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1 | INTRODUCTION

Development of full-F computational methods for kinetic plasma transport modelling is of increasing importance
in a tokamak edge region where the ion distribution can substantially deviate from a local Maxwellian distribu-
tion and therefore the so-called delta-F approximation becomes invalid. Presently, there are two main approaches
to solving the kinetic equation: (a) the particle-in-cell (PIC) method, in which macroparticles are used to represent
the distribution function, and (b) the continuum (Eulerian) approach, in which the distribution function is repre-
sented on a phase-space grid. While PIC methods can facilitate simulations in diverted magnetic field geometries, ]
modelling of low-amplitude edge turbulence subject to an adequate representation of background quasi-equilibrium
dynamics may require a very large number of macroparticles to suppress statistical errors in full-F PIC simulations.
Therefore, it is of great practical importance to develop continuum (Eulerian) discretization schemes for edge plasma
modelling.

Motivated in part by the success of continuum (Eulerian) delta-F codes for core physics, and in part by their poten-
tial for high accuracy, the Edge Simulation Laboratory collaboration!?! has been developing a full-F code called COGENT
for the edge.l>*! The code is unique in that it is based on a consistent high-order discretization of the underlying
equations, and hence the error (in particular near the X-point) can be bounded. It utilizes multi-block grid technol-
ogy, in which logically distinct blocks are smoothly mapped from rectangular computational domains, and a high-order
interpolation is used to provide data communication between the blocks. The code presently solves the electrostatic
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gyrokinetic system in the long-wavelength limit, i.e. assuming kp; < 1. Here, p; is the ion gyroradius, and k is the
characteristic wavelength for electrostatic potential variations. Multi-species gyrokinetic equations can be solved in
COGENT with a number of increasingly detailed collision models including the non-linear Fokker-Plank operator.!*!
Detailed description of axisymmetric (4D) code capabilities including results of cross-separatrix simulations in realis-
tic single-null geometries can be found in refs 3,6. Our recent work has focused on the development of a 5D version
of the COGENT code to model edge plasma turbulence. While we maintain the use of standard coordinate systems
(e.g. single-block slab or toroidal) as the mode of operation, a numerical algorithm utilizing a locally field-aligned
multi-block coordinate system has been developed to facilitate simulations of highly anisotropic microturbulence in
the presence of strong magnetic shear and X-points. In this approach, the toroidal direction is divided into blocks,
such that within each block the cells are field-aligned, and a non-matching (non-conformal) grid interface is allowed
at the block boundaries. The toroidal angle is playing the role of the “coarse” field-aligned coordinate, whereas the
poloidal cross-section, comprised of the radial and poloidal directions, is finely gridded to resolve short-scale perpen-
dicular turbulence structures and to support accurate re-mapping (interpolation) at the block boundaries. Previously,
we reported on 5D COGENT simulations of the collisionless (universal) instability in a slab geometry for either a
single-block Cartesian!”8! or multi-block field-aligned!®! coordinate option. Here, the initial results of 5D verification stud-
ies performed for the case of the ion temperature gradient (ITG) instability in a sheared toroidal annular geometry are
presented.

2 | NUMERICAL MODEL

The simulation model considered in this work solves the long-wavelength limit of a 5D full-F ion gyrokinetic equation
written in a conservative form:

0(BT )

at

+V - (RBif) + a—v”(v“B” f) =0, (1)

where f(R, v, u) denotes the ion gyro-averaged distribution function, V is the gradient with respect to R, and the
phase-space guiding-center velocities are given by

R = i 1)||B>k + Lb X (Zlevq) + MVB) s (2)
B]’[ Zie
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where m; and Z; are the species mass and charge state, respectively, e is the electron charge, ®(R, t) describes the
long-wavelength (kp; << 1) 3D electrostatic potential variations, B = B-b is the magnetic field, with b denoting the
unit vector along the field, B'(R, v) =B+ (m;/Zie)vy V xb, and B, = B" - b. The ion kinetic equation is coupled to the
gyro-Poisson equation

Vi (ZRV.I0) = e - Zim), @
B2

where the following linear adiabatic electron response is adopted for the case of a core (closed-field-line) toroidal

geometry:

ne = (nig)(1 + e®/Te — (D) /Te). (5)

In Equation (4), V, =V —-b(b- V), n; = 2x/my) [ fiBﬁdv”du is the ion species gyrocenter density, (nj) = (n;(t = 0)) is
the flux-surface average of its initial profile, with (-) denoting the flux surface average operator, and T, is the electron
temperature, which is assumed to be constant for the present purposes. A zero Dirichlet boundary condition is considered
at both radial boundaries for electrostatic potential perturbations, and the initial distribution is used to specify inflow
boundary fluxes for an ion distribution function.
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FIGURE 1 Schematic of a locally field-aligned multi-block discretization scheme. Frame (a) shows poloidal cross-sections located in
the middle of neighbouring toroidal blocks. Assuming axisymmetric magnetic geometry, the cross-sections are gridded in the same way. Note
that the gridding is nearly flux-aligned and has poloidal sub-block structure to deal with the X-point. The control volumes for both valid and
ghost cells are obtained in each block by mapping such poloidal grid along the magnetic field lines. A schematic twist and shift of a toroidal
face mapped along a magnetic field line is illustrated with two white parallelograms. Frame (b) shows the toroidal faces of block n ghost cells
(the blue dashed lines) illustrated over the toroidal faces of block n + 1 valid cells (the solid red lines). Frame (c) shows an example of the
toroidal block structure. In this case, each block has two valid cells (shown with the solid blue and red lines) and two ghost cells. The location
of the poloidal planes shown in Frame (a) corresponds to the vertical dashed lines in Frame (c). The shaded blue areas in Frames (b) and (c)
illustrate the toroidal and radial faces of the same ghost cell, respectively. The star symbols in Frames (b) and (c) designate the three valid red
cells that are used to evaluate the shaded blue ghost cell data for the case of a third-order (quadratic) interpolation.

2.1 | Spatial discretization

COGENT employs high-order finite-volume methods to solve hyperbolic [Equation (1)] and elliptic [Equation (4)]
equations on arbitrary spatial grids represented by logically distinct blocks that are smoothly mapped from rectangular
computational domains.[l Short-wavelength turbulence, which determines transport properties of a tokamak plasma, is
distinguished by highly anisotropic perturbations that are aligned with the magnetic field, and therefore motivates the
use of a field-aligned coordinate system. However, the presence of the X-point and a strong magnetic shear in the edge of a
diverted tokamak generates significant distortion of the controlled volumes if a globally field-aligned coordinate system is
used. To deal with this issue, the following discretization concept has been adopted (see Figure 1). For the sake of brevity,
we leave a detailed description of the numerical algorithm for a future publication and provide only a short summary here.

The toroidal direction is divided into a number of blocks (wedges) such that a local coordinate system is field-aligned
within a block. Further, each toroidal block can consist of a number of sub-blocks employed to represent a single-null
poloidal cross-section as is done in the 4D (axisymmetric) code.[>*% Assuming axisymmetric equilibrium magnetic geom-
etry, the cell volumes can be constructed within each block in the same way. However, because of the twist and shear
of magnetic field lines, the grids in different blocks will not, in general, be conformal. In order to provide communica-
tion between the blocks, the grid in each block is extended (along the field lines) into the neighbouring blocks, and the
ghost cells thus formed are filled by interpolating the corresponding valid-cell data. Because of the locally field-aligned
nature of the discretization scheme, the number of degrees of freedom to describe short-wavelength turbulence remains
optimal. That is, while a 2D grid in the poloidal cross-section has to resolve fine-scale structures, e.g. A~p;, the toroidal
direction, which plays the role of a field-aligned coordinate, can remain coarse as it only needs to resolve large-scale par-
allel structures. We note that some features of the discretization described here are conceptually similar to what is used
in ref. 9 for the case of a finite-difference scheme applied to a 3D fluid model. The work in ref. 9, however, considers
the case of a flux-independent poloidal coordinate system. Here we emphasize the use of a flux-aligned poloidal grid
(with controlled dealignment in the X-point vicinity) in order to be consistent with the 4D transport version and to min-
imize numerical pollution from the electron physics effects.l*! Finally, we comment on the use of the toroidal angle as a
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field-aligned coordinate (as employed here), in contrast to the poloidal angle, which is typically adopted for the modelling
of corel'®l and edgel'!l turbulence. The choice of the poloidal angle as a field-aligned coordinate can be more efficient
for modelling high-n modes where it is sufficient to simulate only a small part (wedge) of a full torus. Furthermore, it
provides more natural specification of the boundary conditions at the divertor plates. On the other hand, the use of the
toroidal angle as a field-aligned coordinate is more natural for X-point modelling where it yields minimal twist of control
volumes.

Because of the non-conformity of the toroidal cell faces at the shared block boundaries, special treatment of the
inter-block interpolation and the evaluation of normal fluxes at the toroidal block boundaries are required to make
the finite-volume scheme globally conservative. While development of a high-order conservative version of the pro-
posed discretization is in progress, we have presently implemented a non-conservative second-order locally field-aligned
multi-block version of the code, which can test critical aspects of the numerical scheme. This version utilizes a third-order
upwind discretization of the gyrokinetic advection operator combined with a third-order (quadratic) interpolation scheme
for the intra-block communication. In the present work we discuss the application of the numerical algorithms to the
case of a circular, concentric tokamak configuration

_I(_r
B=z (q(r)Roe" +e¢> ’ ©

where (7, ¢, 0) represents the toroidal coordinate system, R is the major radius coordinate, Ry is the radial distance between
the tokamak axis and the core center, and I = RB,, = const. Following the analysis in refs 12,13, we define the safety fac-
tor profile as q(r) = qo + q1exp(g.log(r/a)), where a denotes the minor radius, which is a constant. The locally aligned
coordinate system is introduced within each block as follows: the radial coordinate &, = r labels a flux surface, the
field-aligned coordinate &; = ¢ designates the position along a field line as measured by the toroidal angle, and finally

the “poloidal” coordinate &, which labels a field line is defined by &, = 2 arctan <\/1+_r tan <® - 1—2_72%> ), where
1-7
Vi-¥

5 tan g) , and ¢, designates the reference poloidal plane in block n (here taken as the toroidal

centre of a block) where &, =

¥ =r/Rg, ® = arctan

2.2 | Field solve

In addition to the spatial discretization described above, developing an efficient approach to solve Equation (4) is nec-
essary. Although a variety of methods are available in COGENT to handle sparsely coupled elliptic equations, the
presence of the flux-surface-average potential, which governs the evolution of the axisymmetric (zonal-flow) component,
in the RHS of Equation (4) introduces dense (long-range, non-local) coupling. This problem is addressed in COGENT
by performing “sub-space” iterations, where we interchangeably solve for flux-surface-averaged (zonal) and non-zonal
components of ® (which belong to orthogonal functional sub-spaces) until the combined solution satisfies the orig-

inal gyro-Poisson equation. In more detail, introducing ® = (®) and ® =@ — O, we iterate the following system of
equations:

mn;

min ed
e <—l qu)n+l> — (i) —= = (mio) — Zim; — <—Vi¢’ > ™
eB? eB?

<VJ. : <ZL]; l n+1>> = (ni) — (Zin;) — <V¢ : <%Vl¢)n+l>> 8

Note that Equation (7) for the non-zonal part of ® does not involve non-local coupling and can be efficiently solved
in COGENT by making use of a parallel algebraic multi-grid preconditioner adopted from the Hypre library.l'4! The
remaining zonal-flow equation [Equation (8)] is a second-order one-dimensional ordinary differential equation that can
also be solved straightforwardly. In order to improve the convergence properties of Equations (7)and (8), we subtract the
flux-surface-averaged portion of &)nﬂ each time after solving Equation (7).




DORF AND DORR

Contributions to 50f8
Plasma Physics
(@) yRo/Vr; TG growth rate (b) wRy/Vy; TG real frequency (€) zam Potential (2)
0.3 1.4 MK - 0008 T
1.2 n=5 810 930 i
o 1 E - 0.20 0.000 % ': . "*q
0.2 -
0.15 08 > 1 ot
' 0.6 0:00 . 0,008 l -
0.1 e -
— CBC 0.4 0.10 ' -
wa
—_— _ . »y
0.05 COGENT 0.2 026 » — 190 X\K'\\.“*”
0 0 -0.30 g
: . ; 1 2 ’
g Bl K L i g 0 K ¢ & 040y 12 14 1% 18 20
oPi 0Pi X (m)

FIGURE 2 Simulations of the CBC test with the single-block toroidal version of COGENT. Frames (a) and (b) illustrate the ITG growth
rate and real frequency versus the normalized poloidal wavenumber kg p;, respectively, where kg = nq(rmiq)/rmi¢ and n is the toroidal mode
number. Global COGENT simulations (red squares) are compared with the results of the local p;/a — 0 model (blue circles). Frame (c) shows
the poloidal cross-section of the electrostatic potential variations for the case of n = 10.

3 | SIMULATION RESULTS

This section presents the initial results of 5D COGENT verification studies. To test the full-F 5D locally field-aligned
multi-block version of the code, the following strategy is adopted. We first benchmark the 5D single-block toroidal version
of the code, which employs the standard toroidal coordinate system (r, ¢, 8), against the linear cyclone base case (CBC)
test.['®l Following that verification, the full-F field-aligned version is benchmarked against its single-block toroidal coun-
terpart. Note that direct verification of the field-aligned multi-block version against the CBC results is challenging because
of (a) complications with performing toroidal harmonic filtering, as the toroidal coordinate represents a field-aligned
coordinate, and (b) pronounced variations in initial electrostatic potential as given by Equations (4) and (5) corresponding
to a full-F equilibrium.

3.1 | Single-block toroidal version: cyclone base case test

The results of CBC simulations performed with the single-block toroidal-coordinates (7, ¢, ) version of 5D COGENT are
shown in Figure 2. The magnetic geometryis givenby Ry =1.68 m,a=0.6 m,I =RB;=3.5Tm, gy =1.0,q; =2.78,9, = 2.8
and the radial simulation domain spans a/3 < r < 2a/3 such that at the middle of the radial domain r,,,;g = a/2, q(rpig) = 1.4
and 5(rmia) = (rmia/q)q'(rmia) = 0.8. The singly charged (Z; = 1) deuterium (m; = 2m,) ion species is considered, and
the plasma temperature is taken to be T,=T;(rmiq)= 2.3 keV, which corresponds to p;/a ~ 1/180, where p; = V1;/Q;, V5 =
A/ Ti/m;, and Q; = (Z;e/m; X(I/Ry). Following the verification studies in ref. 16, we take the initial ion distribution as a local
Maxwellian distribution with density and temperature profiles specified by the following functional form:

cosh[(y — wmia + 6A)/AA] >“A“/ 2 ©)

Aly)=A <

°\ cosh[(y — wimia — 64)/AA]
where y = y(r) is the magnetic flux function which satisfies w' = dy/dr = RBy subject to a w(0) = 0 boundary condition,
Wmid =¥ (Fmia), and

Ko = f—z |/ (Fmio)Ro tamh (%)]1 (10)

where Ly = A/A’(rmiq) is the inverse logarithmic derivative measured at the middle of the radial domain, and A’ =dA/dr.
The constant parameters in Equations (9) and (10) are given for the initial plasma ion density (A = N) and temperature
(A = T) profiles by Ry/Ly = 2.23, Ro/Lt = 6.96, T = T;, 6y = 67 = 2.7x 1072 Tm?, Ay = A7 = 4.54x 1073 T m?. Results
of the COGENT simulations for the toroidal mode numbers n = 5, 8, and 10 are shown in Figure 2. This range of toroidal
harmonics is chosen to avoid the high-n part of the spectra where the long-wavelength approximation fails and the low-n
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part of the spectra where the ITG growth rate is small and requires extended time integration (thereby simulation time).
For each simulation, the periodic toroidal domain with the extent of 2xz/n is considered, and all toroidal harmonics higher
than the fundamental one are filtered out from the electrostatic potential solution after each solve of Equations (4) and
(5). The grid resolution of [N, = 24,Ny = 8,Ny = 256’Nvu = 32,N, = 24] is adopted for the cases of n = 8 and 10, and
Ny =128 is used for the case of n = 5. The velocity domain extent corresponds to —3.54/2T;/m; < v < 3.54/2T;/m; and
0 < u <8.3T;Ry/I. The results of these initial COGENT simulations are found to be in reasonably good agreement with
the CBC test results!’! obtained in the local limit, p;/a — 0. The difference can be related to the limited validity of the
long-wavelength approximation or the finite orbit width effects due to a finite value p;/a, and will be a subject of our
future studies. In conclusion, we note that it takes approximately 1150 CPU-hours (3 min X 384 processors) to simulate a
time period of Ry/V'7; (corresponding to 88 time steps) for the case of n = 5 on the Cori cluster of the NERSC computing
system.!”]

3.2 | Multi-block field-aligned version

In this section we consider simulations of the ITG instability performed with the multi-block field-aligned version of the
5D full-F COGENT code. First, we note that the initial locally Mawellian ion distribution with poloidally uniform density
and temperature profiles, which is considered in Section 3.1, corresponds to a steady-state equilibrium only to the zero
order in p;/a. As we maintain all toroidal harmonics here, it is important to minimize axisymmetric (n = 0) transients
during the initial linear stage, and therefore we need to initialize ions with an accurate steady-state distribution. It is also
important to note that using a locally Maxwellian distribution as the initial condition yields the development of large-scale
ion flows that can interfere with (e.g. delay) the onset of turbulence./'>!8 The guiding-centre equilibrium distribution cor-
responding to a zero electric field should depend only on the invariants of motion: energy (E = m,-vﬁ /2 + uB), magnetic
moment (u), and the canonical angular momentum (Py = Z;ey + m;v RB,/B). It is evident that a locally Maxwellian dis-
tribution function Fyy = N(w)[22T(y)/m;]~3/? exp(mivﬁ /2T(y) + uB/T(y)) can be turned into an equivalent canonical
Maxwellian F¢y equilibrium function by replacing w with

Yiw =Y + —le—V”, (11)

such that in the limit p;/a <1 we recover N(y) ~ N(yin) and T(y) ~ T(yiny). This approach is used here to initialize
the ion distribution. Note that a canonical Maxwellian distribution still yields large-scale diamagnetic-size parallel flows.
Several authors!'21] argue that the flows can be minimized by revising the definition of y,, in Equation (11) with the use
of other constants of motion. The revised expression, however, contains a sign(v) function, which is non-differentiable
and was observed to degrade the convergence properties of the attempted test simulations in COGENT. We also point out
that sign(v ) is not a motion-invariant for trapped particles.

Parameters of the COGENT simulations considered in this section are defined as follows. The magnetic geometry is
assumed to be the same as that used in Section 3.1, though a slightly more extended radial domain is considered: 0.19
m <r <0.41 m. The initial plasma profiles are specified by

A(yiny) = Ap exp [—K‘AAA tanh (W )] , (12)
where k4 = 1/[Lay’(rmia)]- The functional form in Equation (12), which is also used in ref. 12, is adopted here instead of
that used in Equation (9), as it is observed to generate less perturbation in plasma profiles when y is replaced with yriny.
The initial density and temperature profiles are set by using Ry/Ly = 5.14, Ry/Lt =16, Ay = A7 = 1.8 x 1072 T m?.
Following the verification strategy noted earlier (see Section 3), we benchmark the 5D field-aligned multi-block ver-
sion against its single-block toroidal counterpart (see Figure 3a). For this test simulation we consider a plasma temperature
of T.=T, = 7 keV and a periodic toroidal wedge of A¢p = 0.2z. The fundamental mode n = 2z/A¢ = 10 and the associ-
ated kypp; = nq(rmia)pi/rmia = 0.27 correspond to a nearly maximal growth rate in the ITG spectrum. The grid resolution
is taken to be [N, = 48, Ny = 256, N, =32,N, = 24] and the velocity domain extent is —3.54/2T;/m; < vy < 3.54/2T;/m;
and 0 < 4 <10.4T;Ry/I. The multi-block version involves the toroidal domain splitting into two toroidal blocks. Figure 3a
shows the time history of the normalized total electrostatic energy corresponding to the non-zonal part of the potential
perturbations for the cases of Ny = 8 and Ny = 16. The pronounced initial value is due to the fact that the initial canonical
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FIGURE 3 Results of the 5D full-F COGENT simulations of the ITG instability in a periodic toroidal wedge A¢ = 0.2x. Frame (a)
shows the total energy of the non-zonal electrostatic perturbations (measured in arbitrary units) obtained with the single-block toroidal (blue
and brown curves) and multi-block field-aligned (red and green curves) code versions. The solid curves illustrate the case of Ny = 16 and the
dashed curves correspond to N, = 8. The results for potential variations shown in Frames (b-d) are obtained with the multi-block
field-aligned code version.
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FIGURE 4 Results of the 5D full-F multiblock field-aligned COGENT simulations of the ITG instability in a full torus, A¢ = 2x.
Shown are (a) the time history of the non-zonal electrostatic energy (measured in arbitrary units), and (b-d) poloidal cross-section of
non-zonal electrostatic potential perturbations at ¢t = 15R,/Vr; for different values of the toroidal cell number N . The results are obtained
with the multi-block version that involves the toroidal domain splitting into two toroidal blocks.

Maxwellian distribution with the plasma profiles in Equation (12) yields poloidal variations in the local ion density, which
in turn generates poloidal variations in the electrostatic potential according to Equations (4) and (5). The results obtained
with the field-aligned version of the code converge rapidly with respect to the refinement of the toroidal coordinate. The
toroidal version appears to produce the same converged result as its field-aligned counterpart, though at a slower conver-
gence rate. Figures 3b—d show the results obtained with the multi-block field-aligned code version. Figures 3b and c plot
the non-zonal part of potential perturbations ® — (®), illustrating evolution of the ITG instability, and Figure 3d shows
development of a large-amplitude zonal component (®).

Finally, we discuss the results of full-torus, A¢ = 27, simulations performed with the multi-block code version that
demonstrate the efficiency of the field-aligned discretization (see Figure 4). The parameters of the simulations are the
same as those used for Figure 3 except for the plasma temperature To= T, = 2.3 keV and the number of poloidal cells
Ny = 340. Further, in order to observe a pronounced linear stage of the ITG instability, we suppress initial electrostatic
potential variations by replacing the adiabatic electron response in Equation (5) with n, = nj + (nio)(e®/T, — e(®)/T,).
The results of illustrative simulations performed for different numbers of toroidal cells, Ny= 8, 16, and 32, show
rapid convergence with increase in the resolution of the field-aligned coordinate. This result is consistent with the
anisotropic nature of the tokamak micro-turbulence, which is characterized by k, ~1/p; and k;~1/qR,. For the param-
eters of this simulation, kyp;~1 corresponds to the toroidal mode number of ngym~7mia/[q(Fmia)pi] = 65, which would
therefore require 65 times more toroidal points for the equivalent simulation to be performed with the single-block
toroidal coordinate code version. In addition to the drastic reduction in the total number of cells, the field-aligned
version has much less strict Courant time step constraint for stable explicit integration. Indeed, assuming that N,
cells are needed to adequately resolve a spatial scale, the Courant constraint for the field-aligned code is given by
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Atpa~[kiNc(pi/Ro)V i) ~[kyN:V1;]~1. In contrast, the toroidal code would require Atrc~Ro/(nsN:V1;), which is about
ngpq ~ 90 times smaller.

4 | CONCLUSIONS

A locally field-aligned multi-block version of the 5D full-F finite-volume code COGENT is developed. The distinguishing
feature of the underlying numerical algorithm is the use of multiple toroidal blocks, such that within each block the cells
are field-aligned and a non-matching (non-conformal) grid interface is allowed at the block boundaries. The multi-block
approach, together with the use of a toroidal angle as a field-aligned coordinate, can minimize the twist and shear of the
field-line-following cells and can facilitate numerical simulations of plasma microturbulence in a divertor (single-null)
geometry. In this work, the initial results from 5D simulations of the ITG turbulence in a toroidal annular geometry
are presented. The results of the field-aligned multi-block version compare well with those of the single-block toroidal
version of COGENT (utilizing the standard toroidal coordinates), while demonstrating significantly enhanced computa-
tional efficiency. Our future work will focus on extending the 5D code capabilities to support simulations in a single-null
geometry.
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