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COGENT is a continuum gyrokinetic code for edge plasmas being developed by the Edge Simulation Labora-
tory collaboration. The code is distinguished by application of the fourth order conservative discretization, and
mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. It is written in
v)|- p (parallel velocity — magnetic moment) velocity coordinates, and making use of the gyrokinetic Poisson
equation for the calculation of a self-consistent electric potential. In the present manuscript we report on the
implementation and initial testing of a succession of increasingly detailed collision operator options, includ-
ing a simple drag-diffusion operator in the parallel velocity space, Lorentz collisions, and a linearized model
Fokker-Planck collision operator conserving momentum and energy.
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1 Introduction

Although ¢ f particle-in-cell (PIC) simulation techniques available for modeling of the tokamak core region can
provide low level of numerical noise, concern about PIC noise in the full-f simulations required to model large
density variations in the tokamak edge motivates the use of a continuum kinetic code for the edge modeling [1].
Making use of advanced numerical methods from fluids community, and building on the success of continuum
core codes [1] (e.g., GYRO, GENE, etc.) and the continuum edge code TEMPEST [1, 2], the Edge Simulation
Laboratory collaboration (ESL) has started development of a new-generation continuum kinetic code COGENT.
The COGENT code solves the conservative form of the gyro-kinetic equations by making use of a fourth-order
finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (nearly
field-aligned on blocks) to handle the complexity of divertor geometry without loss of accuracy [3, 4]. Another
distinguishing feature of the code is the use of the Colella-Sekora flux-limiter to suppress unphysical oscillations
about discontinuities while maintaining high-order accuracy elsewhere [5]. Finally, the code is written in v)| — u
(parallel velocity — magnetic moment) coordinates, which avoids “cut-cell” issues appearing, for instance, when
E-u (energy - magnetic moment) coordinates are used.

The performance of the numerical algorithms utilized for solving the gyrokinetic Vlasov-Poisson equations
has been successfully tested in the simulation of the collisionless relaxation of geodesic acoustic modes (GAMs),
and an excellent agreement with an analytical theory along with 4th-order convergence of the numerical errors has
been observed [4]. In the present work the report on implementation and testing of a succession of increasingly
detailed collision operator options, including a simple drag-diffusion operator in the parallel velocity space,
Lorentz collisions, and a linearized model Fokker-Planck collision operator conserving momentum and energy.
Finally, we note that we have also implemented and tested the Krook collision model, however, for brevity, we
do not report the results of those studies in the present work.
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2 Simulation model

The present 4D version of the COGENT code (2 configuration-space + 2 velocity-space coordinates) solves
axisymmetric electrostatic multi-species gyrokinetic Boltzman-Poisson equations for the gyrocenter distribution
functions f, (R, v)|, p1, t) and the electrostatic potential ®(R,, t). Here, R is the gyrocenter position coordinate,
v, is the parallel velocity, y is the magnetic moment, and the corresponding kinetic equation is given by [6]
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where dR. /dt = V4 gc = v b + Vo 4r and dvj|o/dt = (=1/mav)ja)Va,ge - (ZaVP + pVB), V4 4y is the
magnetic drift velocity composed of the E x B drift, curvature drift, and V B drift [6], B is the applied magnetic
field, and C,[f,] is the collision operator. The present version of the code assumes the long wavelength limit
ki pao << 1, in which the gyrokinetic Poisson equation takes the form [1, 7]
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Here, 14,4 = (2/ma) [ B}, dv)du{ fa+(p2/2) V7 fa} is the ion gyrocenter density, By, = B[1+(v}|/Qq)b-
V x b], Q, and p, denote the species cyclotron frequency and thermal gyroradius, and various adiabatic models
are available in the code to model the electron density, n..
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3 Collision models

Several model collision operators have been implemented and tested in COGENT. These include a model parallel
drag-diffusion collision operator, the Lorentz operator, and the linearized Fokker-Plank collision operator in the
form proposed by Abel et al in Ref. [8]. In what follows, a brief description of collision models along with the
summary of initial tests is presented.

3.1 Parallel drag-diffusion collision operator

A model “parallel drag-diffusion* operator

C)j = vedy,, (v.f + (T/m) Oy f) )
provides drag and diffusion in the parallel velocity space. Here, v, is the collision frequency, the derivative with
respect to the parallel velocity coordinate, &JH =9/ a”u’ is evaluated at a fixed magnetic moment, and m and

T correspond to the species mass and equilibrium temperature, respectively. The implementation of this colli-
sion model has been verified for a test problem, where particles confined along the magnetic field direction by
a square electrostatic potential well become untrapped due to collisions and are lost. A schematic of the simu-
lation domain is shown in Fig. 1(a). For this simulation the magnetic drifts are turned off, and only the parallel
streaming is allowed. The potential distribution shown in Fig. 1(b) is effectively modeled by the corresponding
boundary conditions at § = 0 (# = 27) plane, which provide reflection of low-energy incident particles with
v < (2q¢o/m)*/? and absorption of high-energy particles with v > (2q¢o/m)/%. Here, g is the particle
charge, and ¢ is the magnitude of the potential barrier. The simulation is initialized with a uniform Maxwellian
distribution function fy; = (1/7vr)3/?ng exp(—vf/v} — uB/T), where vr = (2T /m)'/? is the thermal ve-
locity.

An approximate analytical solution to the problem can be obtained in the weak-collision limit, i.e., for the case
where the collision frequency, v, is much smaller than the effective bounce frequency, wg = vy /2L.. Here,
L. is the connection length given for the present geometry by L, = (B/B,) - 2rr, where B, is the poloidal
component of the applied magnetic field [Fig. 1(a)]. For this case the high-energy particles forming the tail of the
initial distribution are rapidly lost on the time sale 7 = L. /v, and during the following stage of a slow collisional
decay the distribution function can be approximated by its bounce-average value F', which evolves according to
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Fig. 1 Parallel particles losses over a potential barrier. (a) Schematic of the simulation geometry, 7,in/R = 0.0002, Ar/ry,in
= 0.2, the ratio of the toroidal to the poloidal magnetic field is Br/B, = 4. (b) Distribution of the applied potential. (c)
Evolution of the particle distribution function in the weak-collision limit, Qg /v. = 30, vo = vr. The black dots correspond
to the results of the COGENT simulations, and the red curve shows the analytical solution given in Eq. (6), where C is chosen
to match the maximum value of the distribution function at t=1/v.. Grid resolution corresponds to n, = 8, ng = 32, Ny = 32,
n, =8.

Furthermore, in the weak-collision limit, i.e., V. << wp, we can take (to the zero order in v./wg) F = 0 for
|v)|| = vo. Equation (4) has a series of exact solutions

Fu (v, 1) = e ete /v [—An/Z, 1/2,vﬁ/v%] e I, (5)

where M [a, b, x] is the Kummer confluent hypergeometric function, and the eigenvalues \,, are determined from
the boundary conditions F'(+vg, i, t) = 0. The bounce-averaged distribution function can be now constructed as
F = XC, F,, where the coefficients C,, are determined from the initial conditions. Note that for the considered
parameters, vo/vr = 1.0, the eigenvalues \,, rapidly increase (A\g = 0.79, \; = 10.75, A2 = 30.5...), therefore
after a relatively short transient time period, 7+ ~ 1/(v.A1) the asymptotic behavior of the distribution function
F, is given by
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Fig. 2 Effects of finite v./wp corrections on the distribution function decay rate. Shown is the time evolution of the
distribution function normalized maximum value, where fo = max{f(¢ = 0)}. The black dots correspond to the results of
the COGENT simulations, the red dashed lines show the weak-collision theoretical prediction, and the blue lines correspond
to the decay rate obtained from the ”sum rule® [Eq. (7)], where, for the considered parameters, vy = 0.43 wpg.

Results of the numerical simulations obtained in the weak collision limit for wp /v = 30 demonstrate excellent
agreement with the analytical predictions [see Figs. 1(c) and 2(a)]. It is also interesting to note that the departure
from the weak-collision decay rate observed in the simulations with an increased collision frequency [Figs. 2(b)
and 2(c)] can be described well by the “sum rule” [9],

/vy =1/v+1/vs, (7
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where, v = (1/N)dN/dt is the decay rate, N is the total number of particle, .. is the decay rate corresponding
to the weak-collision limit (v, << wg), and ¢ is the decay rate corresponding to the strong-collision limit
(ve >> wpg), in which the distribution function can be approximated by a Maxwellian distribution and the
particle parallel losses are determined by the ”gas-dynamic* flow, i.e.
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Here, L, is the parallel length of an electrostatic trap, given for the present geometry by L) = L. = (B/B,)-27r.

3.2 Lorentz collision operator

The Lorentz operator,

Crlf (&) = Vcéaf ((1—¢%) 2 ) ©)

provides pitch angle scattering in the velocity space. Here, v, is the collision frequency, the derivative with respect
to the pitch-angle variable, { = v)/v, is evaluated at a fixed particle energy, £} = mv? /2, and a gyrophase-
independent distribution function is assumed. Note that although the Lorentz operator conserves particles energy
analytically, spurious diffusion in the energy space appears (see Fig.3) due to approximate (finite-difference)
numerical evaluation of the operator, using the parallel velocity v|| and magnetic moment / coordinates.

Initial Distribution (&)

Fig. 3 COGENT simulations of the pitch-angle scattering of an initial distribution function represented by a blob in the
velocity space. The figure shows plots of (a) the initial distribution (¢=0), (b) distribution function at v.t = 4 obtained with
the second-order accurate implementation of the Lorentz operator, and (c) distribution function at v.t = 4 obtained with the
fourth-order accurate implementation of the Lorentz operator. The solid black lines illustrate the contours of constant energy.
Note that the different scales in color schemes are used in the frames, and the maximum values of the distribution functions
in frames (a), (b), and (c) are related as 1:0.067:0.13, correspondingly. Grid resolution in the velocity space corresponds to
Ny = 64, n, =32.

Therefore, it is of particular importance to develop and implement a higher-order finite-difference scheme that
can minimize the effects of spurious energy diffusion. Figure 3 demonstrates that the spurious diffusion is signifi-
cantly suppressed (to a tolerable level) for the case where a 4-th order accurate numerical scheme is implemented.
In order to test the performance of the implemented Lorentz operator, full-f simulations of neoclassical transport
have been performed. The results are found in very good agreement with the analytical theory developed in [10]
for the case of the Lorentz operator (see Fig. 4).

3.3 Full linearized collision operator and a simplified non-linear isotropic collision model

For brevity, we only mention here that a linearized model Fokker-Plank collision operator conserving momentum
and energy has been recently implemented in COGENT in the form proposed by Abel et al in Ref. [8]. Also,
a simplified nonlinear collision model taking into account isotropic nonthermal effects has been formulated by
straightforward generalization of the linearized model. The nonlinear model operator for like-particle collisions
takes the form
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Cnilf, [l = Crpf, (N + PLf]-(F), (10)

where < f> is the isotropic part of the distribution function (in the velocity space), Crp[f, <f>] is the full
nonlinear Fokker-Plank operator describing collisions with an isotropic background, and P|[f] are model restoring
terms, providing conservation of particles, momentum and energy. For the case where <f> is a Maxwellian
distribution, the nonlinear collision model reduces to the linearized collision model. Implementation of the
nonlinear collision model is underway.
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Fig. 4 COGENT simulations (dots) of the radial neoclassical ion transport (with no electric field) for the case of the Lorentz
collision operator. Shown the plots of (a) flux-surface averaged particle flux, and (b) flux-surface averaged heat flux versus the
normalized collision frequency v* = vee 3/22Y/2¢R, /vr. The red and blue lines correspond to the analytical calculations
[10] in the banana and Pfirsch-Schliiter regimes, correspondingly. The parameters of the simulation correspond to safety factor
q = 3, inverse aspect ratio €= 0.1, ion temperature 7" = 3 KeV, ion mass m; = 2m,,, where m,, is the proton mass, major radius
Ry = 45.6 m, toroidal magnetic field on axis Bo = 7.5 T, inverse temperature and density gradients k, = k7 = 10/ Ry, and
the magnetic field geometry corresponds to flux tubes with nested circular cross-sections. Grid resolution in the [r, 0, v||, u]
domain corresponds to [16, 32, 80, 40] for the banana regime, and [16, 32, 32, 16] for the Pfirsch-Schliiter regime.

4 Conclusion

In the present work we have reported on the implementation and testing of a succession of increasingly detailed
collision operator options, including a simple drag-diffusion operator in parallel velocity space, Lorentz colli-
sions, and a linearized model Fokker-Planck collision operator conserving momentum and energy. Based on the
generalization of the linearized operator we have also formulated a model nonlinear collision operator for the
case where a distribution function is nearly isotropic, but arbitrary in speed. We have performed a number of
verification tests of these operators, including recovery of analytic results for loss over a prescribed potential
barrier and recovery of the neoclassical fluxes.

Acknowledgements This work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344.

References

[1] R.H. Cohen and X.Q. Xu, Contrib. Plasma Phys. 48, 212 (2008).
[2] X.Q. Xu et al., Nucl. Fusion 50, 064003 (2010); Phys. Rev. Lett 100, 215001 (2008).
[3] P. Colella et al., J. Comput. Phys. 230, 2952 (2011).
[4] M.R. Dorr et al., in: Proceedings of the SciDAC 2010 Conference, Tennessee 2010.
[5] P. Colella and M.D. Sekora, J. Comput. Phys. 227, 7069 (2008).
[6] T.S. Hahm, Phys. Plasmas 3, 4658 (1996).
[7] X.Q. Xu et al., Nucl. Fusion 47, 809 (2007).
[8] L.G. Abel et al, Phys. Plasmas 15, 122509 (2008).
[9] T.D. Rognlien and T.A. Cutler, Nucl. Fusion 20, 1003 (1980).
[10] S.Z.Lin, WM. Tang, and W.W. Lee, Phys. Plasmas 2, 2975 (1995).

(© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cpp-journal.org



