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1 | INTRODUCTION

Kinetic effects play a significant role in defining tokamak plasma transport as the collisional mean free path in hot fusion-grade
plasmas becomes large compared to the length scale for density and temperature variations along the magnetic field lines.
While numerical modelling of magnetized plasma kinetics is a challenging problem, substantial simplification occurs in a
tokamak core region, where the plasma species distribution is close to Maxwellian. As such, kinetic (i.e., gyrokinetic) core
codes are typically employed to model small delta-F deviations from a Maxwellian distribution, which generate neoclassical
(collisional)!"?! and turbulent!®*! fluxes. These fluxes can then be passed to low-dimensionality fluid transport codes to update
the background plasma profiles. However, the presence of a steep gradient region in the edge of a tokamak, for example, under
H-mode conditions, can lead to pronounced deviations of a background ion distribution function from a local Maxwellian.
Therefore, gyrokinetic edge codes should include modelling of the background quasi-equilibrium dynamics, that is, a full-F
approach is required.

Motivated in part by the success of continuum (Eulerian) delta-F codes for core physics and in part by their potential for high
accuracy, the Edge Simulation Laboratory collaboration®! has been developing a full-F code called COGENT for the edge.[6-8]
The code is based on a high-order mapped multi-block finite-volume discretization scheme that involves the use of multiple grid
blocks to represent complex magnetic topologies, including a divertor geometry.!°-!"! In this paper, we focus on the 4D version
of the code, which describes axisymmetric transport properties of edge plasmas. The present 4D model considers large-scale
(pi/L1 < < 1) electrostatic potential variations corresponding to a quasi-equilibrium background, and solves full-F gyrokinetic
equations for plasma species in the long-wavelength (drift-kinetic) limit. Here, p; is the ion thermal gyroradius and L, is the char-
acteristic length scale for perpendicular variations. The full non-linear Fokker—Plank collision operator''?! is used to describe
ion—ion Coulomb collisions, and an ad hoc model is available to include the effects of anomalous (turbulent) transport.“ﬂ
Previous cross-separatrix COGENT simulations!”! used either prescribed, that is, non-evolving, potential variations, or a sim-
plified 1D flux-surface average model for E, involving ad hoc extrapolation into the open field line region. Here, we extend the
simulation model to include 2D self-consistent variations of electrostatic potential on both open and closed field lines.

Determining the model for self-consistent quasi-equilibrium electric fields in a tokamak edge is an important and challenging
problem. In contrast to the core region where the plasma profiles are nearly uniform on magnetic flux surfaces, and thereby the
poloidal variations of a background electrostatic potential are weak, ¢¢ore (W, ) = ¢eore (W), the edge plasma profiles can exhibit
strong poloidal variations, and therefore ¢4, (y, #) can have a pronounced 2D structure. Also, the physical mechanisms that
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set the radial electric field on open and closed field lines are different, which can lead to the development of narrow transition
structures around the magnetic separatrix. In more detail, “neoclassical ion physics” sets radially confining E, on closed field
lines,!'*151 whereas “parallel electron physics”, subject to the sheath boundary conditions at divertor plates, sets the electric
fields on open field lines.['®-!8 Nevertheless, it should also be mentioned that the presence of non-intrinsically-ambipolar
processes in edge plasmas such as prompt orbit losses and charge-exchange collisions with neutrals can justify the use of the
standard low-order gyrokinetic models for determining the quasi-equilibrium E,.[' This is in contrast to the core region, where
the intrinsic ambipolarity of electron and ion transport may require the use of higher order gyrokinetic formulations?®! going
beyond the standard numerical implementations.

In this paper, we propose a 2D model for self-consistent axisymmetric variations of the electrostatic potential based on the
quasi-neutrality condition V- j =0, where is the electrical current density summed over all plasma species. Evidently, the most
accurate description of the plasma current carried by particle gyrocenters can be obtained by solving the gyrokinetic equations
for the electron and ion species. However, the presence of fast parallel electron streaming, w;.. ~ Vr k), and the even more
rapid electrostatic Alfven mode!! wy ~ Qi\/m; /me(ky/k1) = Vrkj/(kLps) imposes a severe constraint on the time step
needed for the stability of explicit time integration schemes, thereby demanding significant computational resources. Here, V7,
is the electron thermal velocity, €; is the ion cyclotron frequency, p; = \/m,/m;Vr, /€; is the ion-sound gyroradius, m, and
m; are the electron and ion species mass, and k| and &, are the parallel and perpendicular wave numbers. On the other hand,
V. j =0 formulation offers a straightforward way to derive a reduced model that retains only ion kinetic effects and makes use
of a fluid description for electrons. In particular, such a model can eliminate fast parallel electron dynamics associated with the
electron inertia terms. Furthermore, the rapid processes corresponding to high parallel electron conductivity and heat diffusivity
can be treated implicitly within a 2D fluid model framework, which is much less computationally intensive than implicit time
integration of the original system that includes a 4D gyrokinetic equation for electrons.

It should be noted that electron kinetic effects can be important in the edge of a tokamak./?>* Indeed, even a cold and dense
divertor plasma can be weakly collisional for the suprathermal tail particles, which contribute disproportionally to the parallel
heat conductivity.[*?! These kinetic effects can play a role in determining the electron temperature at the divertor plates, which
in turn contributes to the scrape-off layer (SOL) radial electric field via the sheath boundary condition.?! Nevertheless, the
reduced kinetic-ion/fluid-electron hybrid model developed here captures the ion kinetic effects corresponding to ion orbit losses
and poloidal variations of the ion distribution function, which play an important role in determining the self-consistent electric
fields in the upstream SOL and inside the separatrix.

2 | SIMULATION MODEL

The 4D version of the COGENT code models the long-wavelength (i.e., drift-kinetic) limit of an axisymmetric gyrokinetic
equation for a gyrocenter distribution function f,(R, vy, u, ) written in conservative form

OB fa) .
g;f_ +V - (ReByfi) + aiv”(VuaBana) = CalByofal + T2 By ). )

Here, a denotes the particle species, V is the gradient with respect to R, and the guiding center velocity R, is given by

1

R, = L v|Bs + =—b X (Z,eV® + uVB)| . )
B”a Z,,e
The evolution of the guiding center parallel velocity is determined from
Pe = —— B - (Z4eVD + uVB), 3)
maB),

where m, and Z, are the species mass and charge state, respectively, e is the electron charge, ®(R, ) describes the long wave-
length, p;/L) < < 1, axisymmetric electrostatic potential variation, B= B -b is the magnetic field with b denoting the unit vector
along the field, B3 (R, v|) = B + (mq/Z,e)v|V X b, and BIIZ = B} - b. Finally, C, and T4V denote the collision and anomalous
transport operators, for which a number of increasingly detailed options are available in COGENT.[!2:13.25]

Equation 1 describes the full-F gyrokinetic equation that needs to be coupled to a model for self-consistent variations of an
electrostatic potential. We begin the analysis by considering the long-wavelength limit of the gyro-Possion equation, which is
often used in axisymmetric gyrokineic simulations!®-26-281:

Zizezni _
ZVJ_‘ m,-Qiz V,® | =e ne—zi:Zini . )
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TABLE 1 Characteristic near-separatrix parameters of a DIII-D H-mode

n, (m=3) T; (eV) T, (eV) By (T) Safety factor, ¢ R, (m) m;/m,
10" 300 50 1.6 3 1.6 2

Here, the sum is taken over the ion species, V; =V —b(b-V) is the perpendicular gradient operator, Q; =Z;eB/(m;c) is the
ion cyclotron frequency, n, = Qx/mg) f fuB ”adv”dy is the ion species gyrocenter density, and n; = (2x/m;) f Ifi +

(mic?/BZ ?ez) u Aifi]BTIid vd u is the ion species gyro-averaged gyrocenter density, which is slightly different from n; by the
small “pressure-term” corrections. Taking the time derivatives of Equation 4 and making use of Equation 1, it follows

Zen, oD
ZVL ( V. a;) Voje+V- ZJ,, )

where in the left-hand side (LHS) of Equation (5) we neglected small time derivatives of the background ion density, which
varies on a transport timescale Tygugp ~ Li /D4 while retaining more rapid variations of the electrostatic potential, such as
geodesic acoustic modes (GAMs), that occur on the transient timescale, 7, ~ a/ Vr,. Here, D, is the anomalous diffusivity, a
is the tokamak minor radius, and V7, is the main ion species’ thermal velocity. Neglecting the small “pressure-term” correction
and assuming intrinsically ambipolar anomalous transport, the species gyrocenter current density that needs to be retained in the
right-hand side (RHS) of Equation (5) is given by j, = Zye f R,lf,, d v)id u. Equation (5) represents the plasma quasi-neutrality
condition given by V-J =0, where J is the total plasma current dens1ty, which includes the ion species’ polarization current
density J,, and the combined electron and ion gyrocenter current density J,.

As mentioned earlier (Section 1), the gyrokinetic system in Equations (1) and (5) contains fast timescales related to the
electron inertia, which introduces significant computational challenges. It is therefore of particular practical importance to
develop a reduced model requiring less computational resources. Here, we propose the kinetic-ion/fluid-electron hybrid model,
in which we treat electrons within a collisional fluid framework. It is worth noting that in the near-separatrix region the electron
temperature can be substantially lower than the ion temperature, and therefore such a model can be justified. Indeed, considering,
for example, an H-mode of the DIII-D tokamak!'%2°! with the characteristic near-separatrix parameters shown in Table 1, we
obtain gR,/ (Vr,7) ~ 0.03 and qRy/ (Vr,z.) = 1.2, where 7, and 7; are the basic electron and ion collisional times given
by Braginskii,*”! ¢ is the magnetic safety factor, and Ry is the tokamak major radius. We, however, emphasize again that an
electron fluid model may fail to adequately describe suprathermal tail particles, which strongly contribute to the electron heat
conductivity, and thereby affect the electron temperature and electrostatic potential near the divertor plates.

Considering, for simplicity, the case of a single ion species with Z; = 1, and neglecting the small electron inertia, the parallel
momentum equation for electrons yields

1 0.71
]|| =0 <—V||P - V”q) + —V”T > (6)

where o = 1.96n.¢27,./m, is the parallel electron conductivity®®!, P, =n,T, is the electron pressure, and T, is the electron tem-
perature. The parallel current density in Equation (6) is the total plasma current summed over the electron and ion species,
Jy=Ji, +Je, - We note that the ion species’ parallel current density J; j is slightly different from the corresponding ion
gyrocenter current density j; | in Equation (5). In particular, the difference contains the term en; ,,;V; ), where the ion polar-
ization charge density en; ,,; corresponds to the LHS of Equation (4), V; y=b -V;, and V; is the ion flow velocity. The
contribution from this term, if retained in Equation (5), would include the term (V; -V )en; po, which corresponds to the
parallel-convection piece of the ion polarization current, J, = (c*m;/Z;eB*)[0V | ®/0t + (V; -V)V @], and explicitly appears in
the fluid framework.[*!1 Here, we neglect the small difference between the parallel plasma current and its gyrocenter counterpart
and combine Equations (5) and (6) to obtain

en; 0P 1 0.71
VJ_'( ZVJ_— =V,- JEJ_+VL J,J_+V|| o) —V”P —V||(I)+—V||T 7
miQi ot

It is instructive to note that, because of the large value of the electron conductivity, the term VJ; dominates the RHS of
Equation (7):

Vi-Ger+idi) (pi/Ro)(enVr,/Lp) N VT Ly By 4Ry

Vi (oy/en)(po/Lr)nT .(qRy)~2 VT Lp B VT T,

Here, n=n, ~ n; denotes the plasma density, py = (By/B)p; is the poloidal ion gyroradius, Ly and Lp are the length scales for

radial variations of the plasma temperature and pressure, respectively, T, < T; and V|| ~ (Bo/B)a~'0/00 ~ 1/(gRy) is assumed, and
to estimate the parallel variations of plasma profiles (e.g., density) we made use of V“f ~ (pi/Ro)Fy /Ly, where f denotes the

< 1. (®
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deviation of the ion distribution function from a Maxwellian background F; with poloidally uniform density and temperature
profiles. We note that the inequality in Equation (8) is formally not valid in close proximity to the X-point where V| — 0;
however, that region is small and should not affect the global solution.

Making use of Equations (7) and (8), it follows that on a timescale larger than the fast electron time scale, t > T.pug ~
(ps/ Lp)zre(qRo /Vr, 7.)?, a solution for the electrostatic potential has the form
TR L)

C))

Oy, 0,1) ~ C(P,t deo
@90, ()+/ (enede ¢ 00

where ¥ and 0 are the magnetic flux function and the poloidal angle coordinate, respectively, and C(¥, ¢) is the con-
stant of integration. On open field lines, the function C(¥, f) is determined by the sheath boundary conditions at the
divertor plates (see, e.g., Refs. 32, 33). On closed field lines, it can be determined by taking the flux-surface average,
(YYw)= ¢ B-VO)'Y(y,0)do/ § (B-VO)~'do, of Equation (7). Note that on closed field lines (Vj;) =0, and therefore the
function C(y, t) = (@), which determines the radial electric field, is set by the flux-surface average of the perpendicular plasma
current (j, ). Neglecting a small electron contribution to the flux-surface averaged current, (j.) ~ (j; 1), and a small ion
polarization density, n; ~ n., we adopt the following equation to describe the evolution of self-consistent potential perturbations

en; o 0D 1 0.71
V.- ~V,— | =V, -ji,+V —VWP.-Vo+—=—V\T. )|, 10
1 <m,-9f L= Ldis Vo eV I pld (10)
where the ion perpendicular current is determined by
jiL= / R,-,LﬁBﬁidv”dy, (11)

and R,; . = R; = (R; - b)b. We note that the term Je, 1 neglected in Equation (10) can represent a pronounced contribution
to a local value of the total perpendicular plasma current j,; . Nevetheless, Equation (10) still sufficiently accurately describes
the dynamics of self-consistent potential variations. The local effects of j, 1 can be, in principle, retained by removing the
contribution from the ExB drift in Equation (11) and by adding the term -V, - [(2P, + m.n, Vez,ll)(RC x B)/(R.B)?] in the RHS
of Equation (10), as is done in fluid codes.!*!** Here, R, is the radius of curvature of the magnetic field lines, and V, is the
electron parallel flow velocity.

While poloidal variations of an electrostatic potential are set by the parallel electron force balance and vary smoothly across
the separatrix, the physical mechanisms that set the radial electric field, that is, the function C(y, t) in Equation (9), are quite
different on open and closed field lines (see the discussion that follows Equation (9)). Therefore, one can expect a rapid change
in the value of a radial electric field E, that occurs within a narrow layer around the separatrix.!'6:18:31:33.351 Making use of the
fact that the perpendicular ion current has an E, -dependent contribution®®! ~V - (cycE}), where oyc ~ ¢*n,Titi/(BRy)? is
the ion neoclassical conductivity, the width of the transition layer L2 _ can be estimated fromP®! V- (oycE) ~ V(e Ep-

ENC
Assuming Ej ~ T,/(eqRo) and E; ~ T;/(eL,’", ), it follows that
L% . ~ qpiTi/ T 4(me fm) '/, (12)

Taking, for illustrative purposes, the near-separatrix DIII-D parameters in Table 1, we obtain LSEe’fV c ~ 35pi.

The neoclassical estimate (in Equation (12)) for the transition layer width Lzlzjvc yields steep gradients of a background
radial electric field, which approach the validity limits of the gyrokinetic theory. It is also instructive to assess the influence
of other physical mechanisms, such as anomalous transport and charge-exchange collisions with neutrals, on the width of the
transition layer. The effects of anomalous transport are included in our gyrokinetic model (see Equation (1)) via the ad hoc

anomalous transport operator TI.AN [B“j.‘ﬁ] =V, - '/I\‘A(VH, w,R)-V L(B“;.“ﬁ), where the functional form of the matrix ’/fA can be

chosen to match the “fluid” anomalous transport coefficients, '] such as particle diffusivity (D4), heat diffusivity (¥,), and
viscosity (7,). The anomalous transport opertor generates the zero-order O(p? /L(J)_) parallel force FlA| = ni‘lV LTy - ViV,
which plays an important role in setting the ion toroidal flow. However, the contribution of intrinsically ambipolar anomalous
transport, [ TAV[By¥fildvydu = [ TV[B):f.1dvyd u, to the total plasma current is rather small. It is generated by the first-order
O(p;/L, ) perpendicular force,!33-3! F’i = ni_lV -4 - VV;.1, which drives the second-order O(pl.2 /Li) perpendicular ion current
_]IA L= nicB™! [Fﬁ X b]. Here, V; , is the first-order ion drift velocity, which includes the diamagnetic and E x B drifts. In the
near-separatrix region, where the electrostatic potential exhibits strong radial variations, the anomalous transport contribution

to the ion current is dominated by j, ~ ¢>B™V 1741 A1 ®, and the transition width L, ; can be estimated from V(o) E}|) ~

1/4
D R R T;
Lt~ | 4 4% 9% jLi Me ) (13)
: p; /7 VT Vr,ze N Te | my

V. -jf togive
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where Dy =n4, 1/(m;n;) is the characteristic value of the anomalous transport coefficients. Considering the near-separatrix
DIII-D H-mode parameters in Table 1 and assuming D4 ~ 1 [m?/s], we obtain L‘S;z v~ 0.7pi.

It is instructive to compare the neoclassical and anomalous transport contributions to the ion current. On closed field lines,
where the radial electric field is determined by the flux surface average of the perpendicular ion current, the neoclassical

contribution is given by
(ir) = onclE, — Enc(ViD], (14)

where Eyc is the neoclassical quasi-equilibrium radial electric field, determined in the large aspect ratio limit by!!4l

Enc = (Vi /c)Bg + (1/en;)dP;/dr — (kle)dT;/dr, where k is the collisionality-dependent coefficient, with k=1.17 in the weakly
collisional regime and k= —1.7 in the strongly collisional regime. Estimating the anomalous contribution to the flux-surface
averaged perpendicular current as (j?r) ~ c*naLE,/(LLB)?, it follows that such a contribution should be retained provided

Ly < pi(Ro/Vr7)4/TiDa/ pl.z. For the DIII-D parameters used earlier, this estimate yields a very short length scale L; <0.14p;.
Finally, we note that, although the effects of the anomalous transport associated with the perpendicular (“classical”’) forces might
not play a strong role in defining the radial electric field, the parallel (“neoclassical”) forces included in the operator TiAN [By:fil
can strongly influence the ion parallel flow velocity,[’! and thereby the corresponding value of the neoclassical quasi-equilibrium
radial electric field (see Equation (14)).

Similarly, we can evaluate the effects of charge-exchange collisions with neutrals. Assuming that the interaction with the neu-
trals is described by the force F** = —m;v(V; — V,)), the second-order O(p[2 / Li) contribution to the perpendicular ion current
is given by Jf’i =nicB™! [F©* X b] and the corresponding width of the transition layer is

1/2
se qRO qRO Ti me
L ~ p; —— 1/ =1 [ — . 15
E.cx P1<ch‘l'z VT,.Ti VT() N1\ m > (15)

Here, V,, is the neutral flow velocity, v, = (6v).n, is the charge-exchange frequency, (6v)., ~ 3.2X 10754/Ti[eV] /0.026 m3/s
is the charge-exchange reactivity,®!! and #n, is the neutral density. For the case of the DIII-D parameters (see Table 1), the
transition width in Equation (15) becomes the order of the ion gyroradius Lf;‘: .~ piforn, ~2x 10'® m=3. Note, however,
that typical values of the neutral density in the DIII-D midplane separatrix region are much smaller. It is also straightforward
to show that the ion current driven by the perpendicular charge-exchange forces is much less than its neoclassical counterpart,
Jidl/ Jf’i ~ Ve R?/ (V% 7;) << 1, for typical near-separatrix parameters. On the other hand, the parallel charge-exchange force

may play a role in determining plasma toroidal rotation'”! (and thereby V;  in Equation (14)), especially in regimes where
the anomalous transport is suppressed. Including the parallel charge-exchange effects into the COGENT simulation model will
be a subject of our future studies. Finally, it is instructive to note that if the second-order O(pi2 / Li) corrections jf | and/or _]l”i
are retained in Equation (7) (or Equation (10)), then it is still sufficient to use the first-order O(p;/L, ) gyrokinetic equation (1)
to obtain the required fluid quantities (i.e., moments of f;). In other words, it is not necessary to include the corresponding
second-order drift velocities Vf’fx = jﬁ’f‘ /(en;) in Equation (1).

While the “perpendicular” effects of anomalous transport and charge-exchange collisions do not appear to play a pronounced
role in determining electrostatic potential variations, we, nevertheless, extend Equation (10) to include the “perpendicular”
charge-exchange term and assume artificially high values of the near-separatrix neutral density in order to provide smoothing
of a numerical solution in the transition region. As a result, the quasi-neutrality equation for the electrostatic potential takes the
form

e‘n; o ob 1 0.71 Amin;vex
V.- Vi— | =V, -ji +V — VP -V @+ —VT, )| -V, [ —2v,0). 16
il (miﬂf L5 Ldis Ve { oV I i ! T (16)

Equation (16) along with Equations (1)—(3) represent the COGENT simulation model that needs to be coupled with a model
for an electron temperature. For simplicity, here we assume isothermal electrons with T, = const, and P, =n;T,.. Development
of a more detailed electron model model will be the subject of our future studies.

3 | COGENT IMPLEMENTATION

A detailed description of the COGENT numerical algorithms is given elsewhere.['%! In this section, we briefly summarize the
main features of the code and certain aspects specific to the present application.
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3.1 | Spatial discretization

The code utilizes a high-order finite-volume method® combined with mapped-multiblock technology,!!! in which the entire
grid structure is represented by a union of grid blocks with a smooth function defined on each block to map the physical coor-
dinate system onto a logically rectangular (computational) grid and with high-order interpolation methods used for intra-block
communication. To exploit strong anisotropy of plasma transport, the grid is flux-aligned everywhere excluding a small vicin-
ity of the X-point, where it is smoothly extended towards (and beyond) the block boundaries to enable high-order treatment of
the X-point region. Note that fully flux-aligned grids, which are typically used in edge plasma modelling,*!** have diverg-
ing metric coefficients at the X-point (as evidenced by the kink in the poloidal magnetic field), thereby posing a problem for
high-order methods.

Successful application of a fourth-order accurate numerical algorithm involving departure of a COGENT grid from the
magnetic flux surfaces near the X-point was previously demonstrated in simulations with a fixed electrostatic potential
distribution.!”-1%1 However, extending the physics model to include self-consistent potential variations (in Equation (16)) while
maintaining the same grid structure led to significantly degraded spatial convergence properties. To elucidate that fact, we note
the “anisotropic nature” of plasma transport becomes more pronounced (thus, less tolerable to grid-line departure from the
flux surfaces) when the electron physics is included. More quantitative analysis can be done as follows. From Equation (16),
it follows that an accurate numerical solution for a radial electric field E, in the closed-field-line region requires a truncation
error from the numerical evaluation of (VJ;;) (equal to zero in a continuum space) to be much smaller than (V, -j; 1 ). Neglect-
ing, for simplicity, poloidal variations in plasma profiles, that is, ® =~ ®(y) and n; = n;(y), we can estimate the truncation error
Er{V,J;} within the de-aligned region, IR — R, < r,, as Er{V}Jy} ~ o(Bo/B)*(Ti/eL;,)(Ay./Ly.)". Here, n is the order of
accuracy, R, is the X-point coordinate, r, is the characteristic size of the de-aligned region, By x, L, », and A, are the poloidal
magnetic field, length scale for plasma profile variations, and the grid cell size within the de-aligned region, respectively, and
we assumed [V®| ~ T/eL,, .. Estimating By , ~ (ri/a)Bg and L, . ~ (r/a)L,, where By and L, denote the poloidal magnetic field
and the radial length scale for plasma profile variations at the outer midplane, the condition Er{(VJ;)} << (V1-j; 1) implies

A\ l_ 2 3o 2, 5
<\ « (2 (L eMMe P a) (17)
Lp’x R() Bg T,»m,- VTd‘L'e Iy
where we made use of (V1 - ji1) ~ (pi/Ro)(pg/Ly)en;Vr, and estimated the contribution of the de-aligned region into

a flux-surface average as a/r,. Considering the near-separatrix DIII-D parameters in Table 1, and taking By/B ~ 0.2 and
L, ~ 1 cm for H-mode conditions, we obtain a strong constraint on the size of a cell (A, /L, )" <4 X 10~%(alr,)’. It is instruc-

tive to note that accurate modelling of anisotropic ion dynamics (see Equation (1)) in the de-aligned region imposes a less
severe limitation on the cell size A,; determined from Er{vV|F} < v, -V F, where |v,| ~ (pi/Ro)Vr, is the ion mag-
netic drift velocity. Estimating the truncation error in the de-aligned region as Er{v||V||F} ~ Vr.(Box /B)L;’}((Ax,,' /L)t ~

Vr,(Bo/B)L, ' (re/a)*(Axi/L,.)", we obtain
@)
LP’X RO BH Ix

For the DIII-D parameters, the inequality in Equation (18) takes the form (A, /L, )" <7 X 10~3(a/r,)?, and assuming r, ~ 0.2a,
as typically used in COGENT simulations, we obtain that A,, ~ 0.14A, ;.
While more detailed studies of fourth-order simulations including grid dealignment near the X-point and the self-consistent

potential model in Equation (16) are under way, here we utilize the lower order flux-aligned version of the code. In this version,
the grid shown in Figure 1a is fully aligned with magnetic flux surfaces, and a second-order discretization is used to solve
Equation (16) for the electrostatic potential and to evaluate the gyrokinetic velocity in Equations (2) and (3). The numerical
fluxes on cell faces in Equation (1) are then computed by making use of a third-order upwind scheme. It is important to note
that by applying a finite-volume method to Equation (16) and postulating a zero contribution from VJ| to the radial fluxes (i.e.,
numerical fluxes normal to the radial cell faces), we enforce discrete annihilation of the term (VJ ), and therefore remove the
severe cell-size constraint in Equation (17). Details of the grid-generation algorithm will be reported in our future publications,
while here we only mention that the mesh is locally orthogonal everywhere except near the block boundaries (see Figure 1a).
Such construction avoids small poloidal cell size near the block boundaries observed for the case of a fully locally orthogonal
grid.3134331 For an explicit time integration scheme, the presence of small poloidal cells would significantly restrict a stable
time step determined by the Courant constraint.
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Z(m)

FIGURE1 Results of the illustrative
numerical simulations. Frame (a) shows the
flux-aligned mesh used in the simulations.
The mesh is locally orthogonal everywhere
except near the cuts (illustrated by bold
dashed lines), which correspond to the
block boundaries. Frames (b) and (c) show

the solutions for the ion temperature and
electrostatic potential at t =2.8 ms,

respectively

3.2 | Zero-order errors from B-field data

As mentioned earlier (see Section 1), the COGENT code solves the full-F gyrokinetic equation (Equation (1)), which contains
both zero-order O(p? / L‘i) and first-order O(p;/L) terms. The zero-order terms in the LHS of Equation (1) include

GRlfR 1 =7 )+ - (EEB ). (19)
V|| 2m,-

The operator GKy[f;] annihilates a Maxwellian distribution function with poloidally uniform density n=n(y) and tempera-
ture T = T () profiles, f; =fy = n(mi/2zT)*?exp(—m;v|*/2T — uBIT), in a continuum space. However, a discrete evaluation of
GKy[fy] yields a zero-order O(p? / L(i) truncation error. An accurate numerical solution of the full-F problem (in Equation (1))
requires this zero-order numerical error to be much smaller than the first-order physical terms. Provided that all the quantities
in Equation (19) are resolved by a phase-space grid, an ordered truncation error in evaluation of the LHS of Equation (1), which
asymptotically decreases with the cell size as A", is guaranteed by a continuum numerical method of the nth order. For the case
of an ideal magnetic geometry, the length scale for variations of the background magnetic field in Equation (19) is typically
larger than that for the ion distribution function, Lg’ > L;. However, experimental data for the magnetic field (often provided in
the form of magnetic flux function) may contain a short-scale noise, LZ”ise < Ly. As aresult, a pronounced zero-order O(p? /LS)_)
numerical error can be produced even if the grid resolves the distribution function variations, A < L. To alleviate this issue, two
methods are implemented in the COGENT code. The first method involves the application of a smoothing technique to the input
magnetic field data in order to suppress high-frequency noise. In the second approach, a “flux-surface averaged” Maxwellian
fit fA’;” is subtracted from a solution f;, and GK [fjé M=0is discretely enforced. The density and temperature profiles of the
Maxwellian fit, ng;(y) and Tp(y), are obtained as a flux-surface average of the ion density n;(y, ) and temperature T;(y, 6) on
closed field lines and as poloidal averages between the divertor plates on open field lines. Note that Equation (19) involves only
the parallel-to-B derivatives, and therefore a discontinuity in the ng(w) and T5,(w) quantities across the magnetic separatrix is
not differentiated. Denoting the Vlasov operator in Equation (1) as V - (RiB||;f‘f}) + aivu(v”iB":‘Fﬁ) = GK|[f]] = GKylf;]+ GK[f],
we numerically evaluate it by making use of

GKIf] = GKolf; — f1,"1+ GK,[fi]. (20)

This method improves numerical accuracy for the case where the ion distribution function is close to an unshifted Maxwellian
distribution with poloidally uniform density and temperature profiles, which corresponds to a shallow-gradient region (e.g., top
of a pedestal) with a drift-ordered plasma rotation velocity. Note that in the opposite limit, where the zero- and first-order terms
in Equation (1) are comparable (e.g., mid-point of an H-mode pedestal), numerical errors generated by a small B-field noise
are less important.

3.3 | Temporal discretization

For the parameters of the illustrative simulations presented in this work, the Courant time-step constraint is roughly similar
for the Vlasov, collision, and anomalous transport terms in Equation (1), and therefore an explicit fourth-order Runge—Kutta
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time integration scheme is used to advance the ion gyrokinetic equation. We note that implicit-explicit (IMEX) time integration
methods, which enable implicit time integration of selected terms such as collisions and anomalous transport, are available
in COGENT[7-3] a5 well. In contrast, Equation (16) for the electrostatic potential variations yields a fast electron timescale
Teond ~ (ps/ Lp)2re(q Ry/Vr, 7.)%2 > Ry /Vr, (see Section 2), and therefore requires implicit treatment. Here, we adopt a simple
first-order backward-Euler scheme and advance Equation (16) in time as follows:

ezni (D(Hl) — q)(l) . Te sz,'n,‘vcx
V.- < Q2 V. A =Vi-jit+V)|o ;V”ni - V”(I)(H'l) -V, TVJ_(D(ZH) s 21)
m; i t i

where A, is a size of the time step, and #; = A, - [ corresponds to a discrete time variable. The ion moments in Equation (21)
(i.e., Ji, L and n;) are evaluated at the /th time step, and we make use of the T, = const assumption [see Section 2].

4 | SIMULATION RESULTS

In this section, we present numerical results from illustrative COGENT simulations performed for parameters characteristic of
a DIII-D H-mode. A single ion species deuterium plasma m; = 2m,, is considered, where m,, is the proton mass. The magnetic
geometry and the corresponding grid structure are shown in Figure 1a. The value of the poloidal magnetic field at the intersection
of the outer mid-plane and separatrix is given by B, ~ 0.4 T. To minimize the effects of a short-scale magnetic field noise, which
is present in the original EFIT!3] data, both a B-field smoothing technique and the zero-order separation method in Equation (20)
are applied. The toroidal magnetic field is given by RBy,=3.5 T - m, and its direction corresponds to the downward VB drift.
Ion—ion collisions are specified by the fully non-linear Fokker—Planck operator (see Refs. 12, 37, 38 for details), and to describe
the radial anomalous transport we adopt the following simple model:

TAN[Byifi] =V - [D(w)(ey - V(Bif))ey, ], (22)

where e, is the unit vector in the direction normal to the magnetic flux surfaces. The diffusivity coeffi-
cient function is specified by D(wy)=Dy(0.5 X tanh[(0.94 —yw)/0.02]+0.7) in the core and SOL regions, and by
Dpr(wn) = Dp(0.5 X tanh[(0.95 — x)/0.03)] + 0.7) X (0.45 X tanh[(x — 0.96)/0.02)] + 0.55) in the private flux region, where
Do = 1.7 [m?/s] is the normalization constant, and y is the normalized flux coordinate (equal to zero at the magnetic axis and
unity at the separatrix). The radial diffusion operator in Equation (22) requires two boundary conditions, for which we take
filwge, 0, vy, u, )=fi(ypc, 0, v, 4, t=0), where ypc corresponds to the magnetic flux values at the inner core and outer
SOL and private flux radial boundaries. In the parallel direction, where only the advection operator is present in Equation (1),
we specify an inflow boundary condition to mimic the ion input from recycling f;(y, 0pc, v||i”, u, t)y=f(y, ¢, v”"", u, t=0),
where v ™ corresponds to a particle’s inflow velocity. The initial condition for the ion distribution is specified by a Maxwellian
distribution function with a zero parallel flow velocity and the poloidally uniform density and temperature profiles, given in the
core and SOL regions by no(yy) = no(0.5xtanh[(0.96—yy)/0.03)]+0.7) and To(wy) = 7‘0(0.3 Xxtanh[(0.96—yy)/0.03)]+1.0),
respectively, where 77y = 5 x 10" m~> and To =300 eV.

The parameters in Equation (16) are specified as follows: The present simplified model (see Section 3) assumes constant
o =8x 10" s~ and T, =300 eV. We note that the parameter o, controls the width of the transition layer, L;" , and therefore its
value is chosen to be consistent with the near-separatrix value of the electron temperature of 70 eV. On the other hand, the param-
eter T, determines the amplitude of poloidal potential variations, and its value is chosen to be the order of the pedestal electron
temperature. For the illustrative parameters considered here, poloidal variations of @ are rather small and therefore the results
of simulations should not strongly depend on the value of T',. In order to mitigate spurious numerical effects, for example, Gibbs
oscillations, related to the rapid change in E, across the separatrix (see Section 2), we take v, (wy) = V¢, exp[—(yy — 1.0)2 / 53],
where 6, =0.01 and v, = 7.5x10 s~!, which corresponds to an artificially high value of the neutral density, 1, = 2 x 101 m™3.
The initial potential profile corresponds to e®y = —70 In(ng /np).

Assuming that the radial core boundary lies within a shallow gradient region (e.g., top of a pedestal) we neglect small poloidal
variations in the electrostatic potential and adopt the following boundary condition:

Enm; 0D !
L ’|Vu/|2>—=/ dt(Vy -ji1). (23)
< B? v Jo *

At the SOL and private flux radial boundaries, we take d®/dy = 0. Finally, at the divertor plates we arbitrarily set @ =0. More
accurate radial potential profile near the plates can be determined from the sheath boundary condition,*!-3433! which requires
detailed knowledge of the electron temperature and will be the subject of our future studies. We, however, emphasize again that
the present model captures the ion kinetic effects corresponding to ion orbit losses and poloidal variations of the ion distribution



442 Contributions to DORF AND DORR
Plasma Physics

FIGURE 2 (a) Radial profiles of the ion
density (n;), ion temperature (7';), radial electric
field (E,), anomalous diffusion coefficeint (D),

and ion parallel velocity (V;) computed along ( A) (B)

the outboard midplane at  =2.8 ms. The 1.5 T T T T 1.4 T T T T T T T
corresponding normalization constants are \ 1oL i
shown in parentheses. (b) Poloidal profiles of 1 '\ \m 1 [T T T
the ion density, temperature, and electrostatic D 1T (300 eV) g
potential obtained on the closed flux surface 0.5 —ﬁ - /\_//—
that intersects the outer midplane 0.4 cm inside X 08 ]
the separatrix (dashed curves), and on the open ot i o6 o i
flux surface that intersects the outer mid-plane 103 19 3

0.9 cm outside the separatrix (solid curves). The o | = M (6x107°m™) i 0.4 - n;(5x10 "m™) 7
poloidal index runs in the counter-clockwise — T;(300eV) -
direction starting and ending at the core cut on E; (20 kv/m) 0.2 F i
closed field lines, and starting and ending at the 1r—o (3.4 m°fs) i 0F -
low-field-side and high-field-side SOL cuts, Vi (20 km/s)

rc?spectively, ?n open field lines (qata in the -1 .5-6 _|4 _|2 6 |2 -0.2 0 |4 I8 1| > 1I6 2|0 2| 4 2IB 30
divertor legs is not shown). See Figure 1a for R'Rsep (cm) Poloidal cell index

the location of the cuts

function, which play an important role in determining the self-consistent electric fields in the upstream SOL and inside the
separatrix.

The results of the numerical simulations are shown in Figures 1-3 and include transport timescale equilibrium solution for 2D
plasma profiles (Figure 1) as well as characteristic radial and poloidal lineouts (Figure 2) and a time history for the radial electric
field and parallel ion flow (Figure 3a). As expected, a narrow transition layer is observed near the separatrix in the solution for
E, (see Figure 2a). The presence of such structure is inconsistent with the assumptions of the gyrokinetic model in Equation (1)
and can affect the near-separatrix results. A detailed analysis of this issue is, however, outside the scope of the present work.
Further, we note that the ion temperature in the SOL region is larger at the outer (low-field side) mid-plane than at the inner
(high-field side) mid-plane (see Figures 1b and 2b). This observation is qualitatively consistent with the corresponding results
of XGC simulations?®!; yet, the temperature variations obtained in the present simulations are less pronounced, plausibly due
to the present boundary conditions that force a poloidally uniform temperature distribution at the outer SOL boundary. Poloidal
variations of plasma profiles on closed flux surfaces are found to be weak (Figure 2b), consistent with shallow radial temperature
gradients (Figure 2a), which determine the deviation of the ion distribution function from a poloidally uniform Maxwellian.
Finally, the results for the radial electric field and the co-current parallel ion flow velocity in Figure 2a demonstrate qualitative
agreement with the DIII-D experiments.'%?°! Comparing the COGENT model with the analysis performed in Ref. [16], we
note that the present simulations include the ion orbit loss and the “Pfirsch—Schluter” mechanisms, both of which can contribute
to a co-I, intrinsic rotation. The turbulence-driven mechanism for edge plasma rotation, ! which is also used to elucidate the
experimental results,1%4! requires a poloidally varying ballooning structure of the diffusion coefficient D, and therefore is not
captured by our model D = D(y). However, those effects can be straightforwardly added by extending the transport model in
Equation (22) to include poloidally varying D. We also note the other simplifications assumed in the present simulations, such
as a uniform electron temperature and the lack of a detailed neutral model, that affect electric fields and plasma flows in the
SOL region and will be addressed in our future studies.

The results in Figures 1, 2, and 3a are obtained for the spatial grid resolution specified by (N, =22, Ny =32), (N, =10,
Ny =40), and (N, =8, Ny =8), in the core, SOL, and private-flux regions, respectively, and the velocity grid given by (N, =
36, N, =24). Here, Nl,,,g,v”,,, corresponds to the number of cells in the directions of the radial coordinate, poloidal coordinate,
parallel velocity, and magnetic moment, respectively. The domain extensions in the velocity space are —v”** < v <v™* and

0< u< u™*, where v'l‘l"“" =44/ 27‘0 [m, pm = 4.5?0 /Bo, where By =1 T is the normalization constant. The code performance
scales well with the number of processors, and it takes approximately 256 CPU hours (1.33 h x 192 processors) to simulate 1 ms
of ion dynamics on the Edison cluster of the NERSC computing system.[*!! To address convergence properties of the numerical
solutions in Figures 1 and 2, we carried out two additional simulations with twice as many points in either the radial or poloidal
directions. The results of these studies are shown in Figure 3b and demonstrate excellent convergence in the poloidal direction.
On the other hand, the increase in the radial resolution yields a noticeable change in the numerical solution for E, within the
marginally resolved transition region. Although, the “coarse” and “fine” solutions are close to each other outside the transition
region, details of the near-separatrix E, profile can have a pronounced impact on the intrinsic toroidal rotation and and will be

investigated in our future studies.
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5 | CONCLUSION

This paper presents the initial results from continuum drift-kinetic transport simulations that span the magnetic separatrix of a
tokamak and include 2D (axisymmetric) self-consistent electrostatic potential variations. The simulations are performed with the
COGENT code that employs finite-volume methods combined with the mapped multiblock grid technology. The electrostatic
potential variations are determined from the quasi-neutrality equation coupled to an electron fluid model. The simulations also
include ion-ion collisions described by the fully-nonlinear Fokker-Plank operator and an anomalous radial transport model. For
simplicity, isothermal electrons with T, = const are considered and the effects of recycling and neutrals are included via a simple
inflow boundary condition for an ion distribution function. The results of illustrative simulations carried out for parameters
characteristic of a DIII-D H-mode demonstrate the values of intrinsic rotation and radial electric field qualitatively similar to
those observed in DIII-D experiments.®!

In addition, a near-separatrix transitional structure of the radial electric field is discussed. The influence of neoclassical,
anomalous (turbulence), and charge-exchange effects on the width of the transition layer is assessed and a small characteristic
length scale, the order of a few ion gyroradii, is concluded. Such a narrow transition structure might be inconsistent with the
assumptions of the gyrokinetic model and can also introduce numerical issues. Detailed analysis of these issues along with
development of improved models for electrons and neutrals will be a subject of our future studies.
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