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Abstract
We report on the development and implementation of a hybrid kinetic ion–fluid
electron model for electromagnetic COGENT simulations of edge plasmas.
COGENT is a finite-volume gyrokinetic code that employs a locally field-aligned
coordinate system combined with a mapped multi-block grid technology to han-
dle strongly anisotropic edge plasma turbulence. The simulation model involves
the long-wavelength limit of the ion gyrokinetic equation coupled to the vortic-
ity and Ohm’s law equations for the electromagnetic field perturbations. In order
to handle the fast Alfvén wave time scales, an implicit-explicit time integration
approach with a physics-based preconditioner is used. The model is success-
fully applied to the simulations of ion-scale resistive-drift ballooning turbulence
in a toroidal annulus geometry. Substantial speed-up over a fully explicit time
integration approach is observed.
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1 INTRODUCTION

Electromagnetic effects become increasingly important for gyrokinetic[1–3] or drift-fluid[4–8] modeling of microturbulence
in a tokamak edge where the presence of steep gradients, e.g., at the L-H transitions and above, makes the charac-
teristic drift frequency, 𝜔dr ∼ Vs∕Lp, comparable with the Alfvén transit frequency, 𝜔A ∼ VA∕qR. Here, Vs =

√
Te∕mi

and VA = B∕
√

4𝜋nimi denote the ion sound speed and the Alfvén wave speed, respectively, Lp is the length scale
for variations in background plasma profiles, R is the major radius, and q is the magnetic safety factor. At the same
time, the performance of explicit time integration methods can suffer from a severe Courant constraint, Δt < h||∕VA,
where h|| denotes a cell-size in the direction parallel to a magnetic field. Indeed, if the same electromagnetic sim-
ulation model is used to describe edge transition from shallower (e.g., L mode) to steeper (e.g., H-mode) gradients,
then an explicit scheme might be inefficient for the shallow-gradient state where 𝜔dr < VA∕qR. Moreover, even for
a steeper gradient state, strong variations in plasma density, n, across the edge and pronounced variations in the
toroidal magnetic field, B𝜙 ∝ 1∕R, between the high and low field side can result in severely limited time steps in
the spatial regions with a smaller plasma density and a larger magnetic field. Therefore, it is important to develop
an implicit time integration scheme, which removes the Courant time step limitation and allows stepping over the
fast Alfvén wave time scale, where it is substantially smaller than the time scale of interest (e.g., drift-wave time
period).

Implicit calculations typically require solving a nonlinear or linear system of equations at each time step
and are therefore more expensive per time step. However, for the case of a hybrid model, which employs 5D
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gyrokinetic ions and 3D drift-fluid electrons, the fast Alfvén time scales are contained within the low-dimensional
fluid/field part of the hybrid system, whereas the high-dimensional ion gyrokinetic response occurs on slower
drift and ion transient time scales. Consequently, we can apply implicit methods only to fluid electrons, while
treating kinetic ions explicitly. In this situation, the computational expense for performing implicit time integra-
tion for the 3D electron system can still be less than that of an explicit time step for the 5D kinetic ion sys-
tem.

An Implicit-Explicit (IMEX) hybrid gyrokinetic ion-fluid electron model has been implemented in the finite-volume
code COGENT developed for edge plasma modeling.[9–11] The code solves full-F gyrokinetic equations for an arbitrary
number of plasma species with a range of increasingly detailed collision models including the nonlinear Fokker-Planck
operator.[12] The gyrokinetic system can also be coupled to a set of lower dimensionality fluid equations in cases where
a reduced fluid model is adopted to describe electrons or neutrals. Note that, for a continuum approach, the same dis-
cretization method developed for solving hyperbolic PDEs in X-point geometries can be applied to a PDE of arbitrary
dimensionality; therefore, supplementing a kinetic simulation model with fluid equations is straightforward. COGENT’s
numerical discretization is distinguished by making use of a locally field-aligned coordinate system combined with a
mapped multi-block grid technology to effectively handle strongly anisotropic turbulence in an X-point geometry. In
this approach, the toroidal direction is divided into blocks, such that within each block, the cells are field-aligned and
a nonmatching (non-conformal) grid interface is allowed at block boundaries. The toroidal angle corresponds to the
“coarse” field-aligned coordinate, whereas the poloidal cross section, comprising the radial and poloidal directions, is
finely gridded to resolve short-scale perpendicular turbulence and to support accurate re-mapping (interpolation) at block
boundaries.[9]

The electrostatic version of the IMEX hybrid model has been previously verified and applied to simulations of the
ion-scale turbulence in a tokamak edge.[9,13] Here, we extend the hybrid model to include electromagnetic effects. The
IMEX time integration algorithm used in COGENT is based on semi-implicit additive Runge–Kutta (ARK) methods[14]

and can provide consistent high-order time integration, including implicit treatment of selected stiff terms.[15] It employs
the Jacobian-free Newton-Krylov (JFNK) approach[16] to handle nonlinearities and utilizes preconditioning to improve
convergence properties. In the present work, a physics-based preconditioner, which captures linear Alfvén dynamics
along with the resistive and electron inertia effects, is used to facilitate the implicit time integration. The preconditioner
operator yields a sparse linear system that is solved by making use of algebraic multigrid methods contained in the hypre
linear solver library.[17]

The paper is organized as follows. The simulation model and the IMEX approach are described in Section 2.
The electromagnetic/fluid part of the model is verified within a context of a simple three-field fluid model in
Section 3. Verification simulations include comparison with an analytical theory for the case of a uniform slab geom-
etry in Section 3.1, and for the case of a tilted slab geometry in Section 3.2. The latter verifies the field-aligned
discretization and re-mapping at the toroidal block boundaries. In Section 3.3, the performance of the implicit
time integration is analyzed for the case of the resistive ballooning instability (RBI) in a toroidal annulus geom-
etry. Finally, Section 4 presents the preliminary results of proof-of-principle electromagnetic COGENT simulations
for the case of the resistive-drift ballooning turbulence performed with the hybrid gyrokinetic ion-fluid electron
model.

2 NUMERICAL MODEL

The electromagnetic version of the hybrid gyrokinetic ion-fluid electron simulation model employed in the COGENT code
includes the full-F gyrokinetic equation for the ion species distribution function, fi

(
R, v||, 𝜇

)
, coupled to the quasineutral-

ity equation for the vorticity variable, 𝜛, and to the Ohm’s law equation for the parallel vector potential, A||. Note that
the edge of a tokamak is distinguished by a low value of the 𝛽 parameter (plasma pressure is small compared with mag-
netic field pressure) and by the strongly anisotropic nature of drift microturbulence with k⊥ ≫ k||. As a result, one can
neglect the perpendicular component of the vector potential, A, that describes the compressional Alfvén wave, and only
retain the shear Alfvén wave, 𝜔A = k||VA. Furthermore, for simplicity purposes, here we neglect electromagnetic flut-
ter effects that correspond to B-field perturbations and only retain the electromagnetic induction in the parallel electric
field, E|| = −∇||Φ − c−1

𝜕A||∕𝜕t. Although the former effects generate peeling instabilities that are important, for instance,
for the analysis of MHD stability and ELM properties,[6] they may be of lesser importance in the context of L-mode
transport.[8]
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2.1 Hybrid model description

Adopting the long-wavelength limit, k⊥𝜌i ≪ 1, the ion gyrokinetic equation takes the following form:

𝜕

(
B∗||fi

)

𝜕t
+ ∇ ⋅

(
ṘB∗||fi

)
+ 𝜕

𝜕v||

(
v̇||B∗||fi

)
= C

(
B∗||fi

)
, (1)

Ṙ = 1
B∗||

[
v||B∗ + c

Zie
b × (Zie∇Φ + 𝜇∇B)

]
, (2)

v̇|| = −
1

miB∗||
B∗ ⋅ (Zie∇Φ + 𝜇∇B) − Zie

mic
𝜕A||

𝜕t
, (3)

Here, mi and Zi are the ion species mass and charge state, respectively, −e is the electron charge, c is the speed of
light, B = Bb is the magnetic field with b denoting the unit vector along the field, B∗(R, v||

)
≡ B + (mic∕Zie)v||∇ × b,

B∗|| = B∗ ⋅ b is the Jacobian of the transformation to the gyrocenter coordinates
(
R, v||, 𝜇

)
, 𝜌i = VTi∕Ωi is the ion thermal

gyroradius, VTi =
√

Ti∕mi is the ion thermal velocity, Ωi = ZieB∕(mic) is the cyclotron frequency, and k−1
⊥

represents the
characteristic length scale for variations in the electromagnetic fields. Although a wide range of detailed collision models
C
(

B∗||fi

)
including the full nonlinear Fokker-Planck operator is available in COGENT,[12] for simplicity purposes, we do

not include ion collisions in this work.
Self-consistent variations of an electrostatic potential are described by making use of the quasi-neutrality equation

(∇ ⋅ j = 0) for the vorticity variable[9]:

𝜛 = ∇⊥ ⋅
(

c2nimi

B2 ∇⊥Φ
)
, (4)

𝜕𝜛

𝜕t
+ ∇ ⋅

(
c−∇⊥Φ × b

B
𝜛

)
= ∇ ⋅

(
2𝜋Zie

mi ∫

vm
⊥

fiB∗||dv||d𝜇
)
+ ∇ ⋅

[
cZiniTe

B

(
∇ × b + b × ∇B

B

)]
+ B∇||

( j||
B

)
. (5)

Here, ∇⊥ = ∇ − b(b ⋅ ∇), vm
⊥
≡ R⊥(Φ = 0) is the magnetic drift velocity corresponding to the perpendicular compo-

nent of the guiding center velocity in Equation (2) for the case of a zero potential, Te is the electron temperature, and the
ion gyrocenter density, ni, is given by

ni =
2𝜋
mi ∫

fiB∗||dv||d𝜇. (6)

We note that the simplified quasi-neutrality model in Equations (4)–(5) does not include O
(

k2
𝜌

2
i

)
finite-Larmor-radius

or O
(

k2
𝜌

2
s
)

polarization density corrections, thereby employing the ion gyrocenter density, ni, and not the electron density,
ne, in the second term on the RHS of Equation (6) that describes the divergence of the perpendicular electron current.
Also, the parallel advection of the vorticity variable is neglected.

The parallel current in Equation (5) is determined by making use of the parallel Ampere’s law:

j|| = −
c

4𝜋
Δ⊥A||, (7)

where the perpendicular Laplacian operator is defined as Δ⊥ ≡ ∇2
⊥

. Finally, variations in the parallel vector potential are
described by Ohm’s law, which can be derived from the equation for electron parallel momentum:

me

[
𝜕v||e
𝜕t

+ (Ve ⋅ ∇)v||e
]
= e∇||Φ +

e
c
𝜕A||

𝜕t
−
∇||(neTe)

ne
+ e

j||
𝜎||
− 0.71∇||Te.

Here, the last two terms on the right hand side correspond to the electron friction force[18] R||ei = ej||∕𝜎|| − 0.71∇||Te,
where 𝜎|| = 1.96nee2

𝜏e∕me is the parallel electron conductivity, and 𝜏e denotes the electron collisional time. For simplicity
purposes, here we assume ve|| ≈ −j||∕(ene) and neglect the convective advection term, (Ve ⋅ ∇)v||e, to obtain the following
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model equation for the parallel vector potential, A||:

1
c
𝜕

𝜕t

[(
1 − mec2

4𝜋e2Zini
Δ⊥

)
A||

]
= −∇||Φ +

∇||(neTe)
eZini

+ c
4𝜋𝜎||

Δ⊥A|| +
0.71

e
∇||Te. (8)

We again neglect a small difference between the electron density and ion gyrocenter density in Equation (8) except
for the parallel electron pressure term, where retaining the polarization density correction:

ne = ∇⊥ ⋅
(

c2mini

eB2 ∇⊥Φ
)
+ Zini, (9)

is found to be important to provide stabilization of high-k𝜌i,s perturbations. Assuming slow time variations of the
background plasma density, we compute the term c−1

𝜕A||∕𝜕t that appears in Equation (3) by applying the operator
(

1 − mec2

4𝜋e2Zini
Δ⊥

)−1
to the RHS of Equation (8). Finally, equations (1)–(9) for the ion distribution function and electro-

magnetic potentials need to be coupled to a model for an electron temperature. For the present purposes, a simplified
isothermal response Te = const is assumed.

2.2 IMEX time integration approach

To circumvent limitations of explicit time integration related to the tight Courant time step constraint, Δt < h||∕VA, an
implicit-explicit (IMEX) approach is utilized in COGENT.[9,15] Detailed description of the IMEX algorithm for the hybrid
COGENT model will be reported elsewhere, and here, we only briefly summarize the key elements of the approach. The
implicit part of the problem corresponds to the following subset of the full system:

𝜕𝜛

𝜕t
= ∇ ⋅

(
− c

4𝜋
bΔ⊥A||

)
, (10)

1
c
𝜕

𝜕t

[(
1 − mec2

4𝜋e2Zini
Δ⊥

)
A||

]
= −∇||Φ +

c
4𝜋𝜎||

Δ⊥A|| +
∇||(𝜛Te)

e2Zini
, (11)

which includes the linear effects of shear Alfvén waves, plasma resistivity, and electron inertia. The last term on the RHS
of Equation (11) corresponds to the polarization density corrections in the electron parallel pressure term. The rest of
the hybrid system includes the ion transient, 𝜔tr,i ∼ k||VTi, and drift wave, 𝜔dr ∼ (k⊥𝜌s)Vs∕Lp, frequencies and is treated
explicitly. After performing time discretization, the IMEX approach requires solving the following linear system at the
implicit stages of an ARK time step:

𝛼∇⊥ ⋅
(

c2nimi

B2 ∇⊥Φ
)
+ c

4𝜋
∇ ⋅

(
bΔ⊥A||

)
= rΦ, (12)

1
c

[

𝛼 −
(
𝛼 + 0.51𝜏−1

e
) c2

𝜔
2
pe
Δ⊥

]

A|| + ∇||Φ −
Te

e2Zini
∇||

(
∇⊥ ⋅

(
c2nimi

B2 ∇⊥Φ
))

= rA. (13)

Here, 𝜔2
pe = 4𝜋e2Zini∕me is the electron plasma frequency, 𝛼 ∝ Δt−1 is a constant coefficient dependent on the order

of the ARK scheme and the stage number, and rΦ(R) and rA(R) are the spatial functions that include contributions from
the previous implicit and explicit stages. The linear system in Equations (12)–(13) is solved by making use of the GMRES
algorithm that approximates the solution by a vector in a Krylov subspace with minimal residual.[19] The GMRES method
does not require the assembly and storage of a sparse matrix corresponding to a spatially discretized version of the linear
system. Instead, it only involves evaluating a linear operator action on a vector, making it straightforward to implement.[16]

However, the convergence properties of the iterative GMRES solver strongly depend on preconditioning. Here, a physical
preconditioner that approximates the implicit linear system in Equations (12)–(13) is developed as follows.

First, the solution to Equation (12) is approximated as

Φ ≃ B2

𝛼c2mini

(
− c

4𝜋
∇ ⋅

(
bA||

)
+ Δ−1

⊥
rΦ
)
. (14)
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In deriving Equation (14) we made use of ∇⊥ ⋅
(

c2nimiB−2∇⊥Φ
)
≃ Δ⊥

(
c2nimiB−2Φ

)
and ∇ ⋅

(
bΔ⊥A||

)
≃

Δ⊥
(
∇ ⋅

(
bA||

))
. The former is valid in the limit where the perpendicular wavenumber of turbulence perturbations in Φ

is large compared with the background gradient of plasma density ni, i.e., k⊥ ≫ L−1
p . The latter becomes approximately

valid in the regime where the parallel wavelength of perturbations in A|| is small compared with the length scale of
background magnetic field variations, which is the case for grid-size perturbations, k|| ∼ h−1

|| determining the fastest time
scales. Finally, the same type of boundary conditions, e.g., Dirichlet or Neumann, is assumed for the Φ and A|| variables
at the perpendicular domain boundaries.

The approximation for the potential in Equation (14) is then plugged into Equation (13) to obtain the following
approximate equation for A||:

1
c

[

𝛼 −
(
𝛼 + 0.51𝜏−1

e
) c2

𝜔
2
pe
Δ⊥

]

A|| −
1
𝛼c
∇||

(
V 2

AB∇||

(A||

B

))
≃ rA − ∇||

(
B2

𝛼c2mini
Δ−1
⊥

rΦ
)
. (15)

Here, VA =
√

B2∕4𝜋nimi is the Alfvén velocity, and we neglect the high-order polarization density correction term,
i.e., the last term on the LHS of Equation (13). Equations (14)–(15) are used to precondition the solution of the implicit
linear system in Equations (12)–(13). We emphasize that the approximations made in deriving the preconditioner system
do not affect the accuracy of the GMRES solution, because preconditioning is only used to improve the efficiency of a
GMRES solver. The preconditioner system involves two 3D positive-definite, second-order elliptic operators: the negative
perpendicular Laplacian operator,−Δ⊥, and the operator corresponding to the LHS of Equation (15), which are efficiently
solved by making use of algebraic multigrid (AMG) solvers contained in the hypre linear solver library.[17] In order to use
the AMG methods, the corresponding sparse matrices need to be assembled and stored. In addition to other interfaces,
hypre provides a semi-structured interface, which is well suited for systems resulting from the multi-block discretizations
employed in COGENT. Due to the irregular stencil couplings at interblock boundaries, hypre’s BoomerAMG algebraic
multigrid solver is used.

In conclusion, it is instructive to note that a conceptually similar physical preconditioner was developed for the
BOUT++ code[20]; however, the resistive and the electron inertia terms producing radial couplings were not included.
That simplification, together with the choice of the coarse coordinate corresponding to the poloidal (instead of the
toroidal) angle enables convenient representation of the preconditioner system by a large number of independent 1D
equations for the parallel elliptic operator. The 3D multigrid solver capability utilized here can, however, facilitate a
broader range of elliptic problems that include both parallel and perpendicular coupling. This is the case for COGENT
preconditioner operators developed for the electromagnetic [see Equation (15)] and electrostatic[9] versions of the hybrid
model.

3 VERIFICATION STUDIES

In this section, we present the results of linear verification studies that test the 3D fluid/field part of the hybrid model.
For these purposes, we replace the gyrokinetic ion response in Equations (1)–(3) with a minimal cold drift-fluid model,
which only includes the E × B advection term

𝜕𝛿ni

𝜕t
+ ∇ ⋅

(
c−∇ Φ × b

B
n0

)
= 0, (16)

where n0 and 𝛿ni denote the background and perturbation ion density, respectively. Accordingly, the divergence of the
ion perpendicular current, i.e., the first term on the RHS of Equation (5), and the nonlinear Reynolds-Stress term, i.e.,
the second term on the LHS of Equation (5), are not included in the verification model.

3.1 Uniform slab test case

Consider a uniform slab geometry R = (x, y, z) with B = (0,B, 0) for which the linearized version of Equations (5)–(8)
takes the following form:
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F I G U R E 1 Linear regime of the electromagnetic drift-resistive instability for a uniform slab geometry. Shown are numerical solutions
to the linear dispersion relation for (a) electromagnetic case, (b) electrostatic case, and (c) electromagnetic case without the polarization
density correction term. Frame (d) illustrates the comparison between the linear COGENT simulations (squares and dots) and the numerical
solution to the electromagnetic dispersion relation (solid and dashed curves) for k||L|| = 0.3. Here, 𝜌s = Vs∕𝜔ci = 0.7 mm is the ion sound
gyroradius and L|| = 1.0 m is the normalization factor for the parallel length scales.

𝜕

𝜕t
𝛿𝜛 = − c

4𝜋
∇||

(
Δ⊥𝛿A||

)
, (17)

(
1 − mec2

4𝜋e2Zin0
Δ⊥

)
1
c
𝜕

𝜕t
𝛿A|| = −∇||𝛿Φ +

Te

eZin0
∇||

(
Zi𝛿ni + e−1

𝜛

)
+ c

4𝜋𝜎||
Δ⊥𝛿A||. (18)

𝛿𝜛 = ∇⊥ ⋅
(

c2n0mi

B2 ∇⊥𝛿Φ
)
, (19)

where 𝛿Φ and 𝛿A|| denote linear perturbations relative to an equilibrium solution with Φ0 = 0 and A||,0 = 0. Assuming
Lnkx ≫ 1 and kx ≪ kz, a numerical solution to the local dispersion relation corresponding to the unstable mode of the
linear system in Equations (16)–(19) is shown in Figure 1a for the parameters characteristic of the DIII-D tokamak edge
region: n0 = 2 ⋅ 1019 m−3, Te = 100 eV, B = 2 T, Ln = n0|dn0∕dx|−1 = 3cm, Zi = 1, mi = 2mp. For this choice of parame-
ters, the electrons are moderately collisional with 𝜏eVTe∕qR0 ≈ 1, where we adopt q = 3.5, R0 = 1.6 m, and VTe =

√
Te∕me.

To elucidate the electromagnetic effects, we also plot a numerical solution to the local dispersion relation in the electro-
static limit, which is obtained by neglecting the terms in the LHS of Equation (18). Comparing the results in Figure 1a,b
one can observe substantially larger values of the linear growth rate for the electromagnetic case. Finally, Figure 1c illus-
trates the electromagnetic linear dispersion for the case where the polarization density correction term, e−1

𝜛, is removed
from Equation (18). An unbounded increase in the linear growth rate in the short wavelength part of the spectra [see
Figure 1c] can cause numerical issues in COGENT simulations when the stabilizing polarization density correction is
not included.

A numerical solution to the dispersion relation for the unstable mode growth rate and frequency is compared with
the results of implicit COGENT simulations for the linear physical problem in Equations (16)–(19) [see Figure 1d]. Excel-
lent agreement between the simulations and the theory is observed. The COGENT simulations consider conducting
(grounded) boundaries in the x-direction and periodic boundary conditions in the y and z directions. The spatial domain
extent for each COGENT simulation in Figure 1d is given by Lx = 0.1 m, Ly = 2𝜋∕ky, Lz = 2𝜋∕kz, and all harmonics other
than the fundamental one are filtered out from the electrostatic, 𝛿Φ, and vector potential, 𝛿A||, distributions in the periodic
directions y and z after each solve of Equations (17)–(18). The grid resolution is given by

(
Nx,Ny,Nz

)
= (16,32,32).

3.2 Tilted-B slab test case

To test the field-aligned implementation of the electromagnetic model, we consider a plasma box with dimensions(
Lx,Ly,Lz

)
, which is periodic in the y and z directions, and a uniform magnetic field, which has a tilt relative to the y axis

B =
(
0,By,Bz

)
[see Figure 2]. This geometry approximates the case of a periodic toroidal annulus wedge with a large aspect

ratio and the annulus width much smaller than the minor radius, (r,R𝜙, r𝜃) ↔ (x, y, z). Here, 𝜃 and 𝜙 are the poloidal
and toroidal angles, respectively. The linear system in Equations (16)–(19) is solved, and a solution for an unstable mode
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F I G U R E 2 COGENT simulations of the electromagnetic drift-resistive instability for a tilted-B slab geometry. Left panel illustrates the
schematic of a locally field-aligned discretization approach. Simulations are performed within the tilted slab computational domain shown in
blue, where the periodical boundary conditions are applied both in vertical (poloidal) and horizontal (toroidal) directions. Note that the
results of these simulations are equivalent to those performed within the computational domain shown with the dashed lines. The
periodicity in the vertical direction yields equal values in the ghost cell (j,−1) and the valid cell

(
j,Nz

)
. Obtaining the value in the ghost cell(

Ny + 1, k
)

requires interpolation from the three valid cells (0, km − 1), (0, km), and (0, km + 1), where the km index is determined from the
horizontal periodicity condition. The table in the right panel shows the results of the COGENT convergence studies. The last column
corresponds to the difference between the normalized growth rate value for Nz = 8192 and the corresponding lower resolution values.
Slightly better than second-order convergence is observed. Grid resolution in the x and y is maintained fixed at Nx = 16 and Ny = 4.

can be readily obtained from the results described in Section 3.1 [see Figure 1] by making use of the following geometric
relations:

k|| =
2𝜋n
Ly

By

B
+ 2𝜋m

Lz

Bz

B
, (20)

k⊥ =
2𝜋n
Ly

Bz

B
− 2𝜋m

Lz

By

B
, (21)

where, B =
√

B2
y + B2

z and (n,m) are integer numbers defining the mode wavelength in the (y, z) directions that is sup-
ported by the domain periodicity. Tokamak drift microturbulence is characterized by strong anisotropy, where k|| is
much smaller than k⊥. Therefore, to facilitate numerical simulations, a locally field-aligned coordinate system is used in
COGENT.[9]

For the case of a tilted slab geometry this approach is illustrated in Figure 2a. Because the toroidal cell faces at the
toroidal boundaries do not conform, imposing the periodicity condition necessitates interpolation in the finely gridded
poloidal direction. It is instructive to note that for the case of a slab geometry, the COGENT approach is similar to the flux
coordinate independent (FCI) discretization proposed in Reference [21] and used, for instance, in Reference.[8] However,
for the case of an X-point geometry, the COGENT approach retains the magnetic flux surfaces as a radial coordinate to
minimize possible numerical pollution error.[9] This is in contrast to the FCI approach, where the standard cylindrical
or Cartesian coordinate systems are employed in the poloidal plane. For all simulations discussed below, we use a single
toroidal block with re-mapping/interpolation included only at domain boundaries. This is justified for the case where the
size of the toroidal domain is small and the grid distortions due magnetic shear are tolerable. In order to mitigate the effects
of magnetic shear, COGENT adopts a multi-block discretization in the toroidal direction. Field-aligned mappings are
defined in the same way in each toroidal block and re-mapping occurs at toroidal block interfaces. More details regarding
the COGENT discretization scheme can be found in Reference.[9]

The results of COGENT simulations are shown in Figure 2b. The same plasma parameters as those described in
Section 3.1 are used, the magnetic field correspond to By = 2 T, Bz = 0.2 T, and the domain dimensions are given by
Lx = 0.1m, Lz = 0.52 m and Ly = 2.63 m. Initial perturbation is given by a mode with (m,n) = (113,−57), which corre-
sponds to k⊥𝜌s = 1.0 and k||L|| = 0.36 and a nearly maximum growth rate of 𝛾(113,−57) = 0.259Vs∕Ln. Here, 𝜌s = Vs∕𝜔ci = 0.7
mm is the ion sound gyroradius and L|| = 1.0 m is the normalization factor. In the x-direction half of the sine wave is used
to satisfy zero Dirichlet boundary conditions. No harmonic filtering is performed, and it is instructive to note that these
simulations can also support nearby modes with close values of the growth rate, for instance, 𝛾(115,−58) = 0.254Vs∕Ln and
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𝛾(111,−56) = 0.263Vs∕Ln. Accordingly, it was observed (in separately carried out test studies) that an arbitrary initial per-
turbation can result in a multimode structure with beating patterns where multiple eigenmodes with close growth rates
are simultaneously amplified. In the present simulations, the initial perturbation with a single harmonic pattern in the
y and z directions is observed to maintain its structure and to exhibit a growth consistent with the analytical predictions
[see Figure 2].

The parallel wavelength for the simulated unstable mode 𝜆|| = 17.45 m is much larger than the parallel extent of the
simulation domain L|| =

√
L2

y + L2
z = 2.68 m. Therefore, only a small fraction, L||∕𝜆|| ∼ 0.15, of a parallel harmonic is con-

tained within the simulation box, and it can therefore be well resolved with a minimal number of cells in the field-aligned
direction. Here, four parallel cells are used, which effectively corresponds to 4∕0.15 ≈ 27 cells for a full harmonic. This
test case is conceptually similar to the case of tokamak microturbulence modeling, where a small toroidal wedge simula-
tion with Δ𝜙 ≪ 2𝜋 can provide good description of microturbulence characterized by large toroidal harmonic numbers
with nΔ𝜙 ≪ 2𝜋.[7] Accordingly, only a small fraction of a typical parallel wavelength, ∼1∕qR, will be contained within
the wedge.

At the same time, it is important to note that optimal grid resolution in the fine (perpendicular) and coarse (parallel)
directions are related to each other for discretization schemes that involve interpolations for computing parallel deriva-
tives. For the case illustrated in Figure 2a, the truncation error in parallel derivatives at the toroidal boundaries is given by

Err
(∇||Φ

Φ

)
∼ max

{

O

((
h||∕𝜆||

)p1

𝜆||

)

,O
(
(hz∕Lz)p2

h||

)}

. (22)

Here, hz and h|| is the cell-size in the z (poloidal) and parallel directions, respectively, p1 is the order of the discretization
scheme in the domain interior, and p2 is the order of the interpolation in the z-direction. For the present studies, p1 =
2 and p2 = 3 are used. Due to the presence of interpolation, the total truncation error [in Equation (22)] can increase
unboundedly if the parallel cell-size, h||, decreases while the poloidal cell-size, hz, is maintained fixed. The convergence
properties in the z-direction are illustrated in Figure 2c. Second-order convergence is observed, and it is interesting to
note that even 1024∕113 ≈ 9 cells per poloidal harmonic are sufficient to recover the growth rate within 10%.

3.3 IMEX verification

The efficiency of the IMEX approach [see Section 2.2] is demonstrated by considering a resistive ballooning instability
(RBI) test case in a toroidal annulus geometry. For these studies, we omit drift-wave effects [the second term on the RHS
of Equation (18)], and only retain the ballooning drive, such that Equations (17)–(18) take the following form:

𝜕

𝜕t
𝛿𝜛 = ∇ ⋅

[
cZi𝛿niTe

B

(
∇ × b + b × ∇B

B

)]
− c

4𝜋
∇ ⋅

(
bΔ⊥𝛿A||

)
, (23)

(
1 − mec2

4𝜋e2Zin0
Δ⊥

)
1
c
𝜕

𝜕t
𝛿A|| = −∇||𝛿Φ +

c
4𝜋𝜎||

Δ⊥𝛿A||. (24)

A COGENT n solution to the linear system in Equations (16), (19), (23)–(24) is shown in Figure 3 for the following
illustrative parameters: Te = 400 eV, mi = mp, Zi = 1, I = RB𝜙 = −3.5 Tm, R0 = 1.6 m, n0 ∼ 1020m−3, q ∼ 4, Ln ∼ 3 cm.
An artificially increased uniform value of the electron collisionality corresponding to 𝜏eVTe∕

(
qR0

)
= 0.075 is adopted for

the plasma conductivity. Detailed profiles of the initial plasma density, n0, and magnetic safety factor, q, are shown in
Figure 3a. The magnetic geometry, field-aligned coordinate system, and the COGENT spatial discretization are described
in detail in References.[9,13] A toroidally periodic wedge, Δ𝜙 = 𝜋∕10, is considered and the grid resolution is given
by

(
Nr,N𝜙,N𝜃

)
= (64, 8, 1024). The characteristic time scales for the Alfvén waves and the ideal ballooning instability

correspond to 𝜔−1
A ∼ qR0∕VA ∼ 1.3 μs and 𝛾−1

bal ∼
√

LnR0∕
√

2Vs ∼ 0.9 μs, respectively.
Figure 3c shows the simulation results obtained by making use of a second-order IMEX time integration[22] with

Δtimp = 0.5 μs and the fourth-order explicit Runge–Kutta scheme with Δtexp = 10 ns. The explicit time step is close to
the CFL-limited value for stable time integration. Increasing Δtexp by 25% causes the simulation to become unstable.
Excellent agreement between the explicit and implicit results is observed during the development of the dominant mode,
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F I G U R E 3 COGENT simulations of the resistive ballooning instability showing (a) background profiles for the density and magnetic
safety factor, (b) mode structure at t = 20.4 μs, and (c) time history of the potential perturbations at the outer midplane for the explicit (blue)
and implicit (orange) time integration schemes.

with the inverse growth rate 𝛾−1
RBI = 1.9 μs. During the initial transient stage, the presence of the fast Alfvén waves with

a small energy content leads to the degraded accuracy of the implicit methods that do not resolve the Alfvén time scale.
As described in Section 2.2, the IMEX approach involves solving the linear system in Equations (12)–(13) by making use
of the GMRES algorithm. It is observed that an unpreconditioned GMRES solver fails to converge, while the use of the
preconditioner in Equations (14)–(15) reduces the GMRES solver residual by the six orders of magnitude in approximately
10 iterations. The COGENT simulations are performed on 128 CPU cores of the NERSC Perlmutter cluster and it takes
about 5.5 and 1.2 s of wall clock time per step for the IMEX and explicit time integration schemes, respectively. As a result,
the IMEX approach speeds up simulations of a given time period by a factor of 11.

4 HYBRID SIMULATION RESULTS

Illustrative nonlinear simulations of the resistive-drift ballooning turbulence are performed with the locally field-aligned
IMEX electromagnetic hybrid model [in Equations (1)–(9)] for the case of the toroidal annulus geometry specified in
Section 3.3. For simplicity purposes and to further enhance the turbulence, possible mitigating factors such as ion-ion col-
lisions and Reynolds-stress term are not included in the present studies. A collocated cell-centered discretization, which
is used for both the electrostatic potentialΦ and parallel vector potential A||, is prone to the so-called odd-even numerical
Nyquist instability, which is controlled in the present studies by adding a small numerical parallel hyperviscosity term.
To further stabilize the simulations, we add small perpendicular hyperviscosity in the entire domain and additionally
suppress turbulence perturbations at the inner core boundary.

The phase-space advection operator in the ion gyrokinetic equation [Equation (1)] requires specification of inflow
fluxes at the phase-space boundaries. In the present work, inflow fluxes are generated by a Maxwellian distribution located
at a domain boundary and characterized by the initial values for ion density, n0(r), temperature T0(r), and parallel velocity,
V0(r). Boundary conditions for the electrostatic potential Φ include a zero Dirichlet boundary condition on the outer
radial boundary and the following “consistency” condition at the inner radial boundary:

⟨
c2nimi

B2 |∇𝜓|2
⟩
𝜕Φ
𝜕𝜓

=
∫

t

0
dt
⟨
∇𝜓 ⋅ ji

⟩
. (25)

Here, ji = (2𝜋Zie∕mi) ∫ ṘfiB∗||dv||d𝜇 is the ion gyrocenter current density and ⟨𝜒⟩ is the flux-surface average defined
as the volume average of 𝜒 between two neighboring flux surfaces, 𝜓 and 𝜓 + d𝜓 . The boundary condition for the vector
potential variable A|| corresponds to a zero Dirichlet BC at the outer radial boundary and a zero Neumann BC at the inner
radial boundary.

The initial distribution for a deuterium ion plasma (Zi = 1, mi = 2mp) corresponds to a local unshifted, V0 = 0,
Maxwellian distribution with a uniform ion temperature, T0 = 400 eV, and the background density profile, n0, shown
in Figure 4a. Small-level perturbations, 𝛿n ∼ 1.0 × 10−4 cos(96𝜃 − 32𝜙), are introduced in the initial density distribution.
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F I G U R E 4 COGENT simulations of the resistive-drift ballooning turbulence with the electromagnetic hybrid model. Frame (a) shows
the initial profiles for the ion density and the electrostatic potential. Frame (b) shows the time history for the mapped-space volume average
of the squared non-zonal component of electrostatic potential variations,

⟨
(Φ∕eTe − ⟨Φ∕eTe⟩)2

⟩
vol. Here, ⟨𝜒⟩vol = N−1 ∑

𝜒i,j,k corresponds to
a sum over the spatial indices (i, j, k) divided by the total number of spatial cells, N. Frames (c) and (d) show the non-zonal component of
electrostatic potential variations corresponding to the linear and nonlinear stages, respectively.

The electron temperature is taken as uniform with Te = 400 eV and an artificially increased uniform value of the electron
collisionality corresponding to 𝜏eVTe∕

(
qR0

)
= 0.5 is adopted for the plasma conductivity. To minimize initial transient

perturbations, the electrostatic potential is initialized with the Boltzmann equilibrium profile, Φ0 = −(T0∕e) ln(n0∕C),
where the constant C is determined from a zero Dirichlet boundary condition at the outer radial boundary. The parallel
vector potential is initialized as A||,0 = 0. Finally, we subtract the initial value of the RHS in Equation (5) from itself to
force Φ = Φ0(r) and A|| = 0 as an equilibrium solution to Equation (5) and Equation (8) in the absence of perturbations
and the polarization density correction.

Results of the illustrative COGENT simulations including the linear and nonlinear stages are shown in Figure 4. A
periodic toroidal wedge with Δ𝜙 = 2𝜋∕8 is considered and a single toroidal block is used. The grid resolution is specified
by

(
Nr,N𝜙,N𝜃,Nv||,N𝜇

)
= (64, 4, 2048, 32, 24), and the velocity space extent is given by −4.9

√
T0∕mi ≤ v|| ≤ 4.9

√
T0∕mi

and 0 ≤ 𝜇 ≤ 10.9T0R0∕|I|. The stable time step is set by the Courant constraint for the ion advection in the radial direction.
During the initial stage, when the radial advection velocity is dominated by the magnetic drifts, the time step corresponds
toΔt ≈ 0.16 μs. In the nonlinear stage, the radial advection velocity is apparently dominated by the E × B velocity, and the
stable time step drops toΔt ≈ 0.08 μs. The simulations are performed on 1024 CPU cores of the NERSC Perlmutter cluster,
and it takes about 25 s of wall clock time per step for the IMEX time integration. About 10 iterations are required to reduce
the GMRES solver residual by six orders of magnitude. Recall that the preconditioner operator neglects the polarization
density corrections [the last term on the RHS of Equation (11)] in addition to other approximations as discussed in detail
in Section 2.2. The IMEX approach requires only about 20% more wall clock time per step as compared with the fully
explicit (RK4) approach, for which a stable time step is found to be about six times smaller during the linear stage. Note
that for more realistic plasma parameters involving stronger density variations between the core and the edge region, the
explicit time step limitations arising from the fast Alfvén wave propagation in a low-density region would be substantially
more severe. Also, the IMEX time step limitation imposed by the ion advection can be relaxed by making use of our
recently developed implicit scheme that can handle an advection operator.[10] This can further improve the performance
of COGENT hybrid electromagnetic simulations.

5 CONCLUSIONS

An electromagnetic gyrokinetic ion-fluid electron hybrid model is developed and implemented in the COGENT code. The
model involves the long-wavelength limit of the 5D full-F ion gyrokinetic equation coupled to the 3D vorticity and Ohm’s
law equations for the electrostatic and electromagnetic potentials and to an isothermal fluid response for the electron
species. To step over the fast shear Alfvén wave time scale, an implicit-explicit (IMEX) time integration combined with
the physics-based preconditioning is used. The preconditioner (PC) captures linear Alfvén wave dynamics and includes
the effects of the plasma resistivity and electron inertia. The PC implementation requires solving a set of 3D elliptic
equations, which is facilitated by making use of multigrid methods. Since the fast time scales are confined within the
low-dimensional 3D fluid/field part of the hybrid system, only a modest computational overhead is anticipated from using
the IMEX approach.
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The fluid/field part of the hybrid system is verified in 3D slab fluid simulations of the drift-resistive instability,
performed for both Cartesian and field-aligned grid systems. The performance of the IMEX approach, coupled with
physics-based preconditioning, is then investigated in 3D toroidal fluid simulations of the resistive ballooning mode. A
stiff case with an implicit-to-explicit time step ratio of 50 is considered, demonstrating an 11x runtime speed- up. Finally,
the 5D/3D hybrid model is applied to toroidal simulations of resistive-drift ballooning turbulence. Only a modest increase
in computational cost per time step is observed between the IMEX and a fully explicit method (RK4), whereas the IMEX
approach enables a significantly larger stable time step.
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