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Abstract
Geodesic acoustic modes (GAMs) are an important phenomenon in a tokamak edge plasma. They regulate turbulence
in a low confinement (L-mode) regime and can play an important role in the low to high (L–H) mode transition. It is
therefore of considerable importance to develop a detailed theoretical understanding of their dynamics and relaxation
processes. The present work reports on the numerical modelling of collisionless GAM relaxation, including the
effects of a strong radial electric field characteristic of a tokamak pedestal in a high confinement (H-mode) regime.
The simulations demonstrate that the presence of a strong radial electric field enhances the GAM decay rate, and
heuristic arguments elucidating this finding are provided. The numerical modelling is performed by making use of
the continuum gyrokinetic code COGENT.

(Some figures may appear in colour only in the online journal)

1. Introduction

Geodesic acoustic modes (GAMs) are toroidally symmetric
electrostatic wave oscillations [1]. Driven by turbulence,
GAMs are universally observed in the edge of a tokamak
under L-mode conditions [2–6]. They can also be excited
by energetic particles, either externally injected (e.g.,
neutral beam injection [7]), or produced as the result of
collective instabilities (e.g., tearing mode reconnection [8]).
Furthermore, it has been recently proposed to employ external
magnetic fields to drive GAMs either for diagnostic purposes,
or to modify the turbulent transport in case a sufficiently large
amplitude is achievable [9, 10]. It is therefore increasingly
important to develop a detailed theoretical understanding of
GAM dynamics and relaxation processes.

The original analysis of GAMs was performed by making
use of an ideal electrostatic hydromagnetic model, and a non-
decaying normal mode with a real frequency of ωGAM ∼ VT/R

was found [1]. Here, VT is the ion thermal velocity, R is
the tokamak major radius, and an order of unity electron to
ion temperature ratio, Te/Ti ∼ 1, is assumed for simplicity.
Taking kinetic effects into account yields the collisionless
(Landau-like) mode relaxation that occurs as a result of wave-
particle interactions between GAMs and the resonant passing
ions [11–13]. For the case where ion finite-orbit-width (FOW)
effects are neglected, the collisionless relaxation is mediated
by a small subset of high-energy particles whose velocities
satisfy |v‖|/qR ∼ ωGAM, or, equivalently v‖ ∼ qVT. Here, v‖
is an ion’s parallel velocity, and q is the magnetic safety factor.

Assuming a Maxwellian distribution for the background
plasma equilibrium, it follows that the GAM relaxation rate,
γGAM, rapidly decays with q as γGAM ∝ exp(−q2). The effects
of ion FOW were first considered by Sugama and Watanabe
[12], and a substantial enhancement of the collisionless GAM
decay rate was demonstrated. However, the analysis in
[12] included only the lowest-order ion FOW effects, while
higher-order FOW corrections become increasingly important
for large q values. A comprehensive asymptotic analysis
taking into account arbitrary-order FOW effects, and therefore
accurately describing GAM decay rate, including the case of
q � 1, was formulated by Gao et al in [13].

It is important to note that the theoretical studies of
collisionless GAM relaxation summarized above neglect the
effects of an equilibrium radial electric field. While this
assumption can be adequate for the L-mode regime, a strong
radial electric field is present in the steep edge (pedestal)
of a tokamak under H-mode conditions. Assuming that
the characteristic length scale for variations of the plasma
density is of order Ln ∼ ρθ , the poloidal ion gyroradius, it
follows that a strong radial electric field of Er ∼ VTBθ/c

is required to sustain pedestal equilibrium [14]. Here, Bθ

is the poloidal component of the magnetic field, c is the
speed of light, and a subsonic pedestal is assumed. A
radial electric field of this magnitude makes the E × B drift
comparable to the poloidal projection of a particle’s parallel
velocity [14]. Therefore, the resonance condition for the
interaction between GAMs and passing ions, and thus the
GAM decay rate, can be modified in the steep H-mode pedestal

0029-5515/13/063015+10$33.00 1 © 2013 IAEA, Vienna Printed in the UK & the USA

http://dx.doi.org/10.1088/0029-5515/53/6/063015
http://stacks.iop.org/NF/53/063015


Nucl. Fusion 53 (2013) 063015 M.A. Dorf et al

as compared to its L-mode counterpart. The present work
reports on the numerical modelling of the collisionless GAM
relaxation including the effects of a strong radial electric field,
characteristic of a tokamak pedestal in a high confinement
(H-mode) regime. The modelling is performed by making
use of our recently developed full-f continuum gyrokinetic
code COGENT [15, 16]. The simulations demonstrate that the
presence of a strong radial electric field enhances the GAM
decay rate, and heuristic arguments describing this finding
are provided. We emphasize that the present analysis is also
of considerable practical importance. In particular, it can
provide insights into the use of external magnetic fields for
GAM excitation in the H-mode pedestal. Also, as mentioned
earlier, GAMs are intrinsically present in the edge of the
tokamak, where they regulate the turbulent transport preceding
the L–H transition. It is therefore of significant interest to
assess evolution of the GAM relaxation rate as a steep H-
mode pedestal forms, and the associated radial electric field
increases.

The present paper is organized as follows: the theoretical
background is summarized in section 2. Section 3 presents
an independent derivation of the collisionless GAM relaxation
rate for the case of a uniform background equilibrium, based on
the formalism developed by Gao et al [13, 17]. The analytical
results of section 3 are used to verify the COGENT code,
and the results of the verification studies are summarized in
section 4. Finally, section 5 discusses the GAM decay in the
presence of a strong radial electric field, characteristic of a
tokamak pedestal under H-mode conditions.

2. Theoretical model

Here, we summarize the theoretical model used to describe
the collisionless relaxation of GAMs, excited about a uniform
background equilibrium, i.e., uniform density and temperature
profiles and a zero equilibrium electric field [12, 13]. For
simplicity, we assume a magnetic geometry with concentric
circular flux surfaces yielding

Bϕ(r, θ) = B0/(1 + ε cos θ), (1a)

Bθ(r, θ) = ε

q

B0

(1 + ε cos θ)
, (1b)

where Bϕ and Bθ are the toroidal and poloidal components
of the magnetic field, B = b · B with b denoting the unit
vector along the field, r and θ are the minor radius and the
poloidal angle, and ε = r/R is the inverse aspect ratio. In
order to find a linear GAM dispersion relation, we consider
small axisymmetric perturbations of the electrostatic potential
δϕ = ϕ̂(θ) exp[ik⊥r − iωt] + c.c. with eδϕ/Ti � 1 and the
ion distribution function δF (r, θ, w, µ) = (−ZieFMϕ̂/Ti +
J0(k⊥ρi)ĥ) exp[ik⊥r − iωt] + c.c.. Here, ĥ describes the
non-adiabatic part of the ion response, k⊥ and ω are the
perpendicular (to the magnetic flux surface) wave vector
and frequency of the GAM excitation, w = miv2/2 and
µ are a particle’s energy and magnetic moment, mi, Zi,
and e denote the ion mass, charge state, and the elementary
charge, respectively, FM corresponds to a uniform Maxwellian
distribution, ρi = v⊥/ωci is the ion gyroradius with v⊥
denoting the perpendicular (to the magnetic field) component

of a particle’s velocity, �i = ZieB/mic is the ion cyclotron
frequency, and Jn(x) denotes the Bessel function of order n.
Making use of the linearized gyrokinetic equation written in
(r, θ, w, µ) variables [18] it is straightforward to obtain [13](

ω − ωd sin θ + iωt
∂

∂θ

)
ĥ = ZieF0

Ti
ωJ0(k⊥ρ)ϕ̂, (2)

where ωt = v‖/qR is the ion transit frequency, v‖ =√
(2/mi)[w − µB(r, θ)] is the particle parallel velocity, and

ωd = k⊥vd is the ‘drift’ frequency corresponding to ωd =
k⊥(2v2

‖ + v2
⊥)/(2�iR) for the case of small inverse aspect ratio,

i.e., ε � 1. Note that v‖ contains an explicit poloidal-angle
dependence associated with the magnetic mirror force that
leads to the presence of banana trajectories in equation (2).
However, for the case where the bounce frequency of the
banana particles, ωB ∼ √

εVT/qR, is much less that the GAM
frequency, only passing particles can efficiently interact with
the GAM perturbations [12, 13]. Therefore, assuming ε � 1,
we can neglect the effects of the magnetic mirror force, or,
equivalently, we can now consider (r, θ, v‖, v⊥) as independent
variables in equation (2).

To determine the self-consistent evolution of the
electrostatic potential perturbation, the gyrokinetic equation
(equation (2)) is coupled to the quasi-neutrality condition

n0e

Te
(ϕ̂ − 〈ϕ̂〉) = −Zi

Ti

∫
d3v

(
ZiF0ϕ̂ − Ti

e
J0ĥ

)
, (3)

where a linearized adiabatic response is used for electrons, and
the uniform equilibrium electron density is specified by n0e =
Zin0i. Here, n0i is the equilibrium ion density. Equations (2)
and (3) constitute a liner system describing the dispersion
properties of the GAM excitations.

3. Dispersion relation: asymptotic analysis

Following the general approach outlined by Gao et al [13,
17], the asymptotic dispersion relation for the case of long
wavelength GAM excitations with k⊥ρi � 1 is independently
derived here in order to have explicit expressions for
arbitrary electron to ion temperature ratio. We emphasize
that along with its physical significance, such an analytical
model is of great practical importance for gyrokinetic code
verification studies. Representing the electrostatic potential
perturbation as ϕ̂(θ) = ∑∞

l=−∞ ϕl exp(ilθ), and making
use of exp(ix cos θ) = ∑∞

n=−∞ inJn(x) exp(inθ), after some
straightforward algebra it can be shown that the solution to
equations (1a) and (1b) is given by [13]

ĥ = ZieF0

Ti
J0(k⊥ρi)

[ ∞∑
m,n,l=−∞

ϕli
m−nei(m−n+l)θ Jm

(
ωd

ωt

)

×Jn

(
ωd

ωt

)
ω

ω + (n − l)ωt

]
. (4)

It is instructive to note the poles at ω + (n − l)ωt = 0, or,
equivalently,

vres
‖ = −qRω/(n − l) (5)

corresponding to the resonant interactions between passing
ions and collective wave-excitations. For the case of GAM
excitations with ω = ωGAM ∼ VT/R it readily follows that

2
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v|| =- /(n-l)

Im(v||)

Re(v||)

n-l<0 
Im(v||)

Re(v||)

n-l>0 

v|| =- /(n-l)

CL CL

(a) (b)

Figure 1. Integration contours used for evaluation of the integrals in
equation (6). Frames (a) and (b) show Landau contours CL

corresponding to n < l and n > l, respectively.

vres
‖ = −qVT/(n − l). Further, note that the coupling between

poloidal harmonics, and therefore the presence of high-order
harmonics in equation (4), is provided by the term (ωd sin θ)ĥ

(in equation (2)) describing the width of the ion drift orbit. For
the case of the long-wavelength excitations, k⊥ρi � 1, this
term is small and the spectrum of poloidal harmonics is rapidly
decaying. On the other hand, for large q values, the particles
that interact resonantly (in equation (5)) with low-order
poloidal harmonics, i.e., n ∼ l ∼ 1, are in the high-energy
tail of a Maxwellian distribution and so result in exponentially
weak GAM relaxation. It is therefore increasingly important
to retain higher-order poloidal harmonics as the value of q

increases. The present analysis derives the asymptotic GAM
dispersion relation for an arbitrary number, N , of poloidal
harmonics retained.

Combining equations (3) and (4), one obtains a linear
system of equations for the poloidal harmonics of the
electrostatic potential perturbation[

1 +
Ti

ZiTe
(1 − δL,0)

]
ϕL =

∫
CL

d3ve−v2

π3/2
J 2

0 (kv⊥)

×
∞∑

n,l=−∞
ϕli

−l+LJn(x)Jn−l+L(x)
ξ

ξ + (n − l)v‖
. (6)

Here, δL,0 is the Kronecker delta (δn,m = 1 when n = m,
and 0, otherwise) and the following normalizing variables
have been introduced: ξ = qRω/VT, VT = √

2Ti/mi,
x = kq(2v2

‖ + v2
⊥)/2v‖, v = v/VT, v‖ = v‖/VT, v⊥ =

v⊥/VT, k = k⊥ρ̄i, where ρ̄i = VT/�i is the thermal ion
gyroradius. Note that in order to properly account for the
resonant interaction between GAMs and passing ions (see
equation (5)), the integration over v||-space should be carried
out along the Landau contour, CL, as illustrated in figure 1. The
GAM dispersion relation is specified by a zero determinant
of the linear system in equation (6). Assuming that only N

poloidal harmonics are retained in equation (6), i.e.,

− N � L � N, −N � l � N, (7)

we now proceed with evaluation of the matrix coefficient in
equation (6).

We begin the asymptotic analysis by introducing a small
parameter, k = k⊥ρ̄i � 1, corresponding to long-wavelength
GAM excitations. Excluding, for present purposes, a region
of v|| close to zero, we have x � 1, and thus Jn(x) ∼ x|n|.
It now follows from equation (6) for L �= 0 that ϕL =
k|L|ϕ0[O(1) + O(k) + O(k2) + · · ·], demonstrating the rapid
decay in the poloidal spectrum of the electrostatic potential
perturbation. Note that retaining only N harmonics of the
poloidal spectrum is equivalent to considering a block of 2N+1

equations in system (6). The dispersion relation, can then be
obtained, for instance, by substituting allϕL’s with |L| > 0 into
the equation for the zero harmonic, i.e., equation (6) for L = 0.
Since the terms in the right-hand side (rhs) of equation (6) for
L = 0 are the order of ∼k|n|+|n−l|ϕl ∼ k|l|ϕl , it follows that the
N th harmonic will bring a term of order ∼k2N , and hence all
other terms (in equation (6) for L = 0) have to be evaluated to
the same accuracy. This, however, requires only O(k2N−|L|)
accuracy in the evaluation of ϕL harmonic, and therefore we
only need to retain the (n, l) terms in the sums in equation (6),
where n, l satisfy

|l| + |n| + |n − l + l| � 2N − |L|. (8)

We now need to evaluate the rhs of equation (6),
where the summation indices (n, l) are constrained by
equations (7) and (8). To separate the pole contributions,
it is convenient to represent the integrals in equation (6)
as

∫
CL

{. . .}d3v = ∫ ∞
−∞ dv‖

∫ ∞
0 2πv⊥ dv⊥{. . .} + A

l,L
1 , where

{. . . } denotes the integrand in the rhs of equation (6), and
the integration in v|| is now carried out along the real v||-axis.
The pole contributions, AL

1 = ∑N
l=−N A

l,L
1 ϕl , are determined

from

A
l,L
1 = −2πi

∫ ∞

0
2v⊥dv⊥J 2

0 (kv⊥)

×
∑

n

[1 − δn,l]ϕli
−l+LJn(x

∗)Jn−l+L(x∗)
ξe−(ξ/(n−l))2

|n − l|√π
,

(9)

where

x∗ = kq
2[ξ/(n − l)]2 + v2

⊥
−2ξ/(n − l)

,

and the multiplier [1 − δn,l] is used to represent a zero pole
contribution for the case where n = l corresponding to the
integrand {. . . } being a regular function. The matrix elements
A

l,L
1 (in equation (9)) are assumed to be zero for the case where

equation (8) does not have a solution for given values of L and
l. In order to make analytical progress in evaluation of the
integrals in equation (6), we now need to utilize the polynomial
expansion of the Bessel functions by making use of a small
parameter x ∼ k � 1. However, that expansion, if performed
directly inside {. . . }, introduces terms proportional to (1/v||)p,
where 2N − |L| − |l| � p � 0, and causes divergence of the
integrals. This difficulty can be circumvented by making use
of the following identity

1

1 + (n − l)v||/ξ
≡

2N−|L|−|l|−1∑
K=0

(−1)K
[
(n − l)v‖

ξ

]K

+ (−1)−|L|−|l|
[
(n − l)v‖

ξ

]2N−|L|−|l|
ξ

ξ + (n − l)v‖
. (10)

It is now straightforward to show that the rhs of equation (6)
can be represented by A

l,L
1 + A

l,L
2 + A

l,L
3 , where AL

2,3 =∑N
l=−N A

l,L
2,3ϕl , and

A
l,L
2 =

∫
d3ve−v2

π3/2
J 2

0 (kv⊥)
∑

n

(−1)−|l|−|L|i−l+LJn(x)

× Jn−l+L(x)

[
(n − l)v‖

ξ

]2N−|L|−|l|
ξ

ξ + (n − l)v‖
,

(11)

3
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Figure 2. Illustrative numerical solution to equation (13) for the
collisionless GAM relaxation rate, γGAM, corresponding to
k = k⊥ρ̄i = 0.1375 for the cases of (a) τ = 0.1, and (b) τ = 1. The
number of poloidal harmonics retained in the asymptotic analysis
corresponds to N = 1 (dashed red curves), N = 2 (dotted–dashed
blue curves), N = 3 (solid green curves).

A
l,L
3 =

∫
d3ve−v2

π3/2
J 2

0 (kv⊥)
∑

n

2N−|L|−|l|−1∑
K=0

(−1)Ki−l+LJn(x)

× Jn−l+L(x)

[
(n − l)v||

ξ

]K

, (12)

where the integrals in equations (11) and (12) are taken along
the real v||-axis. The polynomial expansion of the Bessel
functions can now be used for evaluating the A

l,L
2 matrix

elements that involve the resonant term. At the same time, the
normalized frequency, ξ , can be pulled out of the integrals in
equation (12), and the A

l,L
3 elements can be directly evaluated

without resorting to the Bessel function expansion. The
asymptotic dispersion relation accurate through order k2N is
now given by

Det[Al,L(ξ)] = 0, (13)

where Al,L = A
l,L
1 + A

l,L
2 + A

l,L
3 − δl,L[1 + τ−1(1 − δL,0)],

and τ = ZiTe/Ti. The evaluation of A
l,L
1 , A

l,L
2 , and A

l,L
3

matrix elements and the practical formulation of the dispersion
equation allowing for a straightforward numerical solution is
provided in appendices A–D. In particular, it is noted that the
sum over a limited number of n terms in equation (12) cannot
provide sufficient accuracy. The n-index region is extended
to include n ∈ [−∞, ∞] and the corresponding method for
evaluation of A

l,L
3 is provided. Illustrative numerical solutions

to equation (13) for the GAM decay rate are shown in figure 2.
It is evident that retaining higher-order poloidal harmonics

becomes increasingly important as the value of q increases. In
contrast, the numerical solutions for the GAM real frequency
demonstrate a weak sensitivity on the number, N , of the
poloidal harmonics retained. The latter is consistent with the
fact that the collective GAM oscillation is a fluid phenomenon
provided by the bulk of the ion distribution function and so is
insensitive to the details of the resonant interactions between
GAMs and the passing ions.

Finally, we note that an analytical solution to
equation (13), ω = ωGAM − iγGAM for the GAM frequency
ωGAM, and decay rate γGAM, can be obtained in the limit of
q � 1 for the case where only the first poloidal harmonic is
retained, i.e., N = 1, and is given by [13]

ω2
GAM,N=1 =

(
7

4
+ τ

)
V 2

T

R2

[
1 +

46 + 32τ + 8τ 2

(7 + 4τ)2q2

]
, (14)

γGAM,N=1 =
√

π

2

VT

R

(Rω/VT)6

7/4 + τ
q5 exp

[
−

(
qωR

VT

)2
]

. (15)

4. Simulation model

The dynamics of GAM excitations is studied by making
use of our recently developed continuum gyrokinetic code
COGENT [16–17]. The code is distinguished by the use
of a fourth-order finite-volume (conservative) discretization
combined with arbitrary mapped multiblock grid technology
(nearly field aligned on blocks) to handle the complexity
of divertor geometry with high accuracy. COGENT also
includes a number of options for collision models. The present
results have been obtained with the 4D (two configuration
space coordinates plus two velocity space coordinates) annular
closed-flux-surface version of the code (see equations (1a)
and (1b)) that solves axisymmetric electrostatic multi-species
gyrokinetic Boltzman–Poisson equations for the gyrocenter
distribution functions fα(Rα, v‖, µ, t) and the gyroaveraged
electrostatic potential �(Rα, t). Here, Rα(r, θ) is the
gyrocenter position coordinate, v‖ is the parallel velocity, µ is
the magnetic moment, and the corresponding kinetic equation
is given by

∂fα

∂t
+

dRα

dt
∇fα +

dv‖α
dt

∂fα

∂v‖
= Cα[fα], (16)

where

dRα/dt = Vα,gc = v‖b + Vα,dr, (17)

dv‖α/dt = (−1/v‖αmα)Vα,gc · (Zα∇� + µ∇B), (18)

Vα,dr is the magnetic drift velocity composed of the E×B drift,
curvature drift, and ∇B drift, B = Bb is the magnetic field
with b denoting the unit vector along the field, and Cα[fα] is
the collision operator. Several model collision operators have
been implemented and tested in COGENT [16, 19]. These
include a model parallel drag–diffusion collision operator,
the Lorentz operator, and a model linearized Fokker–Planck
collision operator in the form proposed by Abel et al in [19].

The present version of the code utilizes a long wavelength
approximation, k⊥ρ̄α � 1, to represent the gyro-Poisson

4
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equation for the electrostatic potential variations in the form,

�2� = 4πe

(
ne −

∑
α

Zαnα,gc

)

− 4πe2
∑

α

Z2
α

mα�2
α

∇⊥ · (nα,gc∇⊥�). (19)

Here, ρ̄α = VTα/�α is the particle thermal gyroradius, �α =
ZαeB/(mαc) is the cyclotron frequency, k−1

⊥ represents the
characteristic length scale for variations of the electrostatic
potential, ∇⊥ ≡ ∇ − b(b · ∇), and nα,gc is the gyrocenter
ion density. Electrons can be modelled either kinetically or
through use of a Boltzmann (in the linear limit, adiabatic)
approximation, with various options for the coefficient
of the Boltzmann factor. It is important to remark that
the axisymmetric gyrokinetic simulation model specified by
equations (16)–(19) is not accurate enough to adequately
describe the slow evolution of a long wavelength neoclassical
radial electric field in a quasi-stationary state [20], where
the particle fluxes across the magnetic surfaces are, to order
(ρi/R)2, independent of the radial electric field and the particle
transport is intrinsically ambipolar. Therefore, we restrict our
studies to the analysis of a not-intrinsically-ambipolar rapid
initial relaxation of the local Maxwellian distribution toward
a quasi-stationary state (neoclassical quasi-equilibrium) [21].
The subsequent slow evolution of the quasi-stationary state
including the evolution of the ‘ambipolar’ radial electric
field that occurs along with the relaxation of the toroidal
angular momentum on the transport time scale, ∼νc(ρi/R)2,
is not considered. Here, νc denotes the ion–ion collision
frequency. Because the toroidal angular momentum remains
nearly the same during the initial not-intrinsically-ambipolar
rapid relaxation, the radial electric field corresponding to the
relaxed quasi-stationary state is determined as a linear function
of the initial toroidal angular momentum and the pressure
gradient diamagnetic flows [21].

In this section, we present the results of COGENT
verification studies. We report on the modelling of the
collisionless GAM relaxation for the case where the GAM
perturbations are excited about a uniform equilibrium, and
compare the results of the numerical simulations with the
analytical results obtained in section 3. For the purposes of
verification studies, the following electron Boltzman model is
adopted:

ne = 〈〈ni〉〉 exp[e�/Te]

〈exp[e�/Te]〉 . (20)

Here, 〈 〉 and 〈〈 〉〉 denote a magnetic-flux-surface average
and volume average (over the entire simulation domain),
respectively, Te corresponds to the electron temperature,
ni(Ri) is the gyrocenter ion density, and Zi = 1 is assumed.
The simulations are performed for the case of the periodic
radial boundary conditions, and radially constant metric
coefficients are adopted for consistency. That is, the geometry
is assumed to be that with the magnetic field varying with the
poloidal angle, θ , according to equations (1a) and (1b), but
with a constant value of the minor radius coordinate, r , used in
equations (1a) and (1b) and in metric coefficients. The initial
ion density is specified by

ni0 = n̄0 + δn sin[2π(r − r0)/�r ], (21)
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Figure 3. The collisionless relaxation of the GAM excited about a
uniform equilibrium. Shown are (a) GAM decay rate and
(b) frequency as a function of the magnetic safety factor, q. The
results of the COGENT simulations (dots) are compared with the
analytical predictions in section 3 numerically evaluated for N = 3.
The parameters of the simulations are Zi = 1, ε = 0.2,
k⊥ρ̄i = 2πρ̄i/�r = 0.1375, and the ratio of the electron to ion
temperature corresponds to Te/Ti = 1 (blue) and Te/Ti = 0.1 (red).

where r0 = (rmax +rmin)/2, �r = rmax −rmin, and rmax and rmin

are the minor radius coordinates corresponding to the domain
boundaries. Although the electron model in equation (20)
differs from the standard neoclassical electron model [16],
where 〈〈ni〉〉 in equation (20) is replaced with 〈ni0〉, it is used
here along with equation (19) to represent the long wavelength
limit of the quasi-neutrality condition in equation (3). Indeed,
assuming ni(r, θ, t) = n̄0 + ñ(θ, t) sin(k⊥r) along with
e�/Te � 1, and neglecting a small ‘vacuum’ term in the left-
hand side (lhs) of equation (19), it follows that

n̄0
e(� − 〈�〉)

Te
= ñ sin(k⊥r) +

e

mi�
2
i

∇⊥ · (ni∇⊥�), (22)

where the rhs of equation (22) represents a sum of the perturbed
gyrodensity and polarization density corresponding to the local
ion density in the rhs of equation (3) provided k⊥ρi � 1.

The results of COGENT simulations are compared to
the predictions of the analytical model (in section 3) for the
case where the third-order resonances are retained, N = 3,
in the asymptotic analysis (see figure 3). We note that
agreement between the COGENT simulations and the theory
demonstrated here is better than that reported in [22] for other
gyrokinetic codes. In addition, fourth-order convergence of
the numerical solution with grid resolution was demonstrated
as well [17]. Figures 2 and 3 provide some illustration of
sensitivity to parameters N and τ = ZiTe/Ti; a more extensive
study of parametric dependencies is outside the scope of this
paper.
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Figure 4. A schematic illustration of the primary, N = 1,
resonances between GAMs and passing particles for the cases of
Er = 0 (the dashed vertical lines), and cEr/VTBθ = 1 (the solid
vertical lines).

5. Effects of a strong radial electric field

The edge of a tokamak under H-mode conditions is
distinguished by the presence of steep density gradients and
a strong radial electric field. Assuming a characteristic length
scale for the variations of plasma density Ln ∼ ρθ , it is
straightforward to show from radial force balance that the
corresponding equilibrium radial electric field, Er , is given by

Er ∼ VTBθ/c, (23)

provided the ion toroidal (Vϕ) and poloidal (Vθ ) flow velocities
are less than the thermal velocity, i.e., Vθ , Vϕ < VT. The
presence of such a strong radial electric field can substantially
enhance the GAM decay rate in the H-mode tokamak pedestal.
Indeed, the E × B drift becomes comparable to the poloidal
projection (vθ ) of a particle’s parallel velocity (v‖), and the
condition of the primary resonance, i.e., vθ /r ∼ ωGAM, now
reads

|vres
‖ Bθ/B + cEr/B| ∼ VTr/R, (24)

where ωGAM ∼ VT/R is assumed. The condition in
equation (24) has two solutions for the resonant parallel
velocity, which are shifted from ±qVT values due to the
presence of the E × B drift (see figure 4). One solution is
shifted towards the bulk of the particle distribution function
and the other towards its tail. It is, however, straightforward
to show (provided a safety factor, q, is not too small) that the
net shift in the resonant velocities provides an increase in the
number of the resonant particles, and therefore the GAM decay
rate increases.

While the primary resonant interaction determines the
GAM decay rate for moderate values of a safety factor, q ∼ 1, it
is the particle interaction with high-order poloidal harmonics
of the GAM perturbation that provides the GAM relaxation
as the value of q increases (see figure 2). Generalizing
the condition in equation (24) for the case of the resonant
interaction with higher-order order harmonics, it follows that
the smaller (absolute) value of resonant parallel velocity is

given in the presence of a radial electric field by

vres
‖ ∼ [q/n − (c/VT)|Er/Bθ |]VT, (25)

where n is the harmonic order. For the case of a large
safety factor, q � 1, the order, nmin, of the lowest poloidal
harmonic that can resonantly interact with the bulk of the ion
distribution, i.e., vres

‖ ∼ VT, is significantly decreased in the
presence of a strong electric field. For instance, nmin ∼ q/2
for Er = VTBθ/c, in contrast to nmin ∼ q for Er = 0. Recall,
that for the case of long wavelength GAM perturbations, i.e.,
k⊥ρi � 1, the excitation factor for the nth poloidal harmonic
is proportional to (k⊥ρi)

n, and therefore the GAM decay rate
becomes significantly enhanced in the presence of a strong
radial electric field for large values of q as well.

In order to test these heuristic predications we perform
model simulations of the collisionless GAM decay by making
use of the closed-flux-surface version of the COGENT code.
In the previous section (section 4), we discussed successful
verification studies for the case where the GAM perturbations
are excited about a uniform plasma equilibrium with a zero
equilibrium electric field. Here, we perform model simulations
of the collisionless GAM decay for the case where the
GAM perturbations are excited about a steep density gradient
equilibrium, Ln ∼ ρiθ , with the corresponding self-consistent
equilibrium radial electric field. The temperature profile is
taken to be uniform.

For these simulations we adopt the standard Boltzman
electron model used in the neoclassical simulations and
specified by [16]

ne = 〈ni0〉 exp[e�/Te]

〈exp[e�/Te]〉 , (26)

where ni0 is the initial ion gyrodensity. We assume periodic
radial boundary conditions along with radially constant metric
coefficients, and initialize the ion distribution function as a
local Maxwellian distribution with a zero parallel flow velocity
and a density profile given by

ni0 = n̄0{1 + �n cos[2π(r − r0)/�r ]}. (27)

We note that although the bell-shaped density profile
(equation (27)) assumed in the simulations does not correspond
to a monotonically decaying pedestal density as in a real
tokamak, the present modelling still provides important
insights into assessing the influence of a strong radial electric
field on the collisionless GAM relaxation. In order to simulate
the initial relaxation toward a neoclassical steady state, where
the self-consistent radial electric field builds up to balance the
pressure gradient, we make use of a particle- and momentum-
conserving Krook model [16]. Once the neoclassical quasi-
stationary state is reached, the collisions are turned off
adiabatically, and then a small sinusoidal perturbation in the
ion distribution,

δfi = δn sin[2π(r − r0)/�r ]
exp(−v2/V 2

T )

π3/2V 3
T

, (28)

is instantaneously introduced to excite the GAM perturbations.
The results of the illustrative numerical simulations
corresponding to the cases of a uniform density equilibrium
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Figure 5. Collisionless GAM relaxation. (a) The evolution of the normalized electrostatic potential e�/T for the cases of a uniform density
equilibrium with �n = 0, Er = 0 (red curve) and a steep density gradient equilibrium with �n = 0.5, |Er,max| ≈ 0.85 × VTBθ/c (blue
curve). Here, |Er,max| corresponds to the maximum value of the self-consistent equilibrium radial electric field. (b) The corresponding
evolution of eδ�/T , where δ�(t) = �(t) − �0 is the potential perturbation about its neoclassical equilibrium value, �0. The parameters of
the simulations are T = Ti = Te, k⊥ρ̄i = 2πρ̄i/�r = 0.1, ε = 0.1, and q = 3. The perturbation in equation (28) is instantaneously
introduced at VTt/R = 140.3.
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Figure 6. Collisionless GAM relaxation for the case of Te/Ti = 0.1 corresponding to (a) q = 3 and (b) q = 4. Shown is the evolution of
the normalized electrostatic potential perturbation eδ�/T for the cases of a uniform density equilibrium with �n = 0, Er = 0 (red curve)
and a steep density gradient equilibrium with �n = 0.5, |Er,max| ≈ 0.85 × VTBθ/c (blue curve). Here, |Er,max| corresponds to the maximum
value of the self-consistent equilibrium radial electric field, and δ�(t) = �(t) − �0 is the potential perturbation about its neoclassical
equilibrium value, �0. The parameters of the simulations are T = Ti = 10Te, k⊥ρ̄i = 2πρ̄i/�r = 0.1 and ε = 0.1. The perturbation in
equation (28) is instantaneously introduced at VTt/R = 140.3.

(�n = 0), and a steep density gradient equilibrium (�n =
0.5) are shown in figure 5(a) for Te/Ti = 1 and q = 3.
The results obtained here for the case of a uniform density
equilibrium, i.e., �n = 0, have been verified to agree with
the corresponding results obtained by the simulation method
described in section 4. Consistent with the heuristic prediction,
figure 5(b) shows that the presence of the strong radial electric
field given in equation (23) enhances the GAM decay rate.

Additional illustrative examples corresponding to Te/Ti =
0.1 are presented in figure 6. It is interesting to note that the
simulations performed for the case of q = 3 demonstrate a
slightly decreased GAM decay rate in the presence of a radial
electric field (see figure 6(a)). This is plausibly due to the fact
that the GAM relaxation in the region 2 < q < 3.5 is primarily
attributed to the resonant interaction of passing ions with the
second (n = 2) harmonic of the GAM perturbation, for which
the maximum decay rate occurs at q ≈ 3 (see figure 2(a)).
The presence of a strong electric field modifies the poloidal
advection term in equation (2), (v‖/qR)∂ĥ/∂θ → (v‖/qR +
cErBϕ/B2r)∂ĥ/∂θ , and therefore ‘effectively’ corresponds
to the case with no background radial electric field and a
decreased value of qeff ∼ q[1 + (c/vres

‖ )|Er/Bθ |]−1, where
vres

‖ is given by equation (25). For the parameters of the
illustrative example in figure 6, Er < 0.85 × VTBθ/c, it

follows for n = 1 that qn=1
eff > 2.15, and therefore the

interaction of passing ions with the first poloidal harmonic
provides negligible GAM relaxation (see figure 2(a)) even in
the presence of the radial electric field. The GAM decay is,
therefore, primarily attributed to the resonant interaction with
the second harmonic, which provides the strongest relaxation
(in the absence of Er ) for q ≈ 3. The presence of a background
radial electric field leads to qn=2

eff < 3, and thus to a decreased
GAM decay rate. Note that for larger values of q, the presence
of a strong electric field provides enhanced GAM relaxation
(see figure 6(b)) in accordance with the original heuristic
arguments.

6. Conclusions

In the present work, we make use of the recently developed
continuum gyrokinetic code COGENT [16, 17] to model the
collisionless relaxation of geodesic acoustic modes (GAMs)
including the effects of a strong radial electric field. Following
the analysis by Gao et al in [13], we present an independent
rigorous derivation of the collisionless GAM decay rate. The
results of this analytical calculation are used to verify the
COGENT code, and are found to be in excellent agreement
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with the numerical results of the COGENT simulations. Based
on the success of the verification studies, the code is used
to model the effects of a strong radial electric field, Er ∼
VTBθ/c (characteristic of the H-mode tokamak pedestal), on
the collisionelss GAM relaxation. Consistent with the heuristic
predictions, the results of the simulations show a substantial
enhancement of the GAM decay rate in the presence of a strong
radial electric field.
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Appendix A. Evaluation of Al,L
1

We start the asymptotic evaluation of A
l,L
1 (in equation (9)) by

making use of the Bessel functions power series expansion

Jn(x)Jn−l+L(x)

=
∞∑

m1=max[0,−n]

∞∑
m2=max[0,−n+l−L]

jn,l,L
m1,m2

x2n−l+L+2m1+2m2 , (A.1)

where

jn,l,L
m1,m2

= (−1)m1+m2

m1!m2!(n + m1)!(n − l + L + m2)!22n−l+L+2m1+2m2
.

(A.2)

Now, denoting

Pi =
∫ ∞

0
2 dv⊥e−v2

⊥J 2
0 (kv⊥)v2i+1

⊥ (A.3)

and making use of the Binomial expansion

(x∗)2n−l+L+2m1+2m2 = (kq)2n−l+L+2m1+2m2

×
2n−l+L+2m1+2m2∑

m3=0

C
m3
2n−l+L+2m1+2m2

v
2m3
⊥

(−1)−l+L

2m3

×
[

ξ

(n − l)

]2n−l+L+2m1+2m2−2m3

(A.4)

it is straightforward to show

A
l,L
1 = −2

√
πi

∑
n,m1,m2,m3

[1 − δn,l]B
n,m1
m2,m3

(−1)−l+LPm3

2m3

×
[

ξ

(n − l)

]2n−l+L+2m1+2m2−2m3 ξe−(ξ/(n−l))2

|n − l| , (A.5)

where

Bn,m1
m2,m3

≡ jn,l,L
m1,m2

C
m3
2n−l+L+2m1+2m2

i−l+L(kq)2n−l+L+2m1+2m2 ,

(A.6)

and Ck
n’s are the binomial coefficients with

0 � m3 � 2n − l + L + 2m1 + 2m2. (A.7)

Recall that to have the dispersion relation accurate through
orderO(k2N), the product of Bessel functions in equation (A.1)
needs to be accurate through order O(k2N−|L|−|l|). It therefore
follows that the indices m1 and m2 are constrained by

|n| � n + 2m1 � 2N − (|n − l + L| + |l| + |L|), (A.8)

and

|n − l + L| � (n − l + L) + 2m2 � 2N − |l|
− |L| − (n + 2m1). (A.9)

Equations (A.8) and (A.9) can be conveniently
expressed as

max(0, −n) � m1 � N − n + |n − l + L| + |l| + |L|
2

, (A.10)

and

max[0, −(n − l + L)] � m2

� N − (n − l + L) + |l| + |L| + (n + 2m1)

2
. (A.11)

Appendix B. Evaluation of Al,L
3

First, here we note that the sum over a finite number, n, of
terms in equation (12) cannot provide the required accuracy
for the rhs of equation (6), i.e., O(k2N−|L|). Indeed, for the
case where |v||| < k, the argument of the Bessel function
becomes large, x > 1, and the asymptotic Jn(x) ∼ x|n| is no
longer valid. Further, it is straightforward to show that the
contribution to the integrals in equation (12), coming from the
region |v||| < k is of order O(kK+1) for an arbitrary Bessel
function index. Therefore, the summation over n, has to be
extended to include n ∈ [−∞, ∞]. It is however still possible
to evaluate A

l,L
3 by making use of the following relation [23]

∞∑
n=−∞

nKJn(x)Jn+m(x) ≡
K∑

j=0

bjx
j . (B.1)

Here, bl’s are the constant coefficients, K � 0, and for the
special case where K < |m|, all bj ’s are equal to zero. By
making use of equation (B.1), it follows that

A
l,L
3 =

2N−|L|−|l|−1∑
K=0

K∑
j=0

(−1)Ki−l+L

(
kq

2

)j

a
l,L
j ξ−KTK−j,j ,

(B.2)

where a
l,L
j are determined from

∞∑
n=−∞

(n − l)KJn(x)Jn−l+L(x) =
K∑

j=0

a
l,L
j xj , (B.3)

and the constant coefficients TK−j ,j are given by

Ta,b =
∫

d3ve−v2

π3/2
J 2

0 (kv⊥)(2v2
‖ + v2

⊥)bva
‖ . (B.4)

Finally, we note the although the sum over the n index
has to be extended to include n ∈ [−∞, ∞], the sum over l

including only l ∈ [−N, N ] suffices to provide the required
accuracy of the rhs in equation (6), i.e., O(k2N−|L|). Indeed,
making use of

∑∞
n=−∞ nKJn(x)Jn+m(x) ≡ 0, for K < |m|,

and recalling that K � 2N −|L|− |l|−1, it is straightforward
to show that A

l,L
3 ≡ 0 for |l| > N .
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Appendix C. Evaluation of Al,L
2

First, we note that the contribution to the integrals in
equation (11) coming from the region |v||| < k is the
order O(k2N−|l|−|L|+1), and therefore can be neglected. Next,
considering the region of |v||| > k and making use of the Bessel
function expansion in equations (A.1) and (A.2), we obtain

A
l,L
2 =

∑
n,m1,m2,m3

Bn,m1
m2,m3

Pm3

(−1)−|l|−|L|

2m3

[
n − l

ξ

]2N−|l|−|L|
Qs,

(C.1)

where

s = 2N − |L| − |l| + 2n − l + L + 2m1 + 2m2 − 2m3, (C.2)

Qα =
∫ ∞

−∞

dv||√
π

e−v2
||vα

‖
ξ

ξ + (n − l)v‖
, (C.3)

and the limits for the sum in equation (C.1) are given by
equations (A.7), (A.10) and (A.11). Noticing the following
recursion relation

Qα+1 = − ξ

n − l
Qα +

ξ

n − l

∫ ∞

−∞

dv||√
π

e−v2
‖ vα

‖

= − ξ

n − l
Qα +

ξ

n − l

(1 + (−1)α)

2
√

π
�

(
α + 1

2

)
, (C.4)

we only need to evaluate Q0. Introducing Z(ζ ) ≡
i
√

π exp(−ζ 2)[1 − erf(−iζ )], where erf(ζ ) ≡ (2/
√

π)∫ ζ

0 exp(−x2) dx, and making use of

Z(ζ ) =
∫ ∞

−∞

dt√
π

e−t2

t − ζ
, (C.5)

for Imζ > 0, it is straightforward to obtain

Q0 = − ξ̄

|n − l|Z
(

ξ̄

|n − l|
)

. (C.6)

Here, we introduced ξ̄ = −ξ (note that Imξ̄ > 0), and the
recursion relation in equation (C.4) now takes the following
form

Qα+1 = ξ̄

n − l
Qα − ξ̄

n − l

(1 + (−1)α)

2
√

π
�

(
α + 1

2

)
, (C.7)

where Q0 is given by equation (C.6). Note that for the case
where n = l it is straightforward to show that A

l,L
2 = 0.

Indeed, for that case, Qα is a constant (see equation (C.3)),
and A

l,L
2 ∝ [n − l]2N−|l|+|L| = 0. Finally, note that the case

corresponding to |l| = |L| = N and l = n is prohibited by the
selection rule in equation (8).

Appendix D. Collected results for practical
implementation

It is convenient to formulate the asymptotic dispersion relation
using the variable ξ̄ = −ξ . The dispersion equation is given by

Det[Al,L(ξ̄ )] = 0, (D.1)

where L, l ∈ [−N, N ], and

Al,L = A
l,L
1 + A

l,L
2 + A

l,L
3 − δl,L[1 + τ−1(1 − δL,0)]. (D.2)

Here, τ = ZiTe/Ti, and the matrix elements A
l,L
1 (ξ̄ ),

A
l,L
2 (ξ̄ ), and A

l,L
3 (ξ̄ ) are specified by

A
l,L
1 (ξ̄ ) = 2

√
πi

∑
n,m1,m2,m3

Bn,m1
m2,m3

Pm3

2m3

×
[

ξ̄

(n − l)

]2n−l+L+2m1+2m2−2m3
ξ̄ e−(ξ/(n−l))2

|n − l| , (D.3)

A
l,L
2 (ξ̄ ) =

∑
n,m1,m2,m3

Bn,m1
m2,m3

Pm3

2m3

[
n − l

ξ̄

]2N−|l|−|L|
Qs, (D.4)

A
l,L
3 (ξ̄ ) =

2N−|L|−|l|−1∑
K=0

K∑
j=0

i−l+L

(
kq

2

)j

a
l,L
j ξ̄−KTK−j,j ,

(D.5)

where, Bn,m1
m2,m3

, Pi and Ta,b are given in equations (A.6), (A.3),
and (B.4) respectively, the functions Qα are specified by the
recursion relation in equations (C.6) and (C.7), the index s is
given equation (C.2), the coefficients a

l,L
j are determined from

equation (B.3), and the constrains on the sum indexes n, m1,
m2, and m3, are given in equations (8), (A.10), (A.11), and
(A.7), respectively.
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