
Received: 4 October 2017 Revised: 15 December 2017 Accepted: 28 December 2017 Published on: 2 March 2018

DOI: 10.1002/ctpp.201700137

O R I G I N A L A R T I C L E

Continuum kinetic modelling of cross-separatrix plasma transport
in a tokamak edge including self-consistent electric fields

Mikhail Dorf Milo Dorr

Lawrence Livermore National Laboratory,

Livermore, California, USA

*Correspondence
Mikhail Dorf, Lawrence Livermore National

Laboratory, Livermore, California, USA.

Email: dorf1@llnl.gov

Funding Information
This research was supported by the U.S.

Department of Energy, DE-AC52-07NA27344.

Eulerian kinetic calculations are presented for the axisymmetric cross-separatrix

plasma transport at the edge of a tokamak. The simulations are performed with a

high-order finite volume code COGENT, which solves the long-wavelength limit of

the full-f ion gyrokinetic equation including the non-linear Fokker–Plank collision

model. Self-consistent 2D electrostatic potential variations are obtained from the

quasi-neutrality (𝜵⋅j= 0) equation coupled to an isothermal fluid electron response.

Illustrative solutions presented for parameters characteristic of the DIII-D tokamak

show qualitative agreement with experimental data.
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1 INTRODUCTION

Kinetic effects play a significant role in defining tokamak plasma transport as the collisional mean free path in hot fusion-grade

plasmas becomes large compared to the length scale for density and temperature variations along the magnetic field lines.

While numerical modelling of magnetized plasma kinetics is a challenging problem, substantial simplification occurs in a

tokamak core region, where the plasma species distribution is close to Maxwellian. As such, kinetic (i.e., gyrokinetic) core

codes are typically employed to model small delta-F deviations from a Maxwellian distribution, which generate neoclassical

(collisional)[1,2] and turbulent[3,4] fluxes. These fluxes can then be passed to low-dimensionality fluid transport codes to update

the background plasma profiles. However, the presence of a steep gradient region in the edge of a tokamak, for example, under

H-mode conditions, can lead to pronounced deviations of a background ion distribution function from a local Maxwellian.

Therefore, gyrokinetic edge codes should include modelling of the background quasi-equilibrium dynamics, that is, a full-F

approach is required.

Motivated in part by the success of continuum (Eulerian) delta-F codes for core physics and in part by their potential for high

accuracy, the Edge Simulation Laboratory collaboration[5] has been developing a full-F code called COGENT for the edge.[6–8]

The code is based on a high-order mapped multi-block finite-volume discretization scheme that involves the use of multiple grid

blocks to represent complex magnetic topologies, including a divertor geometry.[9–11] In this paper, we focus on the 4D version

of the code, which describes axisymmetric transport properties of edge plasmas. The present 4D model considers large-scale

(𝜌i/L⊥ << 1) electrostatic potential variations corresponding to a quasi-equilibrium background, and solves full-F gyrokinetic

equations for plasma species in the long-wavelength (drift-kinetic) limit. Here, 𝜌i is the ion thermal gyroradius and L⊥ is the char-

acteristic length scale for perpendicular variations. The full non-linear Fokker–Plank collision operator[12] is used to describe

ion–ion Coulomb collisions, and an ad hoc model is available to include the effects of anomalous (turbulent) transport.[13]

Previous cross-separatrix COGENT simulations[7] used either prescribed, that is, non-evolving, potential variations, or a sim-

plified 1D flux-surface average model for Er involving ad hoc extrapolation into the open field line region. Here, we extend the

simulation model to include 2D self-consistent variations of electrostatic potential on both open and closed field lines.

Determining the model for self-consistent quasi-equilibrium electric fields in a tokamak edge is an important and challenging

problem. In contrast to the core region where the plasma profiles are nearly uniform on magnetic flux surfaces, and thereby the

poloidal variations of a background electrostatic potential are weak, 𝜙core(𝜓 , 𝜃)≈𝜙core(𝜓), the edge plasma profiles can exhibit

strong poloidal variations, and therefore 𝜙edge(𝜓 , 𝜃) can have a pronounced 2D structure. Also, the physical mechanisms that
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set the radial electric field on open and closed field lines are different, which can lead to the development of narrow transition

structures around the magnetic separatrix. In more detail, “neoclassical ion physics” sets radially confining Er on closed field

lines,[14,15] whereas “parallel electron physics”, subject to the sheath boundary conditions at divertor plates, sets the electric

fields on open field lines.[16–18] Nevertheless, it should also be mentioned that the presence of non-intrinsically-ambipolar

processes in edge plasmas such as prompt orbit losses and charge-exchange collisions with neutrals can justify the use of the

standard low-order gyrokinetic models for determining the quasi-equilibrium Er.
[19] This is in contrast to the core region, where

the intrinsic ambipolarity of electron and ion transport may require the use of higher order gyrokinetic formulations[20] going

beyond the standard numerical implementations.

In this paper, we propose a 2D model for self-consistent axisymmetric variations of the electrostatic potential based on the

quasi-neutrality condition 𝜵⋅ j= 0, where j is the electrical current density summed over all plasma species. Evidently, the most

accurate description of the plasma current carried by particle gyrocenters can be obtained by solving the gyrokinetic equations

for the electron and ion species. However, the presence of fast parallel electron streaming, 𝜔𝑡𝑟,e ∼ VTe k‖, and the even more

rapid electrostatic Alfven mode[21] 𝜔H ∼ Ωi
√

mi∕me(k‖∕k⊥) = VTe k‖∕(k⊥𝜌s) imposes a severe constraint on the time step

needed for the stability of explicit time integration schemes, thereby demanding significant computational resources. Here, VTe

is the electron thermal velocity, Ωi is the ion cyclotron frequency, 𝜌s =
√

me∕miVTe∕Ωi is the ion-sound gyroradius, me and

mi are the electron and ion species mass, and k‖ and k⊥ are the parallel and perpendicular wave numbers. On the other hand,

𝜵⋅ j= 0 formulation offers a straightforward way to derive a reduced model that retains only ion kinetic effects and makes use

of a fluid description for electrons. In particular, such a model can eliminate fast parallel electron dynamics associated with the

electron inertia terms. Furthermore, the rapid processes corresponding to high parallel electron conductivity and heat diffusivity

can be treated implicitly within a 2D fluid model framework, which is much less computationally intensive than implicit time

integration of the original system that includes a 4D gyrokinetic equation for electrons.

It should be noted that electron kinetic effects can be important in the edge of a tokamak.[22–24] Indeed, even a cold and dense

divertor plasma can be weakly collisional for the suprathermal tail particles, which contribute disproportionally to the parallel

heat conductivity.[22] These kinetic effects can play a role in determining the electron temperature at the divertor plates, which

in turn contributes to the scrape-off layer (SOL) radial electric field via the sheath boundary condition.[23] Nevertheless, the

reduced kinetic-ion/fluid-electron hybrid model developed here captures the ion kinetic effects corresponding to ion orbit losses

and poloidal variations of the ion distribution function, which play an important role in determining the self-consistent electric

fields in the upstream SOL and inside the separatrix.

2 SIMULATION MODEL

The 4D version of the COGENT code models the long-wavelength (i.e., drift-kinetic) limit of an axisymmetric gyrokinetic

equation for a gyrocenter distribution function f 𝛼(R, v‖, 𝜇, t) written in conservative form

𝜕(B‖∗𝛼f𝛼)
𝜕t

+ 𝜵 ⋅ (Ṙ𝛼B‖∗𝛼f𝛼) +
𝜕

𝜕v‖ (v̇‖𝛼B‖∗𝛼f𝛼) = C𝛼[B‖∗𝛼f𝛼] + TAN
𝛼 [B‖∗𝛼f𝛼]. (1)

Here, 𝛼 denotes the particle species, 𝜵 is the gradient with respect to R, and the guiding center velocity Ṙ𝛼 is given by

Ṙ𝛼 = 1

B‖∗𝛼
[

v‖B∗
𝛼 +

1

Z𝛼e
b × (Z𝛼e𝜵Φ + 𝜇𝜵B)

]
. (2)

The evolution of the guiding center parallel velocity is determined from

v̇‖𝛼 = − 1

m𝛼B‖∗𝛼 B∗
𝛼 ⋅ (Z𝛼e𝜵Φ + 𝜇𝜵B), (3)

where m𝛼 and Z𝛼 are the species mass and charge state, respectively, e is the electron charge, Φ(R, t) describes the long wave-

length, 𝜌i/L⊥ << 1, axisymmetric electrostatic potential variation, B=B ⋅b is the magnetic field with b denoting the unit vector

along the field, B∗
𝛼(R, v‖) ≡ B + (m𝛼∕Z𝛼e)v‖𝜵 × b, and B‖∗𝛼 = B∗

𝛼 ⋅ b. Finally, C𝛼 and TAN
𝛼 denote the collision and anomalous

transport operators, for which a number of increasingly detailed options are available in COGENT.[12,13,25]

Equation 1 describes the full-F gyrokinetic equation that needs to be coupled to a model for self-consistent variations of an

electrostatic potential. We begin the analysis by considering the long-wavelength limit of the gyro-Possion equation, which is

often used in axisymmetric gyrokineic simulations[6,26–28]:

∑
i
𝜵⊥ ⋅

(
Z2

i e2ni

miΩ2
i

𝜵⊥Φ

)
= e

(
ne −

∑
i

Zini

)
. (4)



436 DORF AND DORR

TABLE 1 Characteristic near-separatrix parameters of a DIII-D H-mode

ne (m−3) Ti (eV) Te (eV) B𝝓 (T) Safety factor, q R0 (m) mi/mp

1019 300 50 1.6 3 1.6 2

Here, the sum is taken over the ion species, 𝜵⊥ ≡𝜵− b(b⋅𝜵) is the perpendicular gradient operator, Ωi = ZieB/(mic) is the

ion cyclotron frequency, n𝛼 = (2𝜋∕m𝛼) ∫ f𝛼B∗‖𝛼𝑑v‖𝑑𝜇 is the ion species gyrocenter density, and ni = (2𝜋∕mi) ∫ [fi +
(mic2∕𝐵𝑍2

i e2)𝜇Δ2
⊥

fi]B∗‖i𝑑v‖𝑑𝜇 is the ion species gyro-averaged gyrocenter density, which is slightly different from ni by the

small “pressure-term” corrections. Taking the time derivatives of Equation 4 and making use of Equation 1, it follows∑
i
𝜵⊥ ⋅

(
Z2

i e2ni

miΩ2
i

𝜵⊥
𝜕Φ
𝜕t

)
= 𝜵 ⋅ je + 𝜵 ⋅

∑
i

ji, (5)

where in the left-hand side (LHS) of Equation (5) we neglected small time derivatives of the background ion density, which

varies on a transport timescale 𝜏transp ∼ L2
⊥
∕DA while retaining more rapid variations of the electrostatic potential, such as

geodesic acoustic modes (GAMs), that occur on the transient timescale, 𝜏𝑡𝑟 ∼ a∕VTi . Here, DA is the anomalous diffusivity, a
is the tokamak minor radius, and VTi is the main ion species’ thermal velocity. Neglecting the small “pressure-term” correction

and assuming intrinsically ambipolar anomalous transport, the species gyrocenter current density that needs to be retained in the

right-hand side (RHS) of Equation (5) is given by j𝛼 = Z𝛼e ∫ Ṙ𝛼f𝛼B∗‖𝛼𝑑v‖𝑑𝜇. Equation (5) represents the plasma quasi-neutrality

condition given by 𝜵⋅J= 0, where J is the total plasma current density, which includes the ion species’ polarization current

density Jp, and the combined electron and ion gyrocenter current density Jgc.

As mentioned earlier (Section 1), the gyrokinetic system in Equations (1) and (5) contains fast timescales related to the

electron inertia, which introduces significant computational challenges. It is therefore of particular practical importance to

develop a reduced model requiring less computational resources. Here, we propose the kinetic-ion/fluid-electron hybrid model,

in which we treat electrons within a collisional fluid framework. It is worth noting that in the near-separatrix region the electron

temperature can be substantially lower than the ion temperature, and therefore such a model can be justified. Indeed, considering,

for example, an H-mode of the DIII-D tokamak[16,29] with the characteristic near-separatrix parameters shown in Table 1, we

obtain 𝑞𝑅0∕(VTi𝜏i) ≈ 0.03 and 𝑞𝑅0∕(VTe𝜏e) ≈ 1.2, where 𝜏e and 𝜏 i are the basic electron and ion collisional times given

by Braginskii,[30] q is the magnetic safety factor, and R0 is the tokamak major radius. We, however, emphasize again that an

electron fluid model may fail to adequately describe suprathermal tail particles, which strongly contribute to the electron heat

conductivity, and thereby affect the electron temperature and electrostatic potential near the divertor plates.

Considering, for simplicity, the case of a single ion species with Zi = 1, and neglecting the small electron inertia, the parallel

momentum equation for electrons yields

J‖ = 𝜎‖
(

1

𝑒𝑛e
𝛻‖Pe − 𝛻‖Φ + 0.71

e
𝛻‖Te

)
, (6)

where 𝜎‖ = 1.96nee2𝜏e/me is the parallel electron conductivity[30], Pe = neTe is the electron pressure, and Te is the electron tem-

perature. The parallel current density in Equation (6) is the total plasma current summed over the electron and ion species,

J‖ = Ji, ‖ + Je, ‖. We note that the ion species’ parallel current density Ji, ‖ is slightly different from the corresponding ion

gyrocenter current density ji,‖ in Equation (5). In particular, the difference contains the term eni, polVi,‖, where the ion polar-

ization charge density eni, pol corresponds to the LHS of Equation (4), Vi, ‖ = b ⋅Vi, and Vi is the ion flow velocity. The

contribution from this term, if retained in Equation (5), would include the term (Vi,‖⋅𝛻‖)eni, pol, which corresponds to the

parallel-convection piece of the ion polarization current, Jp = (c2mi/ZieB2)[𝜕𝜵⊥Φ/𝜕t+ (Vi ⋅𝜵)𝜵⊥Φ], and explicitly appears in

the fluid framework.[31] Here, we neglect the small difference between the parallel plasma current and its gyrocenter counterpart

and combine Equations (5) and (6) to obtain

𝜵⊥ ⋅

(
e2ni

miΩ2
i

𝜵⊥
𝜕Φ
𝜕t

)
= 𝜵⊥ ⋅ je,⊥ + 𝜵⊥ ⋅ ji,⊥ + 𝛻‖

[
𝜎‖

(
1

𝑒𝑛e
𝛻‖Pe − 𝛻‖Φ + 0.71

e
𝛻‖Te

)]
. (7)

It is instructive to note that, because of the large value of the electron conductivity, the term 𝛻‖J‖ dominates the RHS of

Equation (7):
𝜵⊥ ⋅ (je,⊥ + ji,⊥)

𝛻‖J‖ ∼
(𝜌i∕R0)(𝑒𝑛𝑉Ti∕LP)

(𝜎‖∕𝑒𝑛)(𝜌𝜃∕LT )𝑛𝑇 e(𝑞𝑅0)−2
∼ q

VTi

VTe

LT

LP

B𝜃

B
𝑞𝑅0

VTe𝜏e
≪ 1. (8)

Here, n= ne ≈ ni denotes the plasma density, 𝜌𝜃 = (B𝜃/B)𝜌i is the poloidal ion gyroradius, LT and LP are the length scales for

radial variations of the plasma temperature and pressure, respectively, Te ≲Ti and𝛻‖ ∼ (B𝜃/B)a−1𝜕/𝜕𝜃 ∼ 1/(qR0) is assumed, and

to estimate the parallel variations of plasma profiles (e.g., density) we made use of 𝛻‖ f̃ ∼ (𝜌i∕R0)FM∕LT , where f̃ denotes the
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deviation of the ion distribution function from a Maxwellian background FM with poloidally uniform density and temperature

profiles. We note that the inequality in Equation (8) is formally not valid in close proximity to the X-point where 𝛻‖ → 0;

however, that region is small and should not affect the global solution.

Making use of Equations (7) and (8), it follows that on a timescale larger than the fast electron time scale, t ≫ 𝜏cond ∼
(𝜌s∕Lp)2𝜏e(𝑞𝑅0∕VTe𝜏e)2, a solution for the electrostatic potential has the form

Φ(𝜓, 𝜃, t) ≈ C(Ψ, t) + ∫ 𝑑𝜃

(
1

𝑒𝑛e

𝜕Pe

𝜕𝜃
+ 0.71

e
𝜕Te

𝜕𝜃

)
, (9)

where Ψ and 𝜃 are the magnetic flux function and the poloidal angle coordinate, respectively, and C(Ψ, t) is the con-

stant of integration. On open field lines, the function C(Ψ, t) is determined by the sheath boundary conditions at the

divertor plates (see, e.g., Refs. 32, 33). On closed field lines, it can be determined by taking the flux-surface average,⟨Y⟩(𝜓)= ∮ (B ⋅𝛻𝜃)−1Y(𝜓 , 𝜃)d𝜃/ ∮ (B ⋅𝛻𝜃)−1d𝜃, of Equation (7). Note that on closed field lines ⟨𝛻‖j‖⟩= 0, and therefore the

function C(𝜓 , t)= ⟨Φ⟩, which determines the radial electric field, is set by the flux-surface average of the perpendicular plasma

current ⟨j⊥⟩. Neglecting a small electron contribution to the flux-surface averaged current, ⟨j⊥⟩ ≈ ⟨ji, ⊥⟩, and a small ion

polarization density, ni ≈ ne, we adopt the following equation to describe the evolution of self-consistent potential perturbations

𝜵⊥ ⋅

(
e2ni

miΩ2
i

𝜵⊥
𝜕Φ
𝜕t

)
= 𝜵⊥ ⋅ ji,⊥ + 𝛻‖

[
𝜎‖

(
1

𝑒𝑛i
𝛻‖Pe − 𝛻‖Φ + 0.71

e
𝛻‖Te

)]
, (10)

where the ion perpendicular current is determined by

ji,⊥ = ∫ Ṙi,⊥fiB∗‖i𝑑v‖𝑑𝜇, (11)

and Ṙi,⊥ = Ṙi − (Ṙi ⋅ b)b. We note that the term je, ⊥ neglected in Equation (10) can represent a pronounced contribution

to a local value of the total perpendicular plasma current j⊥. Nevetheless, Equation (10) still sufficiently accurately describes

the dynamics of self-consistent potential variations. The local effects of je, ⊥ can be, in principle, retained by removing the

contribution from the ExB drift in Equation (11) and by adding the term −𝜵⊥ ⋅ [(2Pe + meneV2
e,||)(Rc × B)∕(RcB)2] in the RHS

of Equation (10), as is done in fluid codes.[31,34] Here, Rc is the radius of curvature of the magnetic field lines, and Ve,‖ is the

electron parallel flow velocity.

While poloidal variations of an electrostatic potential are set by the parallel electron force balance and vary smoothly across

the separatrix, the physical mechanisms that set the radial electric field, that is, the function C(𝜓 , t) in Equation (9), are quite

different on open and closed field lines (see the discussion that follows Equation (9)). Therefore, one can expect a rapid change

in the value of a radial electric field Er that occurs within a narrow layer around the separatrix.[16,18,31,33,35] Making use of the

fact that the perpendicular ion current has an E⊥-dependent contribution[36] ∼𝜵⊥⋅ (𝜎NCE⊥), where 𝜎NC ∼ c2niTi𝜏 i/(BR0)2 is

the ion neoclassical conductivity, the width of the transition layer L𝑠𝑒𝑝

E,𝑁𝐶
can be estimated from[36] 𝜵⊥⋅ (𝜎NCE⊥) ∼𝛻‖(𝜎‖E‖).

Assuming E‖ ∼ Te/(eqR0) and E⊥ ∼ Ti∕(𝑒𝐿𝑠𝑒𝑝

E,𝑁𝐶
), it follows that

L𝑠𝑒𝑝

E,𝑁𝐶
∼ q𝜌i(Ti∕Te)5∕4(me∕mi)1∕4. (12)

Taking, for illustrative purposes, the near-separatrix DIII-D parameters in Table 1, we obtain L𝑠𝑒𝑝

E,𝑁𝐶
∼ 3.5𝜌i.

The neoclassical estimate (in Equation (12)) for the transition layer width L𝑠𝑒𝑝

E,𝑁𝐶
yields steep gradients of a background

radial electric field, which approach the validity limits of the gyrokinetic theory. It is also instructive to assess the influence

of other physical mechanisms, such as anomalous transport and charge-exchange collisions with neutrals, on the width of the

transition layer. The effects of anomalous transport are included in our gyrokinetic model (see Equation (1)) via the ad hoc

anomalous transport operator TAN
i [B‖∗i fi] = 𝜵⊥ ⋅ T̂A(v||, 𝜇,R) ⋅ 𝜵⊥(B‖∗i fi), where the functional form of the matrix T̂A can be

chosen to match the “fluid” anomalous transport coefficients,[13] such as particle diffusivity (D̂A), heat diffusivity (𝝌A), and

viscosity (𝜼̂A). The anomalous transport opertor generates the zero-order O(𝜌0
i ∕L0

⊥
) parallel force FA|| = n−1

i 𝜵⊥ ⋅ 𝜼̂A ⋅ 𝜵⊥Vi||,
which plays an important role in setting the ion toroidal flow. However, the contribution of intrinsically ambipolar anomalous

transport, ∫ TAN
i [B‖∗i fi]𝑑v‖𝑑𝜇 = ∫ TAN

e [B‖∗e fe]𝑑v‖𝑑𝜇, to the total plasma current is rather small. It is generated by the first-order

O(𝜌i/L⊥) perpendicular force,[33–35] FA
⊥
= n−1

i 𝜵 ⋅ 𝜼̂A ⋅ 𝜵Vi,⊥, which drives the second-order O(𝜌2
i ∕L2

⊥
) perpendicular ion current

jA
i,⊥ = ni𝑐𝐵

−1[FA
⊥
× b]. Here, Vi, ⊥ is the first-order ion drift velocity, which includes the diamagnetic and E x B drifts. In the

near-separatrix region, where the electrostatic potential exhibits strong radial variations, the anomalous transport contribution

to the ion current is dominated by jAi,⊥ ∼ c2B−2𝛻⊥𝜂A,⊥Δ⊥Φ, and the transition width L𝑠𝑒𝑝

E,AN can be estimated from 𝛻||(𝜎||E||) ∼
𝜵⊥ ⋅ jA

i,⊥ to give

L𝑠𝑒𝑝

E,AN ∼ 𝜌i

(
DA

𝜌2
i ∕𝜏i

𝑞𝑅0

VTi𝜏i

𝑞𝑅0

VTe𝜏e

√
Ti

Te

√
me

mi

)1∕4

, (13)
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where DA = 𝜂A, ⊥/(mini) is the characteristic value of the anomalous transport coefficients. Considering the near-separatrix

DIII-D H-mode parameters in Table 1 and assuming DA ∼ 1 [m2/s], we obtain L𝑠𝑒𝑝

E,AN ∼ 0.7𝜌i.

It is instructive to compare the neoclassical and anomalous transport contributions to the ion current. On closed field lines,

where the radial electric field is determined by the flux surface average of the perpendicular ion current, the neoclassical

contribution is given by

⟨ji,r⟩ ≃ 𝜎𝑁𝐶 [Er − E𝑁𝐶 (Vi,||)], (14)

where ENC is the neoclassical quasi-equilibrium radial electric field, determined in the large aspect ratio limit by[14]

ENC = (Vi, ‖/c)B𝜃 + (1/eni)dPi/dr − (k/e)dTi/dr, where k is the collisionality-dependent coefficient, with k= 1.17 in the weakly

collisional regime and k=−1.7 in the strongly collisional regime. Estimating the anomalous contribution to the flux-surface

averaged perpendicular current as ⟨jAi,r⟩ ∼ c2𝜂A,⊥Er∕(L⊥B)2, it follows that such a contribution should be retained provided

L⊥ ≤ 𝜌i(R0∕VTi𝜏i)
√

𝜏iDA∕𝜌2
i . For the DIII-D parameters used earlier, this estimate yields a very short length scale L⊥ ≤ 0.14𝜌i.

Finally, we note that, although the effects of the anomalous transport associated with the perpendicular (“classical”) forces might

not play a strong role in defining the radial electric field, the parallel (“neoclassical”) forces included in the operator TAN
i [B‖∗i fi]

can strongly influence the ion parallel flow velocity,[7] and thereby the corresponding value of the neoclassical quasi-equilibrium

radial electric field (see Equation (14)).

Similarly, we can evaluate the effects of charge-exchange collisions with neutrals. Assuming that the interaction with the neu-

trals is described by the force Fcx =−mi𝜈cx(Vi −Vn), the second-order O(𝜌2
i ∕L2

⊥
) contribution to the perpendicular ion current

is given by j𝑐𝑥i,⊥ = ni𝑐𝐵
−1[F𝑐𝑥

⊥
× b] and the corresponding width of the transition layer is

L𝑠𝑒𝑝

E,𝑐𝑥 ∼ 𝜌i

(
𝜈𝑐𝑥𝜏i

𝑞𝑅0

VTi𝜏i

𝑞𝑅0

VTe𝜏e

√
Ti

Te

√
me

mi

)1∕2

. (15)

Here, Vn is the neutral flow velocity, 𝜈cx = (𝜎v)cxnn is the charge-exchange frequency, (𝜎𝑣)𝑐𝑥 ∼ 3.2×10−15
√

Ti[eV]∕0.026 m3∕s

is the charge-exchange reactivity,[31] and nn is the neutral density. For the case of the DIII-D parameters (see Table 1), the

transition width in Equation (15) becomes the order of the ion gyroradius L𝑠𝑒𝑝

E,𝑐𝑥 ∼ 𝜌i for nn ∼ 2× 1018 m−3. Note, however,

that typical values of the neutral density in the DIII-D midplane separatrix region are much smaller. It is also straightforward

to show that the ion current driven by the perpendicular charge-exchange forces is much less than its neoclassical counterpart,

ji,⊥∕j𝑐𝑥i,⊥ ∼ 𝜈𝑐𝑥R2∕(V2
Ti
𝜏i) << 1, for typical near-separatrix parameters. On the other hand, the parallel charge-exchange force

may play a role in determining plasma toroidal rotation[19] (and thereby Vi, ‖ in Equation (14)), especially in regimes where

the anomalous transport is suppressed. Including the parallel charge-exchange effects into the COGENT simulation model will

be a subject of our future studies. Finally, it is instructive to note that if the second-order O(𝜌2
i ∕L2

⊥
) corrections jA

i,⊥ and/or j𝑐𝑥i,⊥
are retained in Equation (7) (or Equation (10)), then it is still sufficient to use the first-order O(𝜌i/L⊥) gyrokinetic equation (1)

to obtain the required fluid quantities (i.e., moments of f i). In other words, it is not necessary to include the corresponding

second-order drift velocities VA,𝑐𝑥
i,⊥ = jA,𝑐𝑥

i,⊥ ∕(𝑒𝑛i) in Equation (1).

While the “perpendicular” effects of anomalous transport and charge-exchange collisions do not appear to play a pronounced

role in determining electrostatic potential variations, we, nevertheless, extend Equation (10) to include the “perpendicular”

charge-exchange term and assume artificially high values of the near-separatrix neutral density in order to provide smoothing

of a numerical solution in the transition region. As a result, the quasi-neutrality equation for the electrostatic potential takes the

form

𝜵⊥ ⋅

(
e2ni

miΩ2
i

𝜵⊥
𝜕Φ
𝜕t

)
= 𝜵⊥ ⋅ ji,⊥ + 𝛻‖

[
𝜎‖

(
1

𝑒𝑛i
𝛻‖Pe − 𝛻‖Φ + 0.71

e
𝛻‖Te

)]
− 𝜵⊥ ⋅

(
c2mini𝜈𝑐𝑥

B2
𝜵⊥Φ

)
. (16)

Equation (16) along with Equations (1)–(3) represent the COGENT simulation model that needs to be coupled with a model

for an electron temperature. For simplicity, here we assume isothermal electrons with Te = const, and Pe = niTe. Development

of a more detailed electron model model will be the subject of our future studies.

3 COGENT IMPLEMENTATION

A detailed description of the COGENT numerical algorithms is given elsewhere.[10] In this section, we briefly summarize the

main features of the code and certain aspects specific to the present application.
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3.1 Spatial discretization

The code utilizes a high-order finite-volume method[9] combined with mapped-multiblock technology,[11] in which the entire

grid structure is represented by a union of grid blocks with a smooth function defined on each block to map the physical coor-

dinate system onto a logically rectangular (computational) grid and with high-order interpolation methods used for intra-block

communication. To exploit strong anisotropy of plasma transport, the grid is flux-aligned everywhere excluding a small vicin-

ity of the X-point, where it is smoothly extended towards (and beyond) the block boundaries to enable high-order treatment of

the X-point region. Note that fully flux-aligned grids, which are typically used in edge plasma modelling,[31,34] have diverg-

ing metric coefficients at the X-point (as evidenced by the kink in the poloidal magnetic field), thereby posing a problem for

high-order methods.

Successful application of a fourth-order accurate numerical algorithm involving departure of a COGENT grid from the

magnetic flux surfaces near the X-point was previously demonstrated in simulations with a fixed electrostatic potential

distribution.[7,10] However, extending the physics model to include self-consistent potential variations (in Equation (16)) while

maintaining the same grid structure led to significantly degraded spatial convergence properties. To elucidate that fact, we note

the “anisotropic nature” of plasma transport becomes more pronounced (thus, less tolerable to grid-line departure from the

flux surfaces) when the electron physics is included. More quantitative analysis can be done as follows. From Equation (16),

it follows that an accurate numerical solution for a radial electric field Er in the closed-field-line region requires a truncation

error from the numerical evaluation of ⟨𝛻‖J‖⟩ (equal to zero in a continuum space) to be much smaller than ⟨𝜵⊥⋅ji, ⊥⟩. Neglect-

ing, for simplicity, poloidal variations in plasma profiles, that is, Φ≈Φ(𝜓) and ni ≈ ni(𝜓), we can estimate the truncation error

Er{𝛻‖J‖} within the de-aligned region, |R−Rx|< rx, as 𝐸𝑟{𝛻||J||} ∼ 𝜎‖(B𝜃,x∕B)2(Ti∕𝑒𝐿2
p,x)(Δx,e∕Lp,x)n. Here, n is the order of

accuracy, Rx is the X-point coordinate, rx is the characteristic size of the de-aligned region, B𝜃,x, Lp,x, and Δx,e are the poloidal

magnetic field, length scale for plasma profile variations, and the grid cell size within the de-aligned region, respectively, and

we assumed |𝜵Φ| ∼ Ti/eLp,x. Estimating B𝜃,x ∼ (rx/a)B𝜃 and Lp,x ∼ (rx/a)Lp, where B𝜃 and Lp denote the poloidal magnetic field

and the radial length scale for plasma profile variations at the outer midplane, the condition Er{⟨𝛻‖J‖⟩} ≪ ⟨𝜵⊥⋅ji, ⊥⟩ implies

(
Δx,e

Lp,x

)n

≪

(
𝜌i

R0

)2( B
B𝜃

)3(Teme

Timi

)1∕2 ( Lp

VTe𝜏e

)(
a
rx

)5

, (17)

where we made use of ⟨𝜵⊥ ⋅ ji,⊥⟩ ∼ (𝜌i∕R0)(𝜌𝜃∕Lp)𝑒𝑛iVTi and estimated the contribution of the de-aligned region into

a flux-surface average as a/rx. Considering the near-separatrix DIII-D parameters in Table 1, and taking B𝜃/B ∼ 0.2 and

Lp ∼ 1 cm for H-mode conditions, we obtain a strong constraint on the size of a cell (Δx,e/Lp,x)n ≪ 4× 10−9(a/rx)5. It is instruc-

tive to note that accurate modelling of anisotropic ion dynamics (see Equation (1)) in the de-aligned region imposes a less

severe limitation on the cell size Δx,i determined from Er{v‖𝛻‖F} ≪ vm ⋅𝜵⊥F, where |vm| ∼ (𝜌i∕R0)VTi is the ion mag-

netic drift velocity. Estimating the truncation error in the de-aligned region as 𝐸𝑟{v||𝛻||F} ∼ VTi (B𝜃,x∕B)L−1
p,x(Δx,i∕Lp,x)n ∼

VTi(B𝜃∕B)L−1
p (rx∕a)2(Δx,i∕Lp,x)n, we obtain

(
Δx,i

Lp,x

)n

≪

(
𝜌i

R0

)(
B
B𝜃

)(
a
rx

)
. (18)

For the DIII-D parameters, the inequality in Equation (18) takes the form (Δx,i/Lp,x)n ≪ 7× 10−3(a/rx)2, and assuming rx ∼ 0.2a,

as typically used in COGENT simulations, we obtain that Δx,e ∼ 0.14Δx,i.

While more detailed studies of fourth-order simulations including grid dealignment near the X-point and the self-consistent

potential model in Equation (16) are under way, here we utilize the lower order flux-aligned version of the code. In this version,

the grid shown in Figure 1a is fully aligned with magnetic flux surfaces, and a second-order discretization is used to solve

Equation (16) for the electrostatic potential and to evaluate the gyrokinetic velocity in Equations (2) and (3). The numerical

fluxes on cell faces in Equation (1) are then computed by making use of a third-order upwind scheme. It is important to note

that by applying a finite-volume method to Equation (16) and postulating a zero contribution from 𝛻‖J‖ to the radial fluxes (i.e.,

numerical fluxes normal to the radial cell faces), we enforce discrete annihilation of the term ⟨𝛻‖J‖⟩, and therefore remove the

severe cell-size constraint in Equation (17). Details of the grid-generation algorithm will be reported in our future publications,

while here we only mention that the mesh is locally orthogonal everywhere except near the block boundaries (see Figure 1a).

Such construction avoids small poloidal cell size near the block boundaries observed for the case of a fully locally orthogonal

grid.[31,34,35] For an explicit time integration scheme, the presence of small poloidal cells would significantly restrict a stable

time step determined by the Courant constraint.
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FIGURE 1 Results of the illustrative

numerical simulations. Frame (a) shows the

flux-aligned mesh used in the simulations.

The mesh is locally orthogonal everywhere

except near the cuts (illustrated by bold

dashed lines), which correspond to the

block boundaries. Frames (b) and (c) show

the solutions for the ion temperature and

electrostatic potential at t= 2.8 ms,

respectively

3.2 Zero-order errors from B-field data

As mentioned earlier (see Section 1), the COGENT code solves the full-F gyrokinetic equation (Equation (1)), which contains

both zero-order O(𝜌0
i ∕L0

⊥
) and first-order O(𝜌i/L⊥) terms. The zero-order terms in the LHS of Equation (1) include

𝐺𝐾0[fi(R, v||, 𝜇)] = 𝜵 ⋅ (v||Bfi) +
𝜕

𝜕v||
(
−𝜵B ⋅ B

2mi
𝜇fi

)
. (19)

The operator GK0[f i] annihilates a Maxwellian distribution function with poloidally uniform density n= n(𝜓) and tempera-

ture T =T(𝜓) profiles, f i = f M = n(mi/2𝜋T)3/2exp(−miv‖2/2T −𝜇B/T), in a continuum space. However, a discrete evaluation of

GK0[f M] yields a zero-order O(𝜌0
i ∕L0

⊥
) truncation error. An accurate numerical solution of the full-F problem (in Equation (1))

requires this zero-order numerical error to be much smaller than the first-order physical terms. Provided that all the quantities

in Equation (19) are resolved by a phase-space grid, an ordered truncation error in evaluation of the LHS of Equation (1), which

asymptotically decreases with the cell size as Δn, is guaranteed by a continuum numerical method of the nth order. For the case

of an ideal magnetic geometry, the length scale for variations of the background magnetic field in Equation (19) is typically

larger than that for the ion distribution function, L𝑖𝑑
B > Lf . However, experimental data for the magnetic field (often provided in

the form of magnetic flux function) may contain a short-scale noise, Lnoise
B < Lf . As a result, a pronounced zero-order O(𝜌0

i ∕L0
⊥
)

numerical error can be produced even if the grid resolves the distribution function variations, Δ<Lf . To alleviate this issue, two

methods are implemented in the COGENT code. The first method involves the application of a smoothing technique to the input

magnetic field data in order to suppress high-frequency noise. In the second approach, a “flux-surface averaged” Maxwellian

fit f 𝑓 𝑖𝑡

M is subtracted from a solution f i, and 𝐺𝐾0[f 𝑓 𝑖𝑡

M ] = 0 is discretely enforced. The density and temperature profiles of the

Maxwellian fit, nfit(𝜓) and Tfit(𝜓), are obtained as a flux-surface average of the ion density ni(𝜓 , 𝜃) and temperature Ti(𝜓 , 𝜃) on

closed field lines and as poloidal averages between the divertor plates on open field lines. Note that Equation (19) involves only

the parallel-to-B derivatives, and therefore a discontinuity in the nfit(𝜓) and Tfit(𝜓) quantities across the magnetic separatrix is

not differentiated. Denoting the Vlasov operator in Equation (1) as 𝜵 ⋅ (ṘiB‖∗i fi) + 𝜕

𝜕v‖ (v̇‖i B‖∗i fi) ≡ 𝐺𝐾[fi] ≡ 𝐺𝐾0[fi] +𝐺𝐾1[fi],
we numerically evaluate it by making use of

𝐺𝐾[fi] = 𝐺𝐾0[fi − f f it
M ] + 𝐺𝐾1[fi]. (20)

This method improves numerical accuracy for the case where the ion distribution function is close to an unshifted Maxwellian

distribution with poloidally uniform density and temperature profiles, which corresponds to a shallow-gradient region (e.g., top

of a pedestal) with a drift-ordered plasma rotation velocity. Note that in the opposite limit, where the zero- and first-order terms

in Equation (1) are comparable (e.g., mid-point of an H-mode pedestal), numerical errors generated by a small B-field noise

are less important.

3.3 Temporal discretization

For the parameters of the illustrative simulations presented in this work, the Courant time-step constraint is roughly similar

for the Vlasov, collision, and anomalous transport terms in Equation (1), and therefore an explicit fourth-order Runge–Kutta
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time integration scheme is used to advance the ion gyrokinetic equation. We note that implicit-explicit (IMEX) time integration

methods, which enable implicit time integration of selected terms such as collisions and anomalous transport, are available

in COGENT[37,38] as well. In contrast, Equation (16) for the electrostatic potential variations yields a fast electron timescale

𝜏cond ∼ (𝜌s∕Lp)2𝜏e(𝑞𝑅0∕VTe𝜏e)2 ≫ R0∕VTi (see Section 2), and therefore requires implicit treatment. Here, we adopt a simple

first-order backward-Euler scheme and advance Equation (16) in time as follows:

𝜵⊥ ⋅

(
e2ni

miΩ2
i

𝜵⊥
Φ(l+1) − Φ(l)

Δt

)
= 𝜵⊥ ⋅ ji,⊥ + 𝛻‖

[
𝜎‖

(
Te

𝑒𝑛i
𝛻‖ni − 𝛻‖Φ(l+1)

)]
− 𝜵⊥ ⋅

(
c2mini𝜈𝑐𝑥

B2
𝜵⊥Φ(l+1)

)
, (21)

where Δt is a size of the time step, and tl =Δt ⋅ l corresponds to a discrete time variable. The ion moments in Equation (21)

(i.e., ji, ⊥ and ni) are evaluated at the lth time step, and we make use of the Te = const assumption [see Section 2].

4 SIMULATION RESULTS

In this section, we present numerical results from illustrative COGENT simulations performed for parameters characteristic of

a DIII-D H-mode. A single ion species deuterium plasma mi = 2mp is considered, where mp is the proton mass. The magnetic

geometry and the corresponding grid structure are shown in Figure 1a. The value of the poloidal magnetic field at the intersection

of the outer mid-plane and separatrix is given by Bp ≈ 0.4 T . To minimize the effects of a short-scale magnetic field noise, which

is present in the original EFIT[39] data, both a B-field smoothing technique and the zero-order separation method in Equation (20)

are applied. The toroidal magnetic field is given by RB𝜙 = 3.5 T ⋅ m, and its direction corresponds to the downward 𝛻B drift.

Ion–ion collisions are specified by the fully non-linear Fokker–Planck operator (see Refs. 12, 37, 38 for details), and to describe

the radial anomalous transport we adopt the following simple model:

TAN
i [B‖∗i fi] = 𝜵 ⋅ [D(𝜓)(e𝜓 ⋅ 𝜵(B‖∗i fi))e𝜓 ], (22)

where e𝜓 is the unit vector in the direction normal to the magnetic flux surfaces. The diffusivity coeffi-

cient function is specified by D(𝜓N)=D0(0.5× tanh[(0.94−𝜓N)/0.02]+ 0.7) in the core and SOL regions, and by

Dpf (𝜓N)=D0(0.5× tanh[(0.95− x)/0.03)]+ 0.7)× (0.45× tanh[(x− 0.96)/0.02)]+ 0.55) in the private flux region, where

D0 = 1.7 [m2/s] is the normalization constant, and 𝜓N is the normalized flux coordinate (equal to zero at the magnetic axis and

unity at the separatrix). The radial diffusion operator in Equation (22) requires two boundary conditions, for which we take

f i(𝜓BC, 𝜃, v‖, 𝜇, t)= f i(𝜓BC, 𝜃, v‖, 𝜇, t= 0), where 𝜓BC corresponds to the magnetic flux values at the inner core and outer

SOL and private flux radial boundaries. In the parallel direction, where only the advection operator is present in Equation (1),

we specify an inflow boundary condition to mimic the ion input from recycling f i(𝜓 , 𝜃BC, v‖in, 𝜇, t)= f i(𝜓 , 𝜃BC, v‖in, 𝜇, t= 0),

where v‖in corresponds to a particle’s inflow velocity. The initial condition for the ion distribution is specified by a Maxwellian

distribution function with a zero parallel flow velocity and the poloidally uniform density and temperature profiles, given in the

core and SOL regions by n0(𝜓N) = n0(0.5×tanh[(0.96−𝜓N)∕0.03)]+0.7) and T0(𝜓N) = T0(0.3×tanh[(0.96−𝜓N)∕0.03)]+1.0),
respectively, where n0 = 5 × 1019 m−3 and T0 = 300 eV.

The parameters in Equation (16) are specified as follows: The present simplified model (see Section 3) assumes constant

𝜎‖ = 8× 1015 s−1 and Te = 300 eV. We note that the parameter 𝜎‖ controls the width of the transition layer, L𝑠𝑒𝑝

E , and therefore its

value is chosen to be consistent with the near-separatrix value of the electron temperature of 70 eV. On the other hand, the param-

eter Te determines the amplitude of poloidal potential variations, and its value is chosen to be the order of the pedestal electron

temperature. For the illustrative parameters considered here, poloidal variations of Φ are rather small and therefore the results

of simulations should not strongly depend on the value of Te. In order to mitigate spurious numerical effects, for example, Gibbs

oscillations, related to the rapid change in Er across the separatrix (see Section 2), we take 𝜈𝑐𝑥(𝜓N) = 𝜈𝑐𝑥 exp[−(𝜓N − 1.0)2∕𝛿2
n],

where 𝛿n = 0.01 and 𝜈𝑐𝑥 = 7.5×103 s−1, which corresponds to an artificially high value of the neutral density, nn = 2× 1016 m−3.

The initial potential profile corresponds to eΦ0 = −T0 ln(n0∕n0).
Assuming that the radial core boundary lies within a shallow gradient region (e.g., top of a pedestal) we neglect small poloidal

variations in the electrostatic potential and adopt the following boundary condition:⟨
c2nimi

B2
|𝜵𝜓|2⟩ 𝜕Φ

𝜕𝜓
= ∫

t

0

𝑑𝑡⟨𝜵𝜓 ⋅ ji,⊥⟩. (23)

At the SOL and private flux radial boundaries, we take 𝜕Φ/𝜕𝜓 = 0. Finally, at the divertor plates we arbitrarily set Φ= 0. More

accurate radial potential profile near the plates can be determined from the sheath boundary condition,[31,34,35] which requires

detailed knowledge of the electron temperature and will be the subject of our future studies. We, however, emphasize again that

the present model captures the ion kinetic effects corresponding to ion orbit losses and poloidal variations of the ion distribution
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FIGURE 2 (a) Radial profiles of the ion

density (ni), ion temperature (Ti), radial electric

field (Er), anomalous diffusion coefficeint (D),

and ion parallel velocity (Vi,‖) computed along

the outboard midplane at t= 2.8 ms. The

corresponding normalization constants are

shown in parentheses. (b) Poloidal profiles of

the ion density, temperature, and electrostatic

potential obtained on the closed flux surface

that intersects the outer midplane 0.4 cm inside

the separatrix (dashed curves), and on the open

flux surface that intersects the outer mid-plane

0.9 cm outside the separatrix (solid curves). The

poloidal index runs in the counter-clockwise

direction starting and ending at the core cut on

closed field lines, and starting and ending at the

low-field-side and high-field-side SOL cuts,

respectively, on open field lines (data in the

divertor legs is not shown). See Figure 1a for

the location of the cuts
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function, which play an important role in determining the self-consistent electric fields in the upstream SOL and inside the

separatrix.

The results of the numerical simulations are shown in Figures 1–3 and include transport timescale equilibrium solution for 2D

plasma profiles (Figure 1) as well as characteristic radial and poloidal lineouts (Figure 2) and a time history for the radial electric

field and parallel ion flow (Figure 3a). As expected, a narrow transition layer is observed near the separatrix in the solution for

Er (see Figure 2a). The presence of such structure is inconsistent with the assumptions of the gyrokinetic model in Equation (1)

and can affect the near-separatrix results. A detailed analysis of this issue is, however, outside the scope of the present work.

Further, we note that the ion temperature in the SOL region is larger at the outer (low-field side) mid-plane than at the inner

(high-field side) mid-plane (see Figures 1b and 2b). This observation is qualitatively consistent with the corresponding results

of XGC simulations[26]; yet, the temperature variations obtained in the present simulations are less pronounced, plausibly due

to the present boundary conditions that force a poloidally uniform temperature distribution at the outer SOL boundary. Poloidal

variations of plasma profiles on closed flux surfaces are found to be weak (Figure 2b), consistent with shallow radial temperature

gradients (Figure 2a), which determine the deviation of the ion distribution function from a poloidally uniform Maxwellian.

Finally, the results for the radial electric field and the co-current parallel ion flow velocity in Figure 2a demonstrate qualitative

agreement with the DIII-D experiments.[16,29] Comparing the COGENT model with the analysis performed in Ref. [16], we

note that the present simulations include the ion orbit loss and the “Pfirsch–Schluter” mechanisms, both of which can contribute

to a co-Ip intrinsic rotation. The turbulence-driven mechanism for edge plasma rotation,[40] which is also used to elucidate the

experimental results,[16,40] requires a poloidally varying ballooning structure of the diffusion coefficient D, and therefore is not

captured by our model D=D(𝜓). However, those effects can be straightforwardly added by extending the transport model in

Equation (22) to include poloidally varying D. We also note the other simplifications assumed in the present simulations, such

as a uniform electron temperature and the lack of a detailed neutral model, that affect electric fields and plasma flows in the

SOL region and will be addressed in our future studies.

The results in Figures 1, 2, and 3a are obtained for the spatial grid resolution specified by (N𝜓 = 22, N𝜃 = 32), (N𝜓 = 10,

N𝜃 = 40), and (N𝜓 = 8, N𝜃 = 8), in the core, SOL, and private-flux regions, respectively, and the velocity grid given by (Nv|| =
36, N𝜇 = 24). Here, N𝜓,𝜃,v||,𝜇 corresponds to the number of cells in the directions of the radial coordinate, poloidal coordinate,

parallel velocity, and magnetic moment, respectively. The domain extensions in the velocity space are −v‖max < v‖ < v‖max and

0<𝜇<𝜇max, where vmax|| = 4

√
2T0∕mi, 𝜇

max = 4.5T0∕B0, where B0 = 1 T is the normalization constant. The code performance

scales well with the number of processors, and it takes approximately 256 CPU hours (1.33 h× 192 processors) to simulate 1 ms

of ion dynamics on the Edison cluster of the NERSC computing system.[41] To address convergence properties of the numerical

solutions in Figures 1 and 2, we carried out two additional simulations with twice as many points in either the radial or poloidal

directions. The results of these studies are shown in Figure 3b and demonstrate excellent convergence in the poloidal direction.

On the other hand, the increase in the radial resolution yields a noticeable change in the numerical solution for Er within the

marginally resolved transition region. Although, the “coarse” and “fine” solutions are close to each other outside the transition

region, details of the near-separatrix Er profile can have a pronounced impact on the intrinsic toroidal rotation and and will be

investigated in our future studies.
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FIGURE 3 (a) Time history of the radial

electric field and ion parallel velocity obtained

at the outer midplane, 1 cm inside the magnetic

separatrix, (b) Radial electric field computed

along the outer midplane at t= 2.8 ms in the

simulations with different spatial grid

resolution. The numbers in the parenthesis

denote the number of the radial and poloidal

cells in the core region, respectively.

5 CONCLUSION

This paper presents the initial results from continuum drift-kinetic transport simulations that span the magnetic separatrix of a

tokamak and include 2D (axisymmetric) self-consistent electrostatic potential variations. The simulations are performed with the

COGENT code that employs finite-volume methods combined with the mapped multiblock grid technology. The electrostatic

potential variations are determined from the quasi-neutrality equation coupled to an electron fluid model. The simulations also

include ion-ion collisions described by the fully-nonlinear Fokker-Plank operator and an anomalous radial transport model. For

simplicity, isothermal electrons with Te = const are considered and the effects of recycling and neutrals are included via a simple

inflow boundary condition for an ion distribution function. The results of illustrative simulations carried out for parameters

characteristic of a DIII-D H-mode demonstrate the values of intrinsic rotation and radial electric field qualitatively similar to

those observed in DIII-D experiments.[16]

In addition, a near-separatrix transitional structure of the radial electric field is discussed. The influence of neoclassical,

anomalous (turbulence), and charge-exchange effects on the width of the transition layer is assessed and a small characteristic

length scale, the order of a few ion gyroradii, is concluded. Such a narrow transition structure might be inconsistent with the

assumptions of the gyrokinetic model and can also introduce numerical issues. Detailed analysis of these issues along with

development of improved models for electrons and neutrals will be a subject of our future studies.
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