent problems and easily-checked
solvability conditions for steady-state problems. Furthermore, this approach extends to a wide variety of grid systems:
Cartesian, mapped, multiblock, and locally-refined structured grids, as well as unstructured grids. A limitation of these
methods as developed to date is that they have typically been restricted to second-order accuracy [1–3]. The flux integrals
are approximated using the midpoint rule, and the metric terms appearing in the quadrature computed using low-order
geometric representations (e.g., unions of triangles).
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In this paper, we present an approach for constructing finite-volume methods of any order of accuracy for control-volume
discretizations of space defined as the image of a smooth mapping from a rectangular discretization of an abstract coordinate
space. Our approach is based on two ideas. The first is that of using higher-order quadrature rules to compute the flux aver-
ages over faces that generalize the method described in [4] to the case of mapped grids. The second is a method for comput-
ing the averages of the metric terms on faces such that freestream preservation is automatically satisfied.

Freestream preservation is an important requirement for the discretization of conservation laws in mapped coordinates.
This property ensures that a uniform flow is unaffected by the choice of mapping and discretization. As described in numer-
ous works (e.g., [1,5,6]), this goal is typically accomplished by the discrete enforcement of metric identities, which take the
form of divergence-free conditions for products of the mapping Jacobian and gradients. Since cell faces are contractible (con-
tinuously deformable to a point), the Poincaré lemma guarantees that these products can be written as exterior derivatives.
The form of these derivatives is not unique, however (see, e.g., Section 4 of [6]), and the specific choice used for discretization
is critical in achieving freestream preservation. In [5], it is observed that writing the derivatives in ‘‘conservative form’’ is
sufficient to enable second-order central differencing to be applied in the exact enforcement of the metric identities. This
result was more recently extended in [7] to higher-order (second-, fourth- and sixth-order) compact, finite difference oper-
ators. The equivalence of the central difference scheme used in [5] with a second-order, finite-volume method was also used
to obtain an early result for this class of methods. For the higher-order finite-volume discretizations presented here, we de-
scribe how to take further advantage of the ability to express mapping metric products as exterior derivatives to achieve
freestream preservation.

The paper is organized as follows. A formalism for computing a fourth-order accurate average of a flux divergence on a
control volume in physical space in terms of fourth-order accurate face averages on a Cartesian computational grid is devel-
oped in Section 2. In Section 3, we describe the application of the mapped grid finite-volume formalism to obtain a fourth-
order accurate discretization of a self-adjoint elliptic equation. In Section 4, we describe the application of the formalism to
obtain a fourth-order accurate discretization of a scalar, linear hyperbolic equation. The spatial discretization is combined
with Runge–Kutta time discretization, and we demonstrate the incorporation of a high-order accurate limiter.
2. High-order finite-volume methods

In the finite-volume approach, the spatial domain in RD is discretized as a union of rectangular control volumes that cov-
ers the spatial domain. For Cartesian grid finite-volume methods, a control volume Vi takes the form
V i ¼ xi1 �
h
2
; xi1 þ

h
2

� �
� xi2 �

h
2
; xi2 þ

h
2

� �
� � � � � xiD �

h
2
; xiD þ

h
2

� �
; ð1Þ
where the multi-index i � ði1; i2; . . . ; iDÞ 2 ZD is identified with the location of the control volume center and h is the grid
spacing. A finite-volume method discretizes a partial differential equation by averaging that equation over control volumes
and replacing the integrals that appear by quadratures. For operators that appear as the divergence of fluxes, the divergence
theorem states that
Z

V i

$ � Fdx ¼
X
�¼þ;�

XD

d¼1

�
Z

A�d

Fd dA; ð2Þ
where Fd is the dth component of F and the A�d are the high and low faces bounding Vi with normals pointing the dth coor-
dinate direction. In this case, the finite-volume approach computes the average of the divergence of the fluxes on the left-
hand side of (2) with the sum of the integrals on the right-hand side, with the integrals approximated using quadratures.
Such approximations are desirable because they lead to conserved quantities in the original PDE satisfying an analogous con-
servation law in the discretized system.

Most finite-volume methods use the midpoint rule to approximate the flux integrals in (2), leading to a second-order
accurate method. We will develop higher-order methods (fourth-order or better) using the approach in [4]. The starting
point for this approach is to replace the integrand in the right-hand side of (2) by a Taylor expansion about the center of
the face:
Z

Ad

Fd dA ¼
X

06jrj<R

1
r!

$rFdjx¼x0

Z
Ad

ðx� x0ÞrdAx þ OðhRþD�1Þ;

r! ¼ r1! � � � rD!; qr ¼ qr1
1 � � � q

rD
D :

ð3Þ
For example, if we take R = 4, we obtain
1

hD�1

Z
Ad

Fd dA ¼ Fdðx0Þ þ
h2

24

X
d0–d

@2Fd

@x2
d0
ðx0Þ þ Oðh4Þ: ð4Þ
If we replace the derivatives by finite-difference approximations of a suitable order that are smooth functions of their inputs,
the resulting approximation of the average of the flux divergence over a cell is O(hR).
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2.1. Mapped grids

We can extend this formalism to the case of mapped grids. Assume that we have a smooth mapping X from some abstract
coordinate space, say, the unit cube, into physical space:
X ¼ XðnÞ; X : ½0;1�D ! RD: ð5Þ
Given this mapping, the divergence of a vector field in physical space can be written in terms of derivatives in the mapping
space, that is,
$x � F ¼
1
J
$n � ðNT FÞ;

J ¼ detð$nXÞ; ðNTÞp;q ¼ det Rpð$nX; eqÞ
� �

;

ð6Þ
where Rp(A,v) denotes the matrix obtained by replacing the pth row of the matrix A by the vector v, and ed denotes the unit
vector in the dth coordinate direction. The relationship (6) is a consequence of the chain rule, Cramer’s rule and (for D > 2)
the equality of mixed partial derivatives.

If we define control volumes in physical space as the images X(Vi) of the cubic control volumes Vi in the mapped Cartesian
grid space, the relationship corresponding to (2) for mapped grids is given as follows:
Z

XðV iÞ
$x � Fdx ¼

Z
V i

$n � ðNT FÞdn ¼
X
�¼þ;�

XD

d¼1

�
Z

A�d

ðNT FÞddAn: ð7Þ
To obtain a finite-volume method, the face integrals are replaced by quadratures, similar to what was done in (3). In the
mapped-grid case, some care is required to obtain freestream preservation, that is, the property that the discrete divergence
of a constant vector field is zero. To do that, we split each face integral into two pieces:
Z

Ad

ðNT FÞddAn ¼
Z

Ad

NT dAn

 !
FðxdÞ

 !
d

þ
Z

Ad

ðNTðF� FðxdÞÞddAn; ð8Þ
where xd is the image under the map of the center of the face in coordinate space. It is routine to derive a version of the
Taylor expansion in (3) to approximate the second integrand on the right-hand side of (8) so that, if F is constant, the integral
is identically zero. To obtain a fourth-order accurate discretization, we can use the following formulation:
Z

Ad

ðNT FÞddAn ¼
Z

Ad

NT dAn

 !
�
Z

Ad

FdAn

 ! !
d

þ h2

12

Z
Ad

X
d0–d

@

@nd0
ðNTÞ � @

@nd0
ðFÞ

� �
d

dAn þ Oðh4Þ; ð9Þ
as h ? 0. In either case, we only need to derive quadrature formulas for
R

Ad
NT dAn so that the discrete divergence of a con-

stant vector field given by (8) or (9) is zero.
The existence of such quadratures is a consequence of Stokes’ theorem and the Poincaré lemma. The rows of the matrix N,

denoted by Ns, s = 1, . . . ,D, are divergence-free. This can be seen by a direct calculation, or inferred indirectly from applying
(7) to constant vector fields. Then by the Poincaré lemma [8], there exist functions N s

d;d0 ; d–d0 such that
Ns
d ¼

X
d0–d

@N s
d;d0

@nd0
; N s

d;d0 ¼ �N
s
d0 ;d: ð10Þ
Thus we have
Z
Ad

Ns
d dAn ¼

X
�¼þ;�

X
d0–d

�
Z

E�
d;d0

N s
d;d0 dEn; ð11Þ
where E�d;d0 are the (hyper) edges on the low and high sides of Ad in the d0 direction. For each edge, the same integrals over the
edge appear for the integral over each face adjacent to that edge, modulo signs. If we approximate the integrals over edges
with the same quadrature formulas wherever they appear, then the freestream property
XD

d¼1

X
�¼þ;�

�
Z

A�d

Ns
d dAn ¼ 0 ð12Þ
is satisfied. Furthermore, the quadrature formulas for the edge integrals can otherwise be chosen arbitrarily; in particular,
they can be chosen so that (11) approximates the integral of Ns

d over the face to any order of accuracy. We note that this
is a generalization to arbitrary dimensions and arbitrary orders of accuracy of standard methods to discretize electromag-
netic fields so that discrete analogues of the various vector identities are satisfied identically [9].

Given Ns
d; d ¼ 1; . . . ;D, the family of functions N s

d;d0 ; d0 – d; satisfying (10) is not unique. A particularly simple choice that
is a local function of X and $nX is given by
N s
d;d0 ¼

1
D� 1

det Rs Cd0 ð$nX;XÞ; ed
� �� �

; ð13Þ
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where Cp(A,v) denotes the matrix obtained by replacing the pth column of the matrix A with v. We note that the expression
for N s

d;d0 given above only involves derivatives of X in directions tangent to Ed;d0 . For example, the N s
d;d0 for the special case of

D = 3 are given as follows:
N 1
21 ¼

1
2

X3
@X2

@n3
� X2

@X3

@n3

� �
; N 2

21 ¼
1
2
�X3

@X1

@n3
þ X1

@X3

@n3

� �
N 3

21 ¼
1
2

X2
@X1

@n3
� X1

@X2

@n3

� �
; N 1

31 ¼
1
2
�X3

@X2

@n2
þ X2

@X3

@n2

� �
N 2

31 ¼
1
2

X3
@X1

@n2
� X1

@X3

@n2

� �
; N 3

31 ¼
1
2
�X2

@X1

@n2
þ X1

@X2

@n2

� �
N 1

32 ¼
1
2

X3
@X2

@n1
� X2

@X3

@n1

� �
; N 2

32 ¼
1
2
�X3

@X1

@n1
þ X1

@X3

@n1

� �
N 3

32 ¼
1
2

X2
@X1

@n1
� X1

@X2

@n1

� �
:

ð14Þ
The remaining N ’s are given by the antisymmetry condition N s
d;d0 ¼ �N

s
d0 ;d.

The proof that (13) satisfies (10) is a straightforward calculation. By Leibnitz’ rule applied to determinants, we have
X
d0–d

@

@nd0
det Rs Cd0 ð$nX;XÞ; ed

� �� �� �
¼
X
d0–d

det Rs Cd0 $nX;
@X
@nd0

� �
; ed

� �� �

þ
X
d0–d

X
d00–d;d0

det Rs Cd00 Cd0 $nX;X
� �

;
@2X

@nd0@nd00

 !
; ed

 ! !
: ð15Þ
Each summand in the first (single) sum is just Ns
d, so it suffices to show that the second (double) sum vanishes. However, for a

given d1,d2,d1 – d2, summands in the double sum involving the mixed second partial @2X
@nd1

@nd2
appear exactly twice, differing

from one another only by the exchange of the d1 and d2 columns. By the antisymmetry of the determinant under column
exchanges, the two summands cancel, and hence the entire second sum vanishes. Finally, we need to show the antisymmetry
condition N s

d;d0 ¼ �N
s
d0 ;d. The following is a consequence of linearity of the determinant as a function of the d0 column, plus

the identity det(Cq(A,ep)) = det(Rq(A,ep)):
det Rs Cd0 ð$nX;XÞ; ed
� �� �

¼
X
s0–s

Xs0 det Rs0 Rsð$nX; edÞ; ed0
� 	� 	

: ð16Þ
The right-hand side of (16) is manifestly antisymmetric in d, d0.

2.2. Fourth-order mapped-grid finite-volume discretization

Following these ideas, we can specify the information required for a fourth-order accurate finite-volume discretization.
Using a Taylor series, the integrals on the cell faces A�d can be approximated using the following formula for the average
of a product in terms of fourth-order accurate averages of each factor:
hfgiiþ1
2ed ¼ hf iiþ1

2ed hgiiþ1
2ed þ

h2

12
G?;dðhf iÞiþ1

2ed � G?;dðhgiÞiþ1
2ed þ Oðh4Þ: ð17Þ
Here, the operator h�iiþ1
2ed denotes a fourth-order accurate average over the face centered at iþ 1

2 ed:
hqiiþ1
2ed ¼

1

hD�1

Z
Ad

qðnÞdAn þ Oðh4Þ; ð18Þ
and G?;d � $n � ed @
@nd

is a second-order accurate difference approximation to the components of the gradient operator

orthogonal to the dth direction. Alternative expressions to (17) are obtained by replacing the averages hf iiþ1
2ed and/or

hgiiþ1
2ed used in the transverse gradients G\,d by corresponding fourth-order-accurate, face-centered pointwise values fiþ1

2ed

and/or giþ1
2ed , respectively.

More generally, the transverse gradients can be replaced by any discretization that is second-order-accurate at the face
center iþ 1

2 ed. For example,
hfgiiþ1
2ed ¼ hf iiþ1

2ed hgiiþ1
2ed þ

h2

12
G?;dðhf iÞiþ1

2ed � r?;dg
� 	

iþ1
2ed
þ Oðh4Þ; ð19Þ
where ðr?;dgÞiþ1
2ed is a second-order approximation of ð$n � ed @

@nd
Þg at iþ 1

2 ed. As employed in Section 3, this fact can be used

to reduce the stencil size of the discretization that results from the application of (17) with factors g containing derivatives.
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We thus approximate the divergence of a flux by
Z
XðV iÞ

$x � Fdx � hD�1
XD

d¼1

X
�¼þ;�

�Fd
i�1

2ed ; ð20Þ
where
Fd
iþ1

2ed ¼
XD

s¼1

hNs
diiþ1

2ed hFsiiþ1
2ed þ

h2

12

XD

s¼1

G?;dðhNs
diÞiþ1

2ed

� 	
� G?;dðhFsiÞiþ1

2ed

� 	
: ð21Þ
The column vectors fhNs
diiþ1

2ed ; s ¼ 1; . . . ;Dg are computed on each face using (11) and (13), with fourth-order accurate quadr-
atures replacing the integrals in (11). The fourth-order average of F can be computed using (4).

We can apply this approach to compute a fourth-order accurate approximation to the cell volumes by taking F(x) = x. In
that case,
Z

XðV iÞ
$x � Fdx ¼ D� VolumeðXðV iÞÞ;
and the volume of the cell can be written as the discrete divergence of fluxes. Such a flux form is convenient for maintaining
conservation and freestream preservation for adaptive mesh refinement on mapped grids [10].
3. Application to elliptic equations

In this section, we apply the mapped grid, finite-volume formalism described above to obtain a fourth-order accurate fi-
nite-volume discretization of a self-adjoint equation
$ � FðxÞ ¼ qðxÞ; x 2 X 	 R2; ð22Þ
where
FðxÞ � BðxÞ$UðxÞ; ð23Þ
and the matrix coefficient B is such that the second-order differential operator in (22) and (23) is elliptic. Assuming a map-
ping (5) of the physical domain X to a computational domain, we have in the latter using (6)
F ¼ B$Xn$nU � J�1BN$nU: ð24Þ
Following (20) and (21), we therefore obtain
Z
XðV iÞ

$x � Fdx ¼ h2
X3

d¼1

X
�¼þ;�

�Fd
i�1

2ed þ Oðh4Þ; ð25Þ
where
Fd
iþ1

2ed � hFdiiþ1
2ed ¼

X3

d0¼1

ebdd0
@U
@nd0


 �
iþ1

2ed

¼
X3

d0¼1

hebdd0 iiþ1
2ed

@U
@nd0


 �
iþ1

2ed

"
þ h2

12
G?;d hebdd0 i

� 	
iþ1

2ed
� r?;d @U

@nd0

� �
iþ1

2ed

#
ð26Þ
and
~bdd0 � ðeBÞdd0 � J�1NT BN
� 	

dd0
: ð27Þ
Face averages h~bdd0 i can be computed to fourth order in terms of face averages of J�1 and the entries of the factor matrices NT,
B and N using the product formula (17). We compute second-order accurate transverse gradients of the coefficients for
d0 = 1,2,. . .,D(d0 – d) using
G?;d h~bdd0 i
� 	

iþ1
2ed

� �
d0
¼

� 1
2h 3h~bdd0 iiþ1

2ed � 4h~bdd0 iiþ1
2edþed0 þ 2h~bdd0 iiþ1

2edþ2ed0

� 	
; id0 � 1 < min id0

1
2h 3h~bdd0 iiþ1

2ed � 4h~bdd0 iiþ1
2ed�ed0 þ 2h~bdd0 iiþ1

2ed�2ed0

� 	
; id0 þ 1 < max id0

1
2h h~bdd0 iiþ1

2edþed0 � h~bdd0 iiþ1
2ed�ed0

� 	
; otherwise:

8>>>><>>>>: ð28Þ
The first two expressions correspond to second-order shifted stencils appropriate for the low and high domain bound-
aries in the d0 direction, while the last is the standard second-order central difference approximation. What remains
to specify is the discretization of the averages h@U=@nd0 iiþ1

2ed and second-order approximations of the transverse gradients
ðr?;d @U

@nd0
Þiþ1

2ed .
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3.1. Discretization of h@U=@nd0 iiþ1
2ed and ðr?;d @U

@nd0
Þiþ1

2ed

First consider the case where d0 = d. We have
Fig. 1.
by the
@U
@nd


 �
iþ1

2ed

¼ @U
@nd
þ h2

24
D?;d

@U
@nd

 !
iþ1

2ed

þ Oðh4Þ; ð29Þ
where D\,d is the Laplacian in the directions transverse to the dth direction. Defining
biþ1
2ed �

1
24

27 Uiþed �Ui
� �

� Uiþ2ed �Ui�ed

� �� 

; ð30Þ
where the Ui denote pointwise values of U at cell centers, we have
@U
@nd

����
iþ1

2ed

¼
biþ1

2ed

h
þ Oðh4Þ; ð31Þ

D?;d
@U
@nd

����
iþ1

2ed

¼ 1

h3

X
d0–d

biþ1
2edþed0 þ biþ1

2ed�ed0 � 2biþ1
2ed

� 	
þ Oðh2Þ: ð32Þ
Furthermore, we make the approximation
r?;d @U
@nd0

� �
iþ1

2ed

¼ 1

2h2 biþ1
2edþed0 � biþ1

2ed�ed0

� 	
þ Oðh2Þ: ð33Þ
In Fig. 1, the centerings of the three b coefficients contributing to the calculation of (29) are indicated (filled circles), as well
as the centerings of the U values required for their computation (empty circles).

Next, for d0 – d, we have
@U
@nd0


 �
iþ1

2ed

¼ @U
@nd0
þ h2

24
@3U

@n3
d0

 !
iþ1

2ed

þ Oðh4Þ: ð34Þ
Letting
aiþ1
2ed �

1
16

9ðUiþed þUiÞ � ðUiþ2ed þUi�ed Þ
� 


; ð35Þ

cd0 ;ð4Þ
iþ1

2ed �
1

12
8ðaiþ1

2edþed0 � aiþ1
2ed�ed0 Þ � ðaiþ1

2edþ2ed0 � aiþ1
2ed�2ed0 Þ

h i
; ð36Þ

cd0 ;ð2Þ
iþ1

2ed �
1
2
�2ðaiþ1

2edþed0 � aiþ1
2ed�ed0 Þ þ ðaiþ1

2edþ2ed0 � aiþ1
2ed�2ed0 Þ

h i
; ð37Þ
Stencil for h@U=@ndiiþ1
2ed . The values of U at the cell centers marked by the open circles determine the b values given by (30) at the cell faces marked

solid circles.
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we have
Fig. 2.
which i
@U
@nd0

����
iþ1

2ed

¼
cd0 ;ð4Þ

iþ1
2ed

h
þ Oðh4Þ; ð38Þ

@3U

@n3
d0

�����
iþ1

2ed

¼
cd0 ;ð2Þ

iþ1
2ed

h3 þ Oðh2Þ: ð39Þ
Defining
cd0 ;ð4Þ;�
iþ1

2ed � �
1

12
3aiþ1

2ed�2ed0 þ 10aiþ1
2ed�ed0 � 18aiþ1

2ed þ 6aiþ1
2ed
ed0 � aiþ1

2ed
2ed0

h i
; ð40Þ
we furthermore approximate
r?;d @U
@nd0

� �
iþ1

2ed

¼ 1

2h2 cd0 ;ð4Þ;þ
iþ1

2ed � cd0 ;ð4Þ;�
iþ1

2ed

� 	
þ Oðh2Þ: ð41Þ
The stencil entries given by (40) yield fourth-order accurate first derivatives in the d0 direction at the face centers
iþ 1

2 ed � ed0 . We employ these non-centered formulas to ensure that the resulting stencil is confined to a block of cells at
most 5 cells wide centered on the cell in which the flux divergence average is being computed. In Fig. 2, the centerings of
the a coefficients (filled circles) and c coefficients (� symbols) contributing to the calculation of (34) are indicated, as well
as the centerings of the U values required for their computation (empty circles).

3.2. Boundary conditions

For boundaries upon which a Dirichlet boundary condition is imposed, the face averages h@U=@nd0 iiþ1
2ed used in (26) on

faces contained in such boundaries can be computed using modified discretizations that incorporate the prescribed bound-
ary values. Suppose that the cell face with center at iþ 1

2 ed is one such face, such as the face centered on the point labeled A
in Fig. 3. The averages h@U=@nd0 iiþ1

2ed for the transverse coordinates d0 – d can presumably be computed directly from pre-
scribed Dirichlet data to fourth-order accuracy. For the normal direction, the stencil describing h@U=@ndiiþ1

2ed can be modified
by replacing the definition (30) by
bð4Þ
iþ1

2ed �
1

840
2816Uiþ1

2ed � 3675Ui þ 1225Ui�ed � 441Ui�2ed þ 75Ui�3ed

� 	
; ð42Þ
where Uiþ1
2ed is the prescribed boundary value at the center of the cell face. Although this formula yields a fourth order accu-

rate approximation of the normal derivative, it results in a stencil extending beyond the 5-cell-wide block centered about the
cell upon which the discrete divergence is being computed. To avoid using a larger stencil at the boundary than in the inte-
rior, we take advantage of the opportunity to reduce the discretization order at the boundary while still maintaining fourth-
order accuracy overall due to elliptic regularity. In particular, instead of (42) we define
Stencil for h@U=@nd0 ii þ 1
2 ed with d

0
– d. The values of U at the cell centers marked by the � symbols determine the a values at the � symbols via (35),

n turn determine the c values at the � symbols defined by (38)–(40).



Fig. 3. Locations at or near a Dirichlet boundary requiring stencil modifications (see text).
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bð4Þ
iþ1

2ed �
1

60
184Uiþ1

2ed � 225Ui þ 50Ui�ed � 9Ui�2ed

� 	
: ð43Þ
The same issue affects the normal and transverse derivatives on interior faces parallel to the boundary exactly one cell away,
such as the face centered on the point labeled B in Fig. 3, i.e., the use of a non-centered fourth-order discretization leads to a
stencil that is not contained in a 5 � 5 block. However, we may use the same interpolating cubic polynomial used in finding
(43) to obtain
bð4Þ
iþ1

2ed �
1

60
�8Uiþ1

2ed þ 75Ui � 70Ui�ed þ 3Ui�2ed

� 	
: ð44Þ
Similarly, (35) is replaced by
aiþ1
2ed �

1
20
�4Uiþ1

2ed þ 15Ui þ 10Ui�ed �Ui�2ed

� 	
: ð45Þ
Next, consider cell faces adjacent and normal to a Dirichlet boundary, such as the face centered on the point labeled C in
Fig. 3. For the calculation of the average of the normal derivative (d = d0), the calculation of the transverse Laplacian (32)
using centered differences can be shifted one cell away from the boundary with no loss of the required second-order accu-
racy. A non-centered, second-order accurate formula replaces (33):
r?;d @U
@nd0

� �
iþ1

2ed

¼ 1

2h2 3biþ1
2ed � 4biþ1

2ed�ed0 þ biþ1
2ed�2ed0

� 	
þ Oðh2Þ: ð46Þ
For the average of the transverse derivative (d – d0), we replace (36) and (37) by
cd0 ;ð4Þ
iþ1

2ed �
1

30
32Uiþ1

2edþ1
2ed0 � 15aiþ1

2ed � 20aiþ1
2ed�ed0 þ 3aiþ1

2ed�2ed0

h i
; ð47Þ

cd0 ;ð2Þ
iþ1

2ed �
1
5

16Uiþ1
2edþ1

2ed0 � 30aiþ1
2ed þ 20aiþ1

2ed�ed0 � 6aiþ1
2ed�2ed0

h i
; ð48Þ
where Uiþ1
2edþ1

2ed0 is the prescribed boundary value. This yields a third-order accurate first derivative and first-order accurate
third derivative, respectively. We furthermore approximate the transverse gradients by
r?;d @U
@nd0

� �
iþ1

2ed

¼ 1

5h2 16Uiþ1
2edþ1

2ed0 � 25aiþ1
2ed þ 10aiþ1

2ed�ed0 � aiþ1
2ed�2ed0

h i
þ Oðh2Þ: ð49Þ
Finally, consider cell faces normal to a Dirichlet boundary and one cell away, such as the face centered on the point labeled D
in Fig. 3. The average of the normal derivatives (d = d0) is computed in the same manner as for the interior cells. For the aver-
age of the transverse derivative (d – d0), we replace (36) and (37) by
cd0 ;ð4Þ
iþ1

2ed �
1

210
�64Uiþ1

2edþ1
2ed0 þ 210aiþ1

2edþed0 � 35aiþ1
2ed � 126aiþ1

2ed�ed0 þ 15aiþ1
2ed�2ed0

h i
; ð50Þ

cd0 ;ð2Þ
iþ1

2ed �
1

35
64Uiþ1

2edþ1
2ed0 � 105aiþ1

2edþed0 þ 35aiþ1
2ed þ 21aiþ1

2ed�ed0 � 15aiþ1
2ed�2ed0

h i
; ð51Þ
where again Uiþ1
2edþ1

2ed0 is the prescribed boundary value. This yields a fourth-order accurate first derivative and second-order
accurate third derivative, respectively. We approximate the transverse gradients by
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r?;d @U
@nd0

� �
iþ1

2ed

¼ 1

105h2 32Uiþ1
2edþ1

2ed0 þ 35aiþ1
2edþed0 � 140aiþ1

2ed þ 63aiþ1
2ed�ed0 þ 20aiþ1

2ed�2ed0

h i
þ Oðh2Þ: ð52Þ
Stencil modifications corresponding to a Dirichlet condition at the lower boundary of a coordinate direction are obtained in
the obvious way by permuting indices and negating the entries of stencils corresponding to odd order derivatives.

3.3. A numerical example

To test the discretization described in the preceding sections, we consider the solution of Poisson’s equation in the ‘‘D’’-
shaped annular geometry X presented in Section IV of [11] and depicted in Fig. 4. The mapping X from computational coor-
dinates n = (n1,n2) to physical coordinates x = (x1,x2) is given by
x1 ¼ 1:7þ 0:074ð2n1 � 1Þ þ 0:536½ � cos 2pn2 þ sin�1ð0:416Þ sinð2pn2Þ
h i

;

x2 ¼ 1:66 0:074ð2n1 � 1Þ þ 0:536½ � sinð2pn2Þ;
ð53Þ
for 0 6 n1,n2 6 1. We seek the solution of
$2UðxÞ ¼ qðxÞ; x 2 X; ð54Þ
satisfying homogeneous Dirichlet boundary conditions in the radial (n1) direction
UðXð0; n2ÞÞ ¼ UðXð1; n2ÞÞ ¼ 0; 0 6 n2 6 1; ð55Þ
and periodic boundary conditions in the azimuthal (n2) direction. To test the accuracy of our discretization, we employ a
manufactured solution procedure and compute a right-hand side q corresponding to a predetermined, analytically pre-
scribed solution. After forming and solving the linear system resulting from our discretization using the right-hand side
so obtained, we can compute the discretization error since the exact solution is known. In particular, we set
UðxÞ ¼ eUðX�1ðxÞÞ, where
eUðn1; n2Þ ¼ 4n1ð1� n1Þ 1þ 0:1 sinð8pn2Þ½ �: ð56Þ
Using (56), we apply the divergence theorem to compute the integral of q over a mapped grid cell X(V) as
Z
XðVÞ

qðxÞdx ¼
X
�¼þ;�

X2

d¼1

Z
A�d

J�1NT N$n
eU� 	

d
dAn: ð57Þ
Since the mapping (53) is prescribed using simple analytic formulas, the transformation matrix N and its Jacobian J are also
explicitly available. The one-dimensional integrals in (57) are evaluated using the DQAG integrator from QUADPACK [12],
which implements a globally adaptive Gauss–Kronrod quadrature to prescribed relative and absolute tolerances. For the
Fig. 4. Test problem geometry X with example N = 16 grid (left) and solution computed with N = 512 (right).



Table 1
PCG convergence rates and residuals for N = 512.

Iteration number Convergence rate Residual norm

1 0.000223 2.232355e�04
2 0.209853 4.684667e�05
3 0.074080 3.470404e�06
4 0.120163 4.170155e�07
5 0.144002 6.005124e�08
6 0.075322 4.523166e�09
7 0.247301 1.118583e�09
8 0.107240 1.199568e�10
9 0.090233 1.082405e�11

Fig. 5. Test problem convergence study.
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convergence results presented Table 1, the relative and absolute tolerances were set to 10�12 to reduce the quadrature error
well Table 1 the discretization errors being measured, yielding a nearly exact evaluation of the integral (57).

The discretization described above was implemented in a test code using the Chombo infrastructure [13]. The resulting
linear system was solved using a preconditioned conjugate gradient (PCG) solver from the hypre library [14]. The hypre PCG
solver accommodates the 5 � 5 stencil generated by the fourth-order discretization at each grid cell. Given the positive-def-
inite, self-adjoint property of the linear operator, a possible alternative approach would have been to employ a multigrid
solver. We do not, however, have a multigrid solver available that can accommodate a 5 � 5 stencil, including the multigrid
solvers available in hypre. We therefore employ the hypre PFMG multigrid solver applied to a standard second-order discret-
ization of (54) as a preconditioner for CG. Beyond the issue of solver availability, it is generally acknowledged that the com-
bination of a Krylov method with multigrid preconditioning yields a more robust solver, especially with variable coefficients.

Fig. 5 shows the L1, L2 and max norm errors in the discrete solution of (54) using an N � N computational grid with N = 16,
32, 64, 128, 256 and 512, plotted against N�4. By L1 and L2 norms, we mean the discrete norms computed using the solution
error evaluated on cell averages, rather than continuous norms computed using a reconstruction of the discrete solution over
grid cells. The fourth-order convergence rate is clearly observed. In each case the PCG iteration was performed to a tolerance
of 10�10 on the relative L2 residual norm (the L2 norm of the residual relative to that of the right hand side). The multigrid
preconditioner was solved to a relative tolerance of 10�2 in each iteration. Table 1 shows the relative residual at each iter-
ation together with an estimate of the local convergence rate for the finest grid N = 512. A pseudocolor plot of the N = 512
solution is shown on the right-hand side of Fig. 4.
4. Application to scalar, linear hyperbolic equations

In this section, we apply the mapped grid formalism to obtain a fourth-order accurate finite-volume discretization of a
scalar hyperbolic conservation law
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@u
@t
þrx � F ¼ 0 on x 2 X 	 RD; t P 0: ð58Þ
This equation expresses the evolution of the conserved scalar field u : X� ½0;1Þ ! R under the action of the vector-valued
flux function F(u,x, t), where F : X� ½0;1Þ ! RD. The vector whose entries consist of the wave speeds in each coordinate
direction is given by
vðu;x; tÞ � @F
@u

; ð59Þ
where v : X� ½0;1Þ ! RD. In the simplest case, this velocity vector is a constant.
For our purposes here, we restrict consideration primarily to periodic domains X in order to focus on the base discreti-

zation and the incorporation of limiting. We thus leave the topic of boundary conditions for future work. Because ghost cells
are a natural way to impose boundary conditions for explicit, hyperbolic schemes, we do not anticipate any severe compli-
cations or stencil modifications in order to enforce non-periodic boundary conditions for our mapped grid approach.

Because of the ease of formulation for higher-order, we adopt a method-of-lines discretization approach. As in (5), let X be
a smooth mapping from some abstract Cartesian coordinate space n into physical space. We discretize on a uniform finite-
volume grid (1) with grid spacing h; thus each control volume is Vi = hD. Integrating (58) over a cell i and applying (7) and
(20) yields the semi-discrete system of ordinary differential equations
d
dt

Z
V i

uJ dn

 !
¼
Z

XðV iÞ

@u
@t

dx ¼ �
Z

XðV iÞ

rx � Fdx � �hD�1
XD

d¼1

Fd
iþ1

2ed � Fd
i�1

2ed

� 	
: ð60Þ
Dividing by the uniform cell volume hD, Eq. (60) becomes the fourth-order update formula
dðuJÞi
dt
¼ �1

h

XD

d¼1

Fd
iþ1

2ed � Fd
i�1

2ed

� 	
þ Oðh4Þ; ð61Þ
written in terms of the cell-averaged quantity ðuJÞi on the computational grid. The cell average of the solution of the physical
space grid is then
~ui �
Z

XðViÞ
dx

 !�1 Z
XðViÞ

uðxÞdx ¼ �J
� ��1

i ðuJÞi: ð62Þ
For discrete conservation, it is easiest to store and to update ðuJÞi directly, converting to ~ui only for output.

4.1. Face-averaged flux approximation

In the update (61), the face-averaged normal interface fluxes Fd
iþ1

2ed are approximated to fourth-order by (21). Thus, the
problem is reduced to obtaining fourth-order accurate approximations to each component s of the face-averaged interface
fluxes hFsii�1

2ed ðs ¼ 1; . . . ;D) averaged over the computational space cell faces with normals in the d-directions (d = 1, . . . ,D).
Taylor expansion of the integrand of (18) about the center of a dth face gives
hFii�1
2ed ¼ Fðni�1

2ed Þ þ
h2

24

X
d0–d

@2F
@n2

d0

�����
n¼n

i�1
2ed

þ Oðh4Þ: ð63Þ
Specializing to a linear flux, we assume F(n) = v(n)u(n). Then (63) becomes
hFii�1
2ed ¼ vi�1

2ed ui�1
2ed þ

h2

24

X
d0–d

u
@2v
@n2

d0
þ 2

@v
@nd0

@u
@nd0
þ v

@2u

@n2
d0

 !
n¼n

i�1
2ed

þ Oðh4Þ; ð64Þ
where we adopt the pointwise notation qi�1
2ed � qðni�1

2ed Þ. Thus, the face-averaged flux is expressed in terms of pointwise val-
ues of v, u, and their derivatives at the center of the face i� 1

2 ed.
The expansion of the integral (63) also gives pointwise values expressed in terms of face-averaged values. Specifically, for

pointwise values of u and v, one can write
vi�1
2ed ¼ hvii�1

2ed �
h2

24

X
d0–d

@2v
@n2

d0

�����
n¼n

i�1
2

ed

þ Oðh4Þ; ð65aÞ

ui�1
2ed ¼ huii�1

2ed �
h2

24

X
d0–d

@2u

@n2
d0

�����
n¼n

i�1
2

ed

þ Oðh4Þ: ð65bÞ
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Thus, the average interface flux is
hFii�1
2ed ¼ hvii�1

2ed huii�1
2ed þ

h2

12

X
d0–d

@v
@nd0

@u
@nd0

� �
n¼n

i�1
2ed

þ Oðh4Þ; ð66Þ
written in terms of the face-averages huii�1
2ed and hvii�1

2ed and the pointwise values of the gradients of u and v at the center of
the face.

In a finite-volume scheme, one works with cell-averaged values. Through the use of primitive functions [15], one can con-
struct face-averages directly in terms of cell averages; at fourth-order on a uniform grid, this yields the centrally-differenced
expression
hqiiþ1
2ed ¼

7
12

�qiþ�q
iþed

� 	
� 1

12
�qiþ2ed þ �qi�ed

� �
þ Oðh4Þ: ð67Þ
To approximate the pointwise transverse gradients, we first note that an O(h2) approximation is sufficient. In the d0th direc-
tion, a suitable centrally differenced approximation is
@q
@nd0

����
n¼n

i�1
2ed

¼ 1
4h

�qiþed0 þ �qi�edþed0 � �qi�ed0 � �qi�ed�ed0
� �

þ Oðh2Þ: ð68Þ
Expressions (67) and (68) provide the approximations necessary to evaluate the face-averaged fluxes (66) to fourth-order
given the cell averages of u and v on the computational grid.

To obtain the average �ui from the average ðuJÞi, we again appeal to Taylor series expansion of the integrand to express the
average of products as the product of averages:
ðuJÞi ¼ �ui
�Ji þ

h2

12
rnu � rnJ
� �

i þ Oðh4Þ: ð69Þ
Thus,
�ui � h�D
Z

Vi

uðxðnÞÞdn ¼ �J
� ��1

i ðuJÞi �
h2

12
rnu � rnJ þ Oðh4Þ

" #
: ð70Þ
We require at least second-order approximations of the gradients and choose the central differences
ðrnuÞdi ¼
1

2h
ðuJÞiþed

�Jiþed

� ðuJÞi�ed

�Ji�ed

" #
þ Oðh2Þ ð71Þ
in each direction d. This choice is freestream preserving; the difference evaluates to zero (within roundoff) provided that the
averages are initialized such that, for constant u; uJi � u�Ji.

4.2. Time discretization

As in [7], we discretize the semi-discrete system of ordinary differential equations (61) using the explicit, four-stage,
fourth-order classical Runge–Kutta scheme [16]. Consider the variable-coefficient problem
dy
dt
¼ AðxÞy; ð72Þ
where y is the vector of N unknowns ðuJÞi and A(x) is an N � N spatially-varying variable-coefficient matrix. For all explicit,
four-stage, fourth-order Runge–Kutta temporal discretizations, the characteristic polynomial is
PðzjÞ ¼ 1þ zj þ
z2

j

2
þ

z3
j

6
þ

z4
j

24
; ð73Þ
where zj = Dtkj and the kj 2 C are the N eigenvalues of A. The constant-coefficient stability constraint is
jPðzjÞj 6 1; 8j 2 ½1;N�: ð74Þ
Alternatively, for all j, let zj = xj + iyj with xj; yj 2 R, then the amplification factor gj of the fully discrete scheme has real
part
Regj ¼ 1þ xj þ
x2

j

2
þ

x3
j

6
þ

x4
j

24

 !
�

y2
j

2
1þ xj þ

x2
j

2

 !
þ

y4
j

24
ð75Þ
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and imaginary part
Fig. 6.
fluxes.
Imgj ¼ yj 1þ xj þ
x2

j

2
þ

x3
j

6

 !
�

y3
j

6
1þ xj
� �

; ð76Þ
and our notion of stability implies that jgjj 6 1 for all j. If one can estimate the eigenvalues of the spatial operator kj, one then
has a means of selecting a stable timestep.

Analytically, the constant-coefficient problem reveals a potential shortcoming of our full discretization. Define the shift
operator and its inverse
Tdui ¼ uiþed and T�1
d ui ¼ ui�ed :
The semi-discrete system of ordinary differential equations (61) reduces to
dðuJÞi
dt
¼ �1

h

XD

d¼1

v � ed 2
3

Td � T�1
d

� 	
� 1

12
T2

d � T�2
d

� 	� � !
ðuJÞi: ð77Þ
On a periodic domain, the eigenvalues are
ki ¼ �
i

3h

XD

d¼1

v � ed sin hkd
4� cos hkd

� 

; ð78Þ
where the discrete phase angles are hkd
¼ 2pkd=n; kd ¼ 0;�1;�2; . . . ;�n=2. Because of the central spatial discretization, the

eigenvalues are all pure imaginary, that is, the spatial discretization contributes no numerical dissipation.
To keep the purely imaginary eigenvalues of the linear scheme within the Runge–Kutta stability region, the eigenvalue of

maximum magnitude must satisfy jkijDt 6 2
ffiffiffi
2
p

. Each dimensional term in (78) is maximized near h � 1.8 with a value near
1.3722, and so the stability constraint becomes
Dt
h

XD

d¼1

v � ed
�� �� / 2:06: ð79Þ
Of course, this constraint is merely an estimate; in addition to assuming constant-coefficient advection, this analysis does
not take into account contributions from the transverse gradients.
Stability region of the classical Runge–Kutta scheme. The enclosed circle is the locus of eigenvalues for maximum CFL number for first-order upwind
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For mapped grids in physical space, we apply the stability conditions in computational space using the computational-
space velocity vector w = J�1NTv. Because the computational-space velocity varies spatially even for constant v, we apply
the condition (79) locally,
Fig. 7.
h ? ±p,
Dt
h

max
i

XD

d¼1

wi � ed
�� �� !

/ 2:06 ð80Þ
to obtain a global limit on the time step.
The magnitude of the amplification factor as a function of continuous phase angles is
jgj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y6

72
1� y2

8

� �s
: ð81Þ
For D = 1, this amplification factor is plotted in Fig. 7. Similarly, the relative phase speed of the one-dimensional scheme,
aðhÞ
a
¼ � 1

rh
ImgðhÞ
RegðhÞ ; ð82Þ
where r = aDt/h, is also plotted in Fig. 7. We see that the Runge–Kutta scheme adds a small amount of dissipation and that,
as h ? ±p, this dissipation vanishes. At the same time, we see that these high-wavenumber modes (grid modes) do not prop-
agate. For variable-coefficient and nonlinear problems, these undamped grid modes can pollute the solutions, if not cause
instability.
4.3. Limiting

One approach to stabilize a high-order, no- or low-dissipation scheme for variable-coefficient or nonlinear hyperbolic
problems is to add artificial dissipation. For example, adding an artificial dissipation of the form
lð�1Þr�1h2r�1ðT � 1Þrð1� T�1Þr �ui; ð83Þ
to the discrete scheme in computational space gives a scheme dissipative of order 2r in the sense of Kreiss [17,18]. However,
for r > 1, the discrete higher-order derivatives will introduce new numerical difficulties in the presence of discontinuous
solutions or poorly resolved gradients.

An alternative approach from the shock-capturing literature is to use a nonlinear limiting scheme. For linear, variable-
coefficient problems, genuinely nonlinear discontinuities (shocks) do not occur. However, velocity gradients can cause slopes
in the solution to steepen, and initial and boundary conditions can introduce linear discontinuities. We therefore will use
nonlinear flux limiting for robust handling of under-resolved gradients and discontinuities. A disadvantage of this approach
is that it locally reduces the order of convergence of the scheme, but for smooth problems, this should only occur in a very
small subset of cells, if at all. Thus, the maximum pointwise error may not converge at fourth-order, but the errors should
converge near fourth-order almost everywhere.
Variation of the magnitude of the amplification factor jgj and the relative phase speed a/a with phase angle h for several values of r. Note that as
the damping vanishes and the modes do not propagate. Furthermore, the phase error is effectively independent of r.
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In the mapped-grid formalism, we propose to apply a limiter scheme to the cell-averaged solution on the computational
grid, �ui. As a specific example, we implement a method-of-lines variant of the extremum-preserving, piecewise-parabolic
limiter developed in [19] with some modifications. Unfortunately, we discovered that this limiter turned out to be sensitive
to round-off error and to be overly aggressive near certain cubic extrema in multidimensional problems. We present here a
modification intended to eliminate these problems, but our results will demonstrate that these modifications decrease the
effectiveness of the limiter for discontinuous initial data. Recently, a more robust improvement of the limiter that operates
correctly on discontinuities was formulated in [20].

4.3.1. Limiting face values
We compute limited face-averaged values as in [19], starting with the face-averaged values huiiþ1

2ed given by (67). At each
face iþ 1

2 ed, we compute the left and right undivided differences corresponding to the local slope:
duiþ1
2ed ;L ¼ huiiþ1

2ed � �ui; ð84aÞ
duiþ1

2ed ;R ¼ �uiþed � huiiþ1
2ed : ð84bÞ
If duiþ1
2ed ;Lduiþ1

2ed ;R < 0, then this is a local extremum, and we will limit the face value if it is not a genuine extremum. We com-
pute three undivided differences corresponding to the curvature at the face iþ 1

2 ed:
d2uiþ1
2ed ;L ¼ �ui�ed � 2�ui þ �uiþed

� �
=2; ð85aÞ

d2uiþ1
2ed ;C ¼ 3 �ui � 2huiiþ1

2ed þ �uiþed

� 	
; ð85bÞ

d2uiþ1
2ed ;R ¼ �ui � 2�uiþed þ �uiþ2ed

� �
=2: ð85cÞ
We now include a check that deviates from [19]: we limit the face values only if the three curvature estimates (85) are not
monotonic, that is,
d2uiþ1
2ed ;R � d2uiþ1

2ed ;C

� 	
d2uiþ1

2ed ;C � d2uiþ1
2ed ;L

� 	
< 0: ð86Þ
When (86) is true, provided that all three curvature estimates (85) are of the same sign, we define the limited curvature to be
d2~uiþ1
2ed ¼ siþ1

2ed min Cd2uiþ1
2ed ;L;Cd2uiþ1

2ed ;R; d
2uiþ1

2ed ;C

� 	
; ð87Þ
where C = 1.25 and siþ1
2ed ¼ signðd2uiþ1

2ed ;CÞ. Otherwise, d2~uiþ1
2ed ¼ 0. The limited face values are then
h~uiiþ1
2ed ¼

1
2

�ui þ �uiþed

� �
� 1

6
d2~uiþ1

2ed ; ð88Þ
where d2~uiþ1
2ed is the limited local curvature estimate. We note that the corresponding Eq. (19) in [19] has an incorrect factor

of 1/3 multiplying the final term.

4.3.2. Constructing the parabolic interpolant
In the space–time PPM formulation [15], a limited parabolic interpolant is formed in each cell and advanced in time. In

our method-of-lines case, we only require the instantaneous end points of the limited, parabolic interpolant, h~uiiþ1
2ed ;�. It is in

this step that we depart substantially from the procedure described in [19].
We first determine if we have a genuine extremum. For each cell i, we first compute a pair of undivided differences:
dui;L ¼ �ui � h~uii�1
2ed ; ð89aÞ

dui;R ¼ h~uiiþ1
2ed � �ui: ð89bÞ
If dui,Ldui,R < 0, the cell contains a local extremum. The parabolic interpolant in the cell may also contain a local extremum if
jdui;Lj > 2jdui;Rj or jdui;Rj > 2jdui;Lj; ð90Þ
so we check to see if the differences in values adjacent to the cell also change sign. We do this for both cell- and face-aver-
aged values:
duface
i;L ¼ h~uii�1

2ed � h~uii�3
2ed ; ð91aÞ

duface
i;R ¼ h~uiiþ3

2ed � h~uiiþ1
2ed ; ð91bÞ

duface
i;minmod ¼min duface

i;L

��� ���; duface
i;R

��� ���� 	
; ð91cÞ

ducell
i;L ¼ �ui � �ui�e; ð92aÞ

ducell
i;R ¼ �uiþe � �ui; ð92bÞ

ducell
i;minmod ¼min ducell

i;L

��� ���; ducell
i;R

��� ���� 	
; ð92cÞ
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and choose the larger of the two so as to avoid issues with round-off error. If
duface
i;minmod P ducell

i;minmod and duface
i;L duface

i;R < 0 ð93Þ
or if
ducell
i;minmod P duface

i;minmod and ducell
i;L ducell

i;R < 0; ð94Þ
we determine that the interpolant contains an local extremum.
Now, for cells with local extrema, we follow the procedure in [19] and construct a limited undivided difference that cor-

responds to the curvature in the cell:
d2ui ¼ �2 6�ui � 3 h~uiiþ1
2ed þ h~uii�1

2ed

h i� 	
; ð95aÞ

d2ui;L ¼ �ui�2ed � 2�ui�ed þ �uið Þ=2; ð95bÞ
d2ui;C ¼ �ui�ed � 2�ui þ �uiþed

� �
=2; ð95cÞ

d2ui;R ¼ �ui � 2�uiþed þ �uiþ2ed

� �
=2: ð95dÞ
If all the signs agree, we define
d2~ui ¼ si min d2ui;Cd2ui;L;Cd2ui;R; Cd2ui;C
� �

; ð96Þ
where C = 1.25 and si = sign(d2ui). Otherwise, d2~ui ¼ 0. If the cell does not contain an extremum but (90) holds, we limit the
difference dui,L or dui,R that is greater in magnitude by twice the other:
d~ui;L ¼
2dui;R; if jdui;Lj > 2jdui;Rj;
dui;L; otherwise;

�
ð97aÞ

d~ui;R ¼
2dui;L; if jdui;Rj > 2jdui;Lj;
dui;R; otherwise;

�
ð97bÞ
note that at this point in the logic, we are guaranteed that dui,Ldui,R P 0.
At cell interface iþ 1

2 ed, we then construct the left and and right values:
huiiþ1
2ed ;� ¼ �ui þ

d2~ui

d2ui
d~ui;R; ð98aÞ

huiiþ1
2ed ;þ ¼ �uiþed �

d2~uiþed

d2uiþed

d~uiþed ;L: ð98bÞ
We then choose the interface state to be the upwind state. For our scalar problem, this is simply
huiiþ1
2ed ;upwind ¼

huiiþ1
2ed ;�; if w � ed P 0;

huiiþ1
2ed ;þ; otherwise;

(
ð99Þ
where the flow is smooth, these two values will be equivalent to the original fourth-order, face-averaged value huiiþ1
2ed .

4.3.3. Limited scheme stability constraints
Finally, we note that as the limiter engages, the limited fluxes may be anywhere between first- and fourth-order. This

changes the stability constraints for the algorithm. Specifically, consider the case where all fluxes for a cell are first-order
upwind fluxes. Assuming that v � ed > 0 for all d, the eigenvalues are
ki ¼ �
1
h

XD

d¼1

v � ed 1� cos hkd
þ i sin hkd

� 

; ð100Þ
which is the weighted sum of circles centered on z = �1 with radius r = 1 in the complex plane. The weights scale the center
and radius of each dimensional contribution. As Fig. 6 demonstrates, eigenvalues on these circles will have maximum mag-
nitude on the real axis (h = ±p), and the condition that the eigenvalues remain within the Runge–Kutta stability region is
jkijDt / 2.785. Thus, the stability constraint for first-order upwind fluxes is
Dt
h

XD

d¼1

v � ed
�� �� / 1:3925; ð101Þ
which is more restrictive than the constraint (79) on fourth-order fluxes. We have investigated several other combinations of
low- and higher-order fluxes, but the constraint of purely first-order fluxes appears to be the most severe. As before, we ex-
tend the stability constraint to mapped grids by considering locally the computational-space velocity wi in place of v.
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4.4. Example problems

To demonstrate the behavior of the hyperbolic mapped finite-volume scheme, we investigate several initial value test
problems. On a periodic domain, we consider uniform advection of constant, sinusoidal, and compactly supported initial
data. We also consider the standard limiter test problem of rotational advection of a slotted cylinder. For each of these prob-
lems, we compute on a uniform, Cartesian mesh and a nonlinearly deformed mesh.

For each smooth problem, a grid convergence study is conducted. We compute on a sequence of six meshes with
Ncells = {16,32,64,128,256,512}. The error in the cell-averaged numerical solution eui is computed by differencing with a
cell-averaged reference solution. The exact solutions for the test problems are easily expressed pointwise, but to compute
the cell-averaged reference solution on the mapped grid analytically is difficult. Instead, for our reference solution, we com-
pute cell-centered pointwise values ðuJÞi0 on a uniform computational grid with h = 1/(8Ncells), and then use the relationships
(4) and (62) to obtain approximate values of ~ui on the original, coarser grid. Thus, our reference solution is a fourth-order
approximation of the cell-averaged exact solution, but for the problems we consider, this error in the reference solution
is several orders of magnitude smaller than the error between the computed solution and the reference solution.

4.4.1. Mappings
For reference, we compute on a uniform, Cartesian mesh, which corresponds to the identity mapping x(n) = n. This dem-

onstrates that the metric computations reduce to the correct trivial relationships and provides a baseline against which to
compare the results of simulations with less trivial mappings.

The nonlinear mapping we consider is a specialization of the mapping used in [21]. This mapping is generated by perturb-
ing a uniform Cartesian mesh by a Cartesian sinusoidal product, specifically,
xd ¼ nd þ cd

YD

p¼1

sinð2pnpÞ; d ¼ 1; . . . ;D: ð102Þ
To ensure that the perturbed mesh does not tangle, it is sufficient to take "d, 0 6 2pcd 6 1. We use cd = 0.1, d = 1, 2 in our
example calculations.

This mapping cannot be inverted analytically, however, noting that
nd ¼ xd þ
cd

cd0
ðnd0 � xd0 Þ; d ¼ 1; . . . ;D; d – d0; ð103Þ
for cd0 – 0, the mapping can be inverted numerically using a fixed-point iteration on the scalar equation (102) for nd0 . Note that
for this mapping, the Jacobian is not constant. A depiction of the mapped grid for Ncells = 64 in each direction is plotted in Fig. 8.
Fig. 8. The deformed mesh (102) used in the example problems, shown with c = [0.1,0.1] and Ncells = 64 in each direction.
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4.4.2. Uniform advection of constant data
We consider uniform advection of constant initial data on a periodic domain x 2 [0,1)2. The initial conditions are
Table 2
L1 erro

Ncells

Carte
Defo

Table 3
L1 erro

Ncells

Carte
Defo
u0ðxÞ ¼ 1; ðIC1Þ
and the uniform velocity vector is
vðxÞ ¼ ð1;0:5Þ: ð104Þ
The exact solution is u(x, t) = 1 at all times, and we integrate to a final time of t = 2. While this problem appears to be trivial, it
is an important demonstration of the freestream preservation capability of the discretization.

For all runs, we take Dt Ncells = 4/15 to be constant. Doing so ensures that, for a given resolution, the same integer number
of time steps are taken regardless of the mapping and that, across resolutions for a particular mapping, the CFL number is
fixed. The value of Dt Ncells is set by the stability constraint for the limited scheme on the deformed mesh, for which
maxi

P
djwi � edj � 4:88; the corresponding CFL number is 1.30. On the Cartesian mesh,

P
djv � edj ¼ 1:50, so the CFL number

is 0.40.
Results of grid convergence studies are presented in Tables 2 and 3. Freestream preservation is demonstrated by the fact

that the maximum pointwise error in the computed solution in both cases is at most dominated by round-off error. Both
with and without the limiter, the method is shown to be freestream preserving.

We note that the results differ with and without the limiter because the limiter scheme operates on data even when the
solution is constant. As such, the method does a number of finite-precision operations that can introduce additional round-
off error. This is particularly true on the deformed mesh (102), where the non-constant Jacobian for this mapping also con-
tributes to round-off error. Since the number of time steps, and thus the number of floating-point operations, increase with
resolution, it is expected to see a slight growth in the magnitude of the roundoff error.

4.4.3. Uniform advection of sinusoidal data
We consider uniform advection of Cartesian-product sinusoidal initial data on a periodic domain x 2 [0,1)2. The initial

conditions are
u0ðxÞ ¼ cosð2px1Þ cosð2px2Þ; ðIC2Þ
and the uniform velocity vector is again (104). The exact solution is
uðx; tÞ ¼ u0ðx� vtÞ; ð105Þ
where u0 is by definition periodic in each direction with unit period. As before, the final time is t = 2, and we take a fixed CFL
number of 1.30 on both meshes.

Results of grid convergence studies are plotted in Figs. 9 and 10. Fourth-order convergence is seen for both the base and
limited schemes on both meshes with sufficient resolution. On the Cartesian mesh, the error norms of both schemes become
indistinguishable at Ncells = 32. On the deformed mesh, the L1 error norms of both schemes become indistinguishable at
Ncells = 64, but the L1 error norms are slightly different. This behavior is consistent with the limiter ‘turning off’ once the
solution is sufficiently resolved. Convergence rates above fourth-order are artifacts of the transition into the asymptotic re-
gime of convergence.

4.4.4. Uniform advection of compactly-supported data
We consider uniform advection of compactly-supported smooth initial pulse on a periodic domain x 2 [0,1)2. The initial

conditions are
r norm of cell averages for freestream preservation test at six resolutions for the base scheme.

16 32 64 128 256 512

sian 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
rmed 0.00e+00 0.00e+00 0.00e+00 0.00e+00 4.44e�16 2.22e�16

r norm of cell averages for freestream preservation test at six resolutions for the base scheme with limiter.

16 32 64 128 256 512

sian 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
rmed 1.11e�16 2.22e�16 3.33e�16 3.33e�16 4.44e�16 6.66e�16



Fig. 9. Convergence of L1 error norm of cell averages with grid refinement for uniform advection (104) of sinusoidal data (IC2) for both meshes.
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u0ðxÞ ¼
cos8 pr

2R

� �
; 0 6 r 6 R;

0; otherwise;

(
ðIC3Þ
r = jx � x⁄j, and the uniform velocity vector is again (104). We take R = 0.25 and x⁄ = (0.75,0.5). The exact solution is again
given by (105), with u(x + ed,t) = u(x, t) for d = 1, 2. As before, the final time is t = 2, and the fixed CFL number on both meshes
is 1.30.

Results of the grid convergence study for the base and the limited scheme are plotted in Figs. 11 and 12. For both
schemes and both meshes, the compact function is poorly represented at coarse resolutions; at Ncells = 16, there are
only four cells in each direction across the non-zero portion of the function. By around Ncells = 256, the approximate
solution enters the asymptotic convergence regime in both norms; a fourth-order convergence rate is observed for both
schemes and on both meshes. On both meshes, the error norms of both schemes become effectively the same at
Ncells = 128.

4.4.5. Circular advection of a slotted cylinder
A standard problem used to test the multidimensional performance of limiting schemes is the circular advection of a slot-

ted cylinder. The rotational velocity vector for rotation about xc = (0.5,0.5) is



Fig. 10. Convergence of L1 error norm of cell-averages with grid refinement for uniform advection (104) of sinusoidal data (IC2) for both meshes.
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vðxÞ ¼ 2pxð�ðx2 � xc
2Þ; ðx1 � xc

1ÞÞ; ðV3Þ
where we take x = 1. We define a slotted cylinder of radius R = 0.15, slot width W = 0.05, and slot height H = 0.25 centered on
x⁄ = (0.5,0.75) for the initial conditions:
u0ðxÞ ¼
0; 0 6 R < r;

0; j2z1j < W and 0 < z2 þ R < H;

1; otherwise;

8><>:

where z = x � x⁄ and r = jzj. We simulate on the truncated domain x 2 [0,1]2 with Ncells = 100 cells in each direction. We
use analytically prescribed boundary conditions for this problem; the solution near and beyond the artificial boundary
of the domain is zero, and this is what we prescribe in the ghost cells. The mappings are periodic in their definition
and so extend periodically beyond the simulation domain. The exact solution at time t = 1 is the initial condition, and
we use a fixed CFL number of 1.33, which corresponds to Dt = 1/472 on the Cartesian mesh and Dt = 1/800 on the de-
formed mesh.

The initial and final solution for simulation on a Cartesian mesh are plotted in Fig. 13. The basic shape of the cylinder
is preserved, albeit with some spreading of the initially sharp edges of the cylinder. The slot has some fill-in, and the



Fig. 11. Convergence of L1 error norm of cell averages with grid refinement for the base and limited schemes for uniform advection (104) of compactly-
supported data (IC3) for both meshes.
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bridge slumps. Nevertheless, the shape and size of the slot is fairly well preserved. We see a maximum overshoot of 8.8%
that occurs near the lead edges of the cylinder. The overshoot indicates that our modified limiter fails to reduce fully to
first-order in the vicinity of the discontinuous cylinder edges. Clearly, the limiter requires further development, but we
do note that, despite the overshoot, the limiter is doing a good job of preserving the shape and suppressing oscillations.
This can be seen by direct comparison with Fig. 14 in which the solution for the unlimited scheme is plotted.
Overall, this is a good approximation for such a coarse resolution, particularly with only only five cells across the
slot.

The initial and final solution for simulation on the mapped grid (102) are plotted in Fig. 15. Again, the basic shape of the
cylinder is preserved, although there is more smearing than for the Cartesian case. The slot has more fill-in and the bridge is
more eroded than on the Cartesian mesh. Of course, the cylinder has traveled through some regions of stretched mesh that
make representation of these finer features more difficult. The symmetry of the cylinder is still relatively good, despite the
mesh distortions. On the mapped grid, the maximum overshoot is 9.9%, which is slightly higher than for the Cartesian case,
but consistent with the limiter behavior on the Cartesian mesh. Thus, while the limiter itself requires improvement to elim-
inate overshoots at discontinuities, we have successfully shown that such a limiter can be incorporated into our mapped grid
formulation.



Fig. 12. Convergence of L1 error norm of cell averages with grid refinement for the base and limiter schemes for uniform advection (104) of compactly-
supported data (IC3) on both meshes.
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5. Summary

We have presented a strategy for the construction of high-order, finite-volume discretizations of flux divergences in
mapped coordinates. The approach is based on the systematic development of sufficiently accurate cell face averages, includ-
ing the computation of product averages in terms of factor averages and/or face-centered values. Among the face averages to
be computed are those of the coordinate mapping metric factors, whose calculation affects not only the overall accuracy of
the scheme but also freestream preservation. The latter is automatically achieved to machine roundoff by representing the
metric factors as exterior derivatives, whose face averages are in turn reduced to quadratures on face hyperedges. The quadr-
atures can be performed by any convenient method of sufficient accuracy.

To demonstrate the approach, we developed fourth-order discretizations of prototypical elliptic and hyperbolic problems.
In addition to testing fourth-order accuracy, the elliptic example displayed the use of an operator based on a second-order
finite-volume discretization as a preconditioner in a conjugate gradient iteration. Such strategies can be important in reduc-
ing the solver cost of the larger stencils that inevitably accompany high-order discretizations. In the hyperbolic examples, we
demonstrated how one can include a nonlinear limiter. Our results indicate that our limited method can achieve a fourth-
order convergence rate for smooth data on mapped grids and can suppress oscillations for discontinuous data on mapped
grids. However, we were not able to demonstrate a limiter that prevented all overshoots at discontinuities. Development



Fig. 13. Circular advection of a slotted cylinder on a 100 � 100 Cartesian grid. The left is the initial condition (and reference solution), and the right is the
computed solution after one revolution. The slot and bridge do fill in and slump, respectively, but the overall agreement is good.

Fig. 14. Circular advection of a slotted cylinder on a 100 � 100 Cartesian grid after one revolution with no limiter. Comparison with limited results indicates
the success of the limiter in the preservation of symmetry and the suppression of unphysical oscillations.
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of a more robust limiter for fourth-order schemes on mapped grids is beyond the scope of this paper. Recent advances can be
found elsewhere [20].

There are a number of possible extensions to the work described here. Two of the most immediate ones, that of the exten-
sion to nonlinear hyperbolic systems [20] and to advection–diffusion equations [22], have been carried out for the case of
Cartesian grids. In the former case, care is required to make the necessary nonlinear transformations between conserved
variables and the fluxes in a way that preserves higher-order accuracy. This is done by transforming average values to point
values, applying the nonlinear transformation, and averaging, using formulas similar to Eq. (4). In the latter case, to preserve
fourth-order accuracy in time, we use the additive Runge–Kutta method in [23]. On a single grid, both of these approaches
can be combined in a straightforward fashion with the mapped approach described here.

In both of the applications [20,22], the methods have been constructed for nested, locally-refined grids. However, the
extension to local refinement of our mapped-grid method requires some care. The difficulty is that the geometry of the con-
trol volumes changes depending on the refinement level. One possible solution is to generalize to higher order the method in
[13], in which the description of the control volumes between levels is forced to be consistent by averaging down the geo-
metric information from the locally finest level. The averaging is done so that accuracy and freestream conditions are simul-
taneously preserved, particularly on regridding.



Fig. 15. Circular advection of a slotted cylinder on a 100 � 100 deformed grid (102). The left is the initial condition (and reference solution), and the right is
the computed solution after one revolution. The slot and bridge do fill in and slump, respectively, but the overall agreement is good.

P. Colella et al. / Journal of Computational Physics 230 (2011) 2952–2976 2975
Another possible extension of our approach is to mapped-multiblock grids. In this application, the computational domain
in physical space is represented as the disjoint union of images of mappings that are conforming, i.e., aligned at common
boundaries in such a way that when the maps are discretized, the individual faces of control volumes at those boundaries
coincide. The conforming property makes the imposition of conservation straightforward; however, the maps typically are
not smooth at the boundaries, so some care is required in constructing stencils that preserve the high-order accuracy of the
fluxes [24].

Moving coordinate systems are yet another possible extension of our approach. The formalism described here applies to
any number of space dimensions, so in particular can be used to derive a finite-volume discretization for rðt;xÞ � ðU;~FÞ ¼ 0 in
space–time. If the grid motion is an extrinsically-specified function of time, this presents no obvious difficulties. However, if
the grid motion is computed from the solution, it will be necessary to extract from the solution sufficient time-derivative
information to construct a smooth mapping in space–time.

Finally, there is the issue of the cost of this approach, relative, for example, to a finite-difference method. We have not
made any effort to perform single-processor optimization of the implementations that produced the results here, and there-
fore it would be inappropriate to attempt to draw any conclusions from these numerical results. We can make some infer-
ences from applications to which we are in the process of applying this method: Euler’s equations for compressible flow in
3D and gyrokinetic plasma modeling in two space and two velocity dimensions. In these cases, operation counts indicate the
cost of evaluating the averages of the N ’s along edges and the other geometric information, even to sixth-order accuracy, is
small relative to a single flux evaluation. In the case of compressible flow, this is due to the cost of evaluating the high-order
differences and nonlinear fluxes. In the gyrokinetic plasma case, only two of the coordinate directions (out of four) are sub-
ject to a nontrivial mapping, and the cost of solving the elliptic gyrokinetic Poisson equation in 2D, which is much less than
the advection equation solve in 4D, overwhelms the cost of computing the metric information. Our conclusion supports the
notion that, even if the grid moves, the cost of recomputing the metric information will remain a small fraction of the overall
cost of the calculation for realistic problems. Although we have not yet designed or implemented a method based on these
ideas for accuracy greater than fourth-order, we believe that the cost of computing the metric information will increase pro-
portionally with the cost of computing the high-order fluxes, since the required order of accuracy for the quadratures in both
cases increases in lockstep.
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