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The development of the continuum gyrokinetic code COGENT for edge plasma simulations is

reported. The present version of the code models a nonlinear axisymmetric 4D (R, vk, l)

gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is

the particle gyrocenter coordinate in the poloidal plane, and vk and l are the guiding center velocity

parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a

fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock

grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor

geometry with high accuracy. Topics presented are the implementation of increasingly detailed

model collision operators, and the results of neoclassical transport simulations including the effects

of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions.
VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4776712]

I. INTRODUCTION

Due to a wide range of collisionality regimes, short radial

length scales for density and temperature variations (compa-

rable to particle drift orbit excursions), and scale lengths

along the magnetic field comparable to collisional mean free

paths, a kinetic simulation is required for an accurate model-

ing of transport processes in the edge of a tokamak.1 Pres-

ently, there are two main approaches to solving a kinetic

equation: (i) the particle-in-cell (PIC) method, in which one

uses macroparticles to integrate along the characteristic of the

kinetic equation2–5 and (ii) the continuum method in which

the kinetic equation is discretized on a phase-space grid.6–8

The application of the PIC approach to some important prob-

lems of tokamak edge dynamics may, however, require a

very large number of macroparticles to suppress numerical

noise. Among these problems is the simulation of low-

amplitude turbulence under H-mode conditions, subject to an

adequate representation of the background quasi-equilibrium

dynamics.1 Moreover, even for the case of axisymmetric

(non-turbulent) transport, adequate modeling of the electron

and ion heat fluxes to the divertor plates requires resolving

the energy distribution function for suprathermal particles,

which implies a very large total number of macroparticles per

cell.9 For instance, as pointed out in Ref. 9 for the case of a

PIC code written in one dimension of configuration space, to

have a moderate noise level of r � 1=
ffiffiffiffiffi
Nc

p
� 0:1 for particles

with energy ecT ¼ 10T, requires ½e expð�eÞr2��1 � 106 parti-

cle per cell. Here, Nc is the number of macroparticles with

energy ec, and T is the effective temperature of the particle

distribution. These and other issues motivate the use of con-

tinuum kinetic codes for the numerical modeling of a toka-

mak edge.

Making use of advanced numerical methods from the

fluid community and building on the success of continuum

core-region codes (e.g., GYRO,10 GENE,11 etc.) and the con-

tinuum edge code TEMPEST,8 the edge simulation labora-

tory collaboration (ESL)12 has started development of a new

continuum kinetic code COGENT for edge plasma simula-

tions. The code is distinguished by the use of a fourth-order

finite-volume (conservative) discretization13,14 combined

with arbitrary mapped multiblock grid technology14 (nearly

field-aligned on blocks) to handle the complexity of divertor

geometry with high accuracy. Another distinguishing feature

of the code is the use of the Colella-Sekora flux-limiter to

suppress unphysical oscillations about discontinuities while

maintaining high-order accuracy elsewhere.15 Finally, the

code is written in vk-l (parallel velocity – magnetic moment)

variables, which avoids “cut-cell” issues appearing, for

instance, when E � l (energy – magnetic moment) variables

are used such that the vk¼ 0 phase-space boundary does not

align with the mesh.

It is of great importance for gyrokinetic code develop-

ment to analyze numerical and physical properties of

reduced collision models as well as to achieve a detailed

understanding of code performance in neoclassical simula-

tions, which is an important step in the process of modeling

the complex tokamak plasma dynamics.16–19 In the present

work, we report on the implementation of a succession of

increasingly comprehensive collision operators and discuss

their performance in neoclassical simulations carried out

using the local closed-flux-surface version of the COGENT

code. This work extends our previous analysis20 to including

the effects of a self-consistent electric field and also imple-

menting more detailed collision options. In particular, here

we discuss the implementation and testing of a recently pro-

posed model linearized collision operator.21

Finally, we present self-consistent neoclassical simula-

tions performed for the case of steep density gradients,

L� qih, characteristic of a tokamak edge under H-mode
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conditions. Here, qih is the poloidal ion gyro-radius, and L is

the radial length-scale for variation of the plasma density.

Recent analytical studies demonstrated that a strong radial

electric field consistent with these steep density gradients

can have a significant influence on the properties of neoclass-

ical transport in a tokamak pedestal.22–24 In particular, a sup-

pression of the ion heat flux and a change in the poloidal ion

flow direction in a weakly collisional (banana) regime were

demonstrated. In this work, we present first numerical simu-

lations of these phenomena demonstrating qualitative agree-

ment with the results of the analytical calculations.

The paper is organized as follows: The simulation

model is summarized in Sec. II. In Sec. III, we report on

benchmark exercises using the simple Krook collision

model to test the code performance in self-consistent neo-

classical simulations. The implementation and testing of the

Lorentz operator and the model linearized collision opera-

tor are discussed in Secs. IV and V, respectively. Finally, in

Sec. VI, we present the results of neoclassical simulations

taking into account the effects of a strong (self-consistent)

radial electric field.

II. SIMULATION MODEL

The present 4D version of the COGENT code solves an

axisymmetric gyrokinetic equation for a gyrocenter distribu-

tion function fa(R,vk,l,t) written in conservative form25

@B�jjafa

@t
þrð _RaB�jja faÞ þ

@

@vjj
ð _vjjB�jjafaÞ ¼ B�jjaCa½ fa�: (1)

Here, a denotes the particle species, r is the gradient with

respect to R, and the guiding center velocity _R is given by

_Ra ¼
1

B�jja
vjjB

�
a þ

1

Zae
b� ðZaerUþ lrBÞ

� �
: (2)

The evolution of the guiding center parallel velocity is deter-

mined from

_vjj ¼ �
1

maB�jja
B�a � ðZaerUþ lrBÞ; (3)

where ma and Za are the species mass and charge state,

respectively, e is the electron charge, U(R,t) describes the

long wavelength neoclassical electrostatic potential variation,

B(R)¼Bb is the magnetic field with b denoting the unit vec-

tor along the field, B�aðR; vjjÞ 	 Bþ ðmavjj=ZaeÞr� b, and

B�jjaðR; vjjÞ 	 B*
a � b. Finally, C[fa] denotes the collision oper-

ator, and the presently available collision models include a

simple drag-diffusion operator in parallel velocity,20 Krook

collisions (Sec. III), Lorentz collisions (Sec. IV), and a linear-

ized model Fokker-Planck collision operator conserving mo-

mentum and energy21 (Sec. V).

The present version of the code utilizes a long wave-

length approximation, k?qa 
 1, to represent the gyroki-

netic Poisson equation for electrostatic potential variations in

the form25

D2U ¼ 4pe ne �
X

a

na;gc

 !
� 4pe2

X
a

Z2
a

maX
2
a

�r? � ðna;gcr?UÞ: (4)

Here, qa¼VT,a/Xa is the particle thermal gyroradius,

Xa¼ ZaeB/(mac) is the cyclotron frequency, k�1
? represents

the characteristic length-scale for variations of the electro-

static potential, r? 	 r� bðb � rÞ, and the guiding center

density na,gc is specified by

na;gc ¼
2p
ma

ð
B�jjadvjjdl fa þ

mac2

BZ2
ae2

lr2
?fa

� �
: (5)

Electrons can be modeled either kinetically or through use of

a Boltzmann (in the linear limit, adiabatic) approximation,

with various options for the coefficient of the Boltzmann fac-

tor.14,26 In particular, for the single-ion-species neoclassical

simulations reported in this work, we use a Boltzmann model

for the electron density of the form

ne ¼ hni0i
exp½eU=TeðwÞ�
hexp½eU=TeðwÞ�i

: (6)

Here, w is the poloidal flux function, Te(w) corresponds to

the electron temperature distribution across magnetic flux

surfaces, ni0 is the initial ion density distribution, and Zi¼ 1

is assumed. Making use of the long wavelength approxima-

tion, we neglect the small “pressure-term” corrections [the

second term in the curly brackets in Eq. (5)] and adopt

ni;gc ¼ ð2p=miÞ
Ð

fiB
�
jjidvjjdl and ni0 ¼ ð2p=miÞ

Ð
fiðt ¼ 0ÞB�jji

dvjjdl for the COGENT implementation of the gyro-

Poisson system. The flux surface average operator intro-

duced in Eq. (6) is defined as

hYiðwÞ ¼
þ

Y
dlh
Bh

,þ
dlh
Bh
; (7)

where the integration should be taken one turn around the

torus in the polodial direction. Finally, for all neoclassical

simulations discussed here, the Neumann boundary condi-

tion, @U/@w¼ 0, is imposed at the domain boundaries. Note

that the electron model in Eq. (6) yields a zero flux surface

averaged radial electron particle flux. The quasi-neutrality of

the “final” quasi-stationary state, therefore, requires the cor-

responding flux surface averaged ion particle flux to be zero

as well.

The COGENT code has various options for the magnetic

field geometry. In particular, the Miller model27 is available

to describe a closed flux surface (core) region. Also, X-point

(single-null) geometry is available in the divertor version of

the code. For simplicity, here we consider a magnetic geom-

etry with concentric circular flux surfaces yielding

Buðr; hÞ ¼ BTR0=ðR0 þ r cos hÞ; (8a)

Bhðr; hÞ ¼ BpR0=ðR0 þ r cos hÞ: (8b)

Here, r is the minor radius coordinate, h is the poloidal

angle increasing in the counterclockwise direction, h¼ 0

012513-2 Dorf et al. Phys. Plasmas 20, 012513 (2013)



corresponds to the outer midplane, and the directions of the

coordinate system unit vectors are given by ½er � eu� ¼ eh.

For the simulations reported, we adopt a “local” magnetic

geometry, taking BT and Bp to be constants. The safety factor

q and the inverse aspect ratio e, which are used below, are

defined as q¼ eBu/Bh, and e¼ r/R0, where R0 is the tokamak

major radius. We also introduce q0¼ e0BT/Bp and e0¼ r0/R0,

where r0¼ (rmin þ rmax)/2 corresponds to the middle of the

simulation domain, and rmin and rmax are the minor radius

coordinates corresponding to the domain boundaries. Unless

stated otherwise (e.g., Sec. VI), we present the result of the

numerical simulations evaluated at r¼ r0.

For simplicity, we consider the case of a single ion spe-

cies with Zi¼ 1, and mi¼ 2mp, where mp is the proton mass.

The initial distribution function is taken to be a local Max-

wellian distribution

FMðr; h; vjj; lÞ ¼
mi

2pTi0ðrÞ

� �3=2

n0iðrÞ

� exp �
miv

2
jj

2Ti0ðrÞ
� lBðr; hÞ

Ti0ðrÞ

" #
; (9)

where the initial density and temperature profiles are speci-

fied by

ni0ðrÞ ¼ n0f1� jnDn tanh½ðr � r0Þ=Dn�g; (10)

Ti0ðrÞ ¼ T0f1� jTDT tanh½ðr � r0Þ=DT �g: (11)

The electron temperature in Eq. (6) is assumed to be equal to

the ion temperature at the middle of the domain, i.e.,

Te(r)¼T0. Finally, for future reference, we define the ion

thermal velocity as VT¼ (2Ti0/mi)
1/2.

Neoclassical verification studies involve detailed anal-

ysis of the flux-surface-averaged radial particle and heat

fluxes as well as the parallel Vk and poloidal Vh flow veloc-

ities. These quantities are calculated in the code as follows:

C ¼
ð

2p
mi

B�jjdvjjdlð _R � erÞf
	 


; (12)

Q ¼
ð

2p
mi

B�jjdvjjdlmi

v2
jj

2
þ lB

mi
þ ZieU

 !
ð _R � erÞf

* +
; (13)

Vjj ¼
1

ni

ð
2p
mi

B�jjdvjjdlvjjf

	 

; (14)

Vh ¼
1

ni

ð
2p
mi

B�jjdvjjdlð _R � ehÞf

� 1

Zieni
r� b

ð
2p
mi

B�jjdvjjdllf

� �� �
� eh; (15)

where ni ¼
Ð
ð2p=miÞB�jjdvjjdlf , eh denotes the unit vector in

the poloidal direction, and the subscript i (denoting ions) has

been suppressed in the notation for fa, _Ra, and B*
ka. The diag-

nostics in Eq. (13) corresponds to the total (i.e., the sum of

kinetic and potential) energy flux. However, in the final state

where the ion particle flux C decays to zero, the energy flux

in Eq. (13) becomes equal to the conductive heat flux.18,28

Details of the poloidal flow velocity diagnostics [Eq. (15)],

which involves not only the guiding center flow (the first

term) but also the curl of the magnetization (the second

term), can be found in Ref. 29.

Although the flow velocity diagnostics introduced in

Eqs. (14) and (15) seem intuitively appealing, it is important

to discuss their accuracy in representing the actual velocity

moments of the fully kinetic (6D) distribution function. Note

that the guiding center parallel velocity coordinate, vk, is not

identical to a particle’s parallel velocity. A finite difference

associated with the so-called Banos drift30 appears already in

first order in di, where di	 (qi/R0)
 1, and therefore the

flow velocity calculations are, in principal, only accurate in

the zero order. However, for the case of the neoclassical sim-

ulations performed here, the solution to Eq. (1) remains close

to the initial distribution [Eq. (9)], f¼FM þ O(diqjTR)FM,

where diqjTR
 1. Therefore, the change of the flow veloc-

ities with time is accurately described by Eqs. (14) and (15)

through order di, and it is only the initial values that are

missing di-corrections. Moreover, for the case where

r0jT� 1 (typical for a tokamak core) and BT � Bp, varia-

tions in the flow velocities, O(diqjTR)VT, associated with

variations in the distribution function, are much larger than

the missing corrections associated with the initial flows,

O(di)VT. Therefore, the flow velocity diagnostics given in

Eqs. (14) and (15) is accurate in that regime. Note that varia-

tions in the ion flow become even more dominant relative to

the initial missing corrections for the case of steep density

gradients, characteristic of a tokamak pedestal under the

H-mode conditions.

It is important to remark that the axisymmetric gyroki-

netic simulation model specified by Eqs. (1)–(4) is not accu-

rate enough to adequately describe the slow evolution of a

long wavelength (k?L � 1) neoclassical radial electric

field31–33 in a quasi-stationary state, where the particle fluxes

across the magnetic surfaces are, to order d2
i , independent of

the radial electric field (so-called intrinsic ambipolarity).

However, here we restrict our studies to the analysis of a

not-intrinsically ambipolar34 rapid initial relaxation of the

local Maxwellian distribution [Eq. (9)] toward a quasi-

stationary state (neoclassical quasi-equilibrium). The subse-

quent slow (transport time scale, �iid
�2
i ) evolution of the

quasi-stationary state including the evolution of a pressure

profile, “intrinsically ambipolar” radial electric field, and the

toroidal angular momentum is not considered. Here, �ii

denotes the ion-ion collision frequency.

The quasi-stationary state is characterized by radial

force balance

Zie

c
ðVuBh � VhBuÞ �

1

ni

dpi

dr
� Zie

@U
@r
¼ 0; (16)

where Vu and Vh are the toroidal and poloidal ion flow veloc-

ity, respectively, and pi¼ niTi is the ion thermal pressure.

The quasi-equilibrium neoclassical value of the poloidal

flow velocity in Eq. (16) is set during the rapid relaxation

(occurs on the collisional time scale) by the parallel viscous

012513-3 Dorf et al. Phys. Plasmas 20, 012513 (2013)



forces associated with the static magnetic field variation and

is given by35

Vh ¼ k
c

ZieB

dTi0

dr
: (17)

Here, k is the poloidal flow coefficient, which depends on

the plasma collisionality. For the case where Er 
 VTBh/c,

which is typical for a tokamak core, k is equal �2.1 in the

Pfirsch-Schluter (highly collisional) regime, �0.5 in the pla-

teau (moderately collisional) regime, and 1.17 in the banana

(weakly collisional) regime.35 In contrast to the poloidal

flow, the flux-surface-averaged toroidal angular momentum,

Pu ¼ hminiRVu � RErBh=ð4pcÞi remains nearly constant

during the rapid (collisional) relaxation. Therefore, the radial

electric field corresponding to the relaxed quasi-stationary

state is determined as a linear function of the initial toroidal

angular momentum and the pressure gradient diamagnetic

flows consistent with Eq. (16). It is also important to note

that while the flux-surface-averaged toroidal angular

momentum remains nearly constant, generation of poloidal

variations in the toroidal velocity at the level of the diamag-

netic flow velocity can occur on the fast (collisional)

time scale along with the relaxation of the poloidal flow.

III. NEOCLASSICAL SIMULATIONS WITH THE KROOK
COLLISION MODEL

The benchmark exercises carried out with the Krook

collision model are used to test the performance of the

COGENT code in self-consistent neoclassical simulations.

In particular, for the case of a uniform temperature profile,

jT¼ 0, we recover the Boltzmann relation for the self-

consistent distribution of potential variations. We then study

generation of ion poloidal flow for the case of a nonuniform

temperature distribution and find the results of the numerical

simulations in very good agreement with the predictions of

an analytical calculation developed below for the case of the

particle-conserving Krook model.

For the case of a single ion species, the following Krook

model is used:

B�jjCK½f � ¼ ��cB�jjdf þ gp�cB
FM

ni0

ð
B�jjdvjjdldf

þ gm�cvjjFMB
mi

Ti0

ð
B�jjdvjjdldf vjj: (18)

Here, df ¼ f � FM, �c is the collision frequency, and gp and

gm take only the two values of either zero or unity to turn off

(on) the corresponding particle and momentum restoring

terms.

The results of the numerical simulations performed with

the particle and momentum conserving version of the Krook

model (i.e., gp¼ 1, gm¼ 1) for the case of a zero temperature

gradient, jT¼ 0, are shown in Fig. 1. It is readily seen that,

after the relaxation of the initial transients corresponding to

the geodesic acoustic mode (GAM) excitations,36 the system

reaches a quasi-stationary state in which the potential distri-

bution is described by the Boltzmann relation, i.e.,

n�1
i dpi=dr þ e@U=@r ¼ 0, consistent with negligible genera-

tion of toroidal ion flow. Here, pi and ni are the ion pressure

and density in the quasi-equilibrium state. The simulations

also demonstrate that the Boltzmann relation remains valid

even for large density gradients,
ffiffi
e
p

qihjn � 1, consistent

with the numerical results in Ref. 37 and analytical predic-

tions in Refs. 38 and 39. Here, qih ¼ VTmic=ðZieBpÞ denotes

the poloidal gyroradius.

Next, consider the case where the temperature distribu-

tion is not uniform. The temperature gradients generate a

poloidal ion flow, and the electric field is no longer described

by the simple Boltzmann relation. We present an analytical

calculation of the quasi-stationary radial electric field for the

case of the particle conserving Krook model (gp¼ 1, gm¼ 0),

assuming a large aspect ratio e¼ a/R0
 1 and neglecting the

effects of trapped particles provided �c� e1/2VT/qR. Note

that the latter condition is different from the corresponding

conventional condition �c� e3/2VT/qR and is discussed in

detail later in this section. Following the method developed

in Ref. 40, consider a steady-state drift-kinetic equation for

the first order correction to a local Maxwellian distribution,

f1¼F�FM, written in energy W¼ (miv
2/2 þ eU) and mag-

netic moment variables

vjj
qR

@f1
@h
þ vd

@FM

@r
sin h ¼ ��cf1 þ �c

FM

ni0

ð
d3vf1: (19)

Here, the gradient of a local Maxwellian distribution, FM

[see Eq. (9)], is given by

FIG. 1. Neoclassical simulations for zero-temperature-gradient plasmas,

jT¼ 0, with small e1/2qihjn¼ 0.024 [(a), (c)] and large e1/2qihjn¼ 0.4 [(b),

(d)] density gradients. Frames (a) and (b) show the time evolution of the nor-

malized radial electric field, eErr0/T0. Frames (c) and (d) compare the radial

electric field (red dots) to the Boltzmann relation (blue curve). The parame-

ters of the simulations are e0¼ 0.1, q0¼ 1.2, qi/R0¼ 1.2� 10�4, r0/Dn¼ 106,

�cqR0/VT¼ 0.4. The grid resolution is nr¼ 128, nh¼ 16, nvk¼ 48, nl¼ 32

[(a), (c)] and nr¼ 96, nh¼ 16, nvk¼ 48, nl¼ 32 [(b), (d)]. The velocity grid

size corresponds to jvkjmax/VT¼ 3.5, lmaxBu/T0¼ 11. Results are obtained

using the particle- and momentum-conserving version of the Krook collision

model, gp¼ gm¼ 1.

012513-4 Dorf et al. Phys. Plasmas 20, 012513 (2013)



@FM

@r

���
W;l
¼ d ln ni0

dr
þ e

Ti0

@U
@r
þ mv2

2Ti0
� 3

2

� �
d ln Ti0

dr

� �
FM:

(20)

vd ¼ ðv2
?=2þ v2

jjÞ=RXi is the radial drift velocity, and

vjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=miÞ½W � eUðr; hÞ � lBðr; hÞ�

p
is a parallel veloc-

ity, which in general depends on the poloidal angle coordi-

nate. However, under the assumptions of the present

analysis, we can neglect the poloidal variations correspond-

ing to the magnetic mirror force. Also, poloidal variations in

the neoclassical electrostatic potential are generally small.

Therefore, we can neglect the poloidal variations in the par-

allel velocity, and taking f1¼ fþ cos h þ f�sinh, it is straight-

forward to show that

xtf� þ �cfþ � �c
FM

ni0

ð
d3vfþ ¼ 0; (21)

�xt fþ þ �cf� � �c
FM

ni0

ð
d3vf� ¼ �vd

dFM

dr
; (22)

where we introduced xt	 vk/qR.

Although it does not seem plausible to obtain an analytic

solution to the system of integral equations (21) and (22),

one can still calculate the flux surface average of the radial

particle flux, C ¼ h
Ð

d3vf1vd sin hi and then obtain an equa-

tion for the radial electric field from the quasi-neutrality con-

dition, which requires zero quasi-stationary ion particle flux,

C¼ 0 (see Sec. II). Note that if we were to consider a physi-

cally more adequate momentum conserving version of the

Krook model (i.e., gp¼ gm¼ 1), the quasi-stationary particle

flux would be intrinsically ambipolar (see Sec. II). That is,

the quasi-stationary value of the ion particle flux would be

zero through order (jTqi)
2 [and through order (jTqi)

3 for an

up-down symmetric tokamak33,41] independent of the radial

electric field. Therefore, for the case of the momentum-

conserving Krook model, we would only be able to deter-

mine the combination Er þ VuBh but not the electric field

separately (as discussed in Sec. II). Note that the fact that a

quasi-stationary value of the radial electric field can be deter-

mined independently of Vu for the case where gp¼ 1, gm¼ 0

is consistent with fast (collisional) relaxation of the toroidal

angular momentum provided by a non-zero parallel friction

force. Finally, we also note that a quasi-stationary state with

zero particle flux is only consistent with a particle-

conserving (gp¼ 1) version of the Krook collision model.

For the simplest case of a non-conservative Krook operator,

i.e., gp¼ gm¼ 0, the ion particle flux would have to balance

the particle production associated with the non-conservative

collisional model.

It is straightforward to show from Eqs. (21) and (22)

that

f� �
xt�c

x2
t þ �2

c

FM

ni0

ð
d3vfþ �

�2
c

x2
t þ �2

c

FM

ni0

ð
d3vf�

¼ � �c

x2
t þ �2

c

vd
dFM

dr
; (23)

and it now follows that the radial particle flux that

C ¼ ð1=2Þ
Ð

d3vf�vd is given by

C ¼ � 1

2

ð
d3v

�c

x2
t þ �2

c

v2
d

dFM

dr

þ 1

2

ð
d3vf�

� �ð
d3v

�2
c

x2
t þ �2

c

vd
FM

ni0
: (24)

Finally, operating on Eq. (19) with
Ð

d3v, we obtain

ð
d3vf� ¼ �

ð
d3v

�c

x2
t þ �2

c

vd
dFM

dr

�
1�
ð

d3v
�2

c

x2
t þ �2

c

FM

ni0

� �
:

(25)

The radial electric field appears in the term dFM/dr [in Eqs.

(24) and (25)] and can be found by forcing the radial particle

flux in Eq. (24) to zero. For instance, when �c 
 VT=qR,

corresponding to the plateau regime, we make use of

�c=ðx2
t þ �2

cÞ � pdðxtÞ to obtain

C ¼ �x̂Tq2
i ni0

q2p1=2

4

d ln ni0

dr
þ 3

2

d ln Ti0

dr
þ e

Ti0

dU
dr

� �
; (26)

where x̂T ¼ VT=qR is the thermal transit frequency. It now

follows that a quasi-stationary value of the radial electric

field is given by eEr ¼ n�1
i0 dpi0=dr þ 0:5dTi0=dr. Neglecting

the small term eBhVu=c � 2eTi0 maxfjn; jTgcos h in the ra-

dial force balance equation [Eq. (16)], we readily obtain the

well-known result k¼�0.5 for the poloidal flow coefficient

in the plateau regime [see Eq. (17)].

As the collision frequency decreases, the main contribu-

tion to the integrals in Eqs. (24) and (25) comes from

the resonant particles whose parallel velocity satisfies

vres
jj =qR � �c. Because the analytical model in Eqs. (19) and

(20) neglects the mirror force and the effects of trapped par-

ticles, it is only valid in the regime where vres
jj =v� e1=2,

which requires �c� e1/2VT/qR. It is important to note that in

contrast to the Krook operator in Eq. (18), a more adequate

collision model (e.g., Lorentz, linearized Fokker-Planck,

etc.) provides an “enhanced” collision frequency for small

pitch-angle scattering, �eff� (v/vk)
2�c. Replacing �c with

�eff as done in Ref. 40 yields the conventional plateau re-

gime condition, i.e., �c� e3/2VT/qR.

Finally, for the strongly collisional (Pfirsch-Schluter) re-

gime, the first order correction to the local Maxwellian distri-

bution decreases with an increase in the collision frequency,

f1 / ��1
c (see Eq. (23)). Accordingly, the ion heat flux

decreases as Q / ��1
c , in contrast to the conventional neo-

classical result predicting Q / �2
c . This discrepancy appears

due to the fact that the Krook model annihilates only a local

Maxwellian distribution, implying f1¼ 0, whereas a more

complete collision model has nontrivial solutions to C[f1]¼ 0.

Figure 2 shows the dependence of the poloidal velocity

coefficient on the collision frequency obtained in the numeri-

cal simulations and evaluated by making use of the diagnos-

tics defined in Eq. (15). The results of the numerical

simulations are compared to the analytical predictions, where

the polodial velocity coefficient is evaluated as k ¼
ðjn þ jT � Er=Ti0Þ=jT , assuming a negligible toroidal flow

velocity. This assumption, i.e., VuBh 
 VhBu, is verified for
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the simulations over the entire range of the collision frequen-

cies considered. As expected from the analytical analysis,

excellent agreement between the simulations and the theoreti-

cal predictions is evident for �c� e1/2VT/qR.

IV. LORENTZ COLLISION MODEL

We next consider the implementation of the Lorentz col-

lision model and report on the results of neoclassical bench-

mark simulations. Note that the Lorentz operator is typically

included in more detailed collision models, and therefore

investigation of its performance is of considerable practical

importance. Written using the variables of particle’s speed

v¼ |v|, pitch-angle n¼ vk/v, and gyro-angle f velocity, the

Lorentz operator takes on a form40

CL½f � ¼
1

2
�D

v

VT

� �
@

@n
ð1� n2Þ @f

@n
þ 1

1� n2

@2f

@f2

� �
: (27)

Here, �DðxÞ ¼ �c½YðxÞ � GðxÞ�=x3 is the collisional coeffi-

cient corresponding to collisions with a Maxwellian back-

ground characterized by the thermal velocity VT, YðxÞ
¼ ð2=

ffiffiffi
p
p
Þ
Ð x

0
e�y2

dy is the error function, and GðxÞ
¼ ½YðxÞ � xY

0 ðxÞ�=2x2. For the case of ion like-species colli-

sions, the physical collision frequency, �c, corresponds to

�c ¼ 4pniZ
4
i e4lnK=ðm2

i V3
TÞ, which varies spatially owing to

the ion density and temperature dependence. Here, lnK
denotes the Coulomb logarithm. However, for the clarity of

the verifications studies, in what follows (Secs. IV–VI), we

take �c¼ const with its value being specified where

appropriate.

An accurate gyrokinetic formulation of the Lorentz op-

erator [Eq. (27)] would involve relating particle’s coordi-

nates (r,v,n,f) to the corresponding gyrokinetic variables

(R,vk,l,fgk) used in Eq. (1) and then performing proper gyro-

averaging.42,43 However, this procedure is significantly sim-

plified for the case of long-wavelength neoclassical

simulations. Note the Lorentz operator annihilates a local

Maxwellian distribution function, which is also a zero order

solution to the gyrokinetic Eq. (1). Therefore, in order to pre-

serve the accuracy of the Lorentz collision model to order di

	 (qi/R0), it is sufficient to consider the lowest (zero) order

relation between particle’s velocity coordinates and the cor-

responding gyrocenter coordinates, i.e.,

vjj � vjj; v � ðv2
jj þ 2lB=miÞ1=2; and f � fgk: (28)

Furthermore, considering the long-wavelength (drift-kinetic)

limit with max{jnqi, jTqi} 
 1, we can neglect the differ-

ence between the gyro-averaged and local quantities. Finally,

we neglect the �@2f/@f2 term in Eq. (27), assuming that the

classical gyro-diffusion is small compared to its neoclassical

counterpart.

To make use of a finite-volume (conservative) numerical

algorithm, we need to express the collision operator in con-

servative form, i.e.,

�CL½f � ¼
1

Jvjj;l

@

@l
½Jvjj;lP

l
Lðf Þ� þ

1

Jvjj;l

@

@vjj
½Jvjj;lP

vjj
L ðf Þ�; (29)

where (P
vjj
L , Pl

L) are the covariant coordinates of a vector

flux PL, and Jvjj;l is the Jacobian of the transformation (vx,

vy, vz) ! (vk, l, fgk). Consistent with Eq. (28), we consider

only the lowest-order approximation, taking Jvjj;l ¼ B=mi.

The pitch-angle scattering part of the Lorentz operator can

be represented in divergence form as

1

2
�D

v

VT

� �
@

@n
ð1� n2Þ @f

@n
¼ 1

Jv;n

@

@n
½Jv;nP

n
Lðf Þ�

þ 1

Jv;n

@

@v
½Jv;nP

v
Lðf Þ�; (30)

where Pv
L ¼ 0 and Pn

L ¼ ð1=2Þ�Dð1� n2Þ@f=@n are the co-

variant coordinates of the vector flux PL in the speed-pitch

angle velocity coordinate system (v, n, f), and Jv;n ¼ v2 is

the Jacobian of the transformation (vx, vy, vz) ! (v, n, f).

Making use of the corresponding relations44 for transforma-

tion of a vector’s covariant coordinates between (v, n, f) and

(vk, l, fgk) coordinate systems, it is straightforward to show

that

P
vjj
L ðf Þ ¼ �DðxÞ

lB

mi

@f

@vjj
� vjjl

@f

@l

� �
; (31)

Pl
Lðf Þ ¼ �DðxÞ

mi

B
v2
jjl
@f

@l
� vjjl

@f

@vjj

� �
; (32)

where x ¼ ðv2
jj þ 2lB=miÞ1=2=VT .

For the case of a single ion species, the following Lor-

entz model describing like-particle collisions is implemented

in the code:

FIG. 2. Poloidal velocity coefficient k for the case of a non-zero temperature

gradient. The polodial velocity coefficient is evaluated at h¼p/2. The param-

eters of the simulations correspond to e0¼ 0.01, q0¼ 1.2, qi/R0¼ 4.54� 10�7,

r0/DT¼ 67, jn¼ 0, qihjT¼ 0.018, (rmax�rmin)/r0¼ 0.15. The grid resolution

is nr¼ 128, nh¼ 32, nvk¼ 80, nl¼ 64, and the velocity grid size corresponds

to jvkjmax/VT¼ 3.5, lmaxBu/T0¼ 9. Results are obtained using the particle-

conserving version of the Krook collision model, i.e., gp¼ 1, gm¼ 0.
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B�jjC
COGENT
L ½f � ¼ @

@l
½Pl

LðB�jjdf Þ� þ @

@vjj
½Pvjj

L ðB�jjdf Þ�

þ gm�DvjjFMB

ð
B�jjdvjjdldf vjjð

Bdvjjdl�DvjjFM

; (33)

where df ¼ f � FM. The second term in Eq. (33) is a mo-

mentum restoring term, where the switch gm takes on only

zero or unity values. Note that for the sake of implementa-

tion simplicity, the collision operator in Eq. (33) contains

terms Pl
LðB�jjdf Þ and P

vjj
L ðB�jjdf Þ instead of the more

intuitively appealing B�jjP
l
Lðdf Þ and B�jjP

vjj
L ðdf Þ. However,

the difference appears only in order d2
i , which is higher order

than the gyrokinetic formulation under consideration.

Although the Lorentz operator in Eq. (33) conserves

energy analytically, spurious diffusion in the energy space

can appear due to the discrete (finite-difference) numerical

evaluation of the pitch–angle scattering part of the operator.

Note that the system’s energy would be exactly conserved

numerically if, for instance, energy – magnetic moment

variables were used to implement the Lorentz operator.

Although, the energy-magnetic moment coordinates is

indeed a common choice for the implementation of a gyro-

kinetic system, it introduces other numerical issues, such as

velocity-grid “cut-cells” at the vk¼ 0 boundary. The issue

of the spurious energy diffusion was addressed in more

detail in Ref. 20, where we demonstrated that while a 2nd

order accurate implementation of the Lorentz operator gen-

erates significant numerical diffusion, a 4th order implemen-

tation suppresses it to a tolerable level. Furthermore, in the

same work,20 we performed simulations of neoclassical

transport making use of the Lorentz model [Eq. (33)] with

gm¼ 0 and recovered the analytical results of Ref. 45 for

the particle and heat fluxes. Note that those neoclassical

simulations were performed for the case of a zero electric

field and assumed �D(x)	 1.

Here, we present results of neoclassical verification stud-

ies that include the effects of self-consistent electrostatic

potential variations and are performed with both the conserv-

ative (gm¼ 1) and non-conservative (gm¼ 0) versions of the

Lorentz model. The results of the illustrative neoclassical

simulations are shown in Figs. 3 and 4. Figure 3 illustrates

the time evolution of the self-consistent radial electric field

corresponding to weakly collisional (banana) and strongly

collisional (Pfirsch-Schluter) regimes. Figure 4 shows the

poloidal velocity coefficient, k [see Eq. (17)], and the ion heat

diffusivity

v ¼ � Q

niðdTi=drÞ (34)

plotted for different values of the normalized collision fre-

quency defined by35

�� ¼ 4

3
ffiffiffi
p
p qR0

VT
e�3=2�c

B0

BT
; (35)

FIG. 4. Plots of the poloidal velocity coefficient, k, evaluated at h¼p/2 [frame (a)], and the normalized heat diffusivity, v=ðq̂2
i X̂ iÞ, [frame (b)], versus the nor-

malized collision frequency �* [Eq. (35)]. Here, q̂ i ¼ 2Ti0=mX̂
2

i . The results of COGENT simulations obtained using the conservative, i.e., gm¼ 1, (blue dia-

monds) and non-conservative, i.e., gm¼ 0, (green triangles) versions of the Lorentz collision operator are compared against the analytical predictions given in

Sec. III. The parameters of the simulations are the same as in Fig. 3.

FIG. 3. Time evolution of the normalized radial electric field, eErr0/T0, for

the weakly collisional (solid red curve) and strongly collisional (dashed pur-

ple curve) cases. Results are obtained using the conservative, i.e., gm¼ 1,

version of the Lorentz collision model. The parameters of the simulations

correspond to e0¼ 0.1, q0¼ 1.2, qi/R0¼ 1.7� 10�5, r0/Dn¼ r0/DT¼ 71,

qihjn¼qihjT¼ 0.007, (rmax�rmin)/r0¼ 0.1. The grid resolution is nr¼ 32,

nh¼ 16, nvk¼ 96, nl¼ 48, with jvkjmax/VT¼ 3, lmaxBu/T0¼ 9 in the banana

regime, and nr¼ 32, nh¼ 16, nvk¼ 48, nl¼ 32, with jvkjmax/VT¼ 3.5,

lmaxBu/T0¼ 11 in the Pfirsch-Schluter regime.
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where B0 ¼ ðB2
T þ B2

pÞ
1=2

. The parameters of these illustrative

examples correspond to: q0¼ 1.2, e0¼ 0.1, qihjn¼qihjT

¼ 0.007, qi/R0¼ 1.7� 10�5, r0/Dn¼ r0/DT¼ 71, and (rmax�
rmin)/r0¼ 0.1. The results of the numerical simulations are

found in good agreement with the following analytical

predictions.

(a) Weakly collisional regime (�*
 1), large aspect ra-
tio (e
 1), momentum-conservative Lorentz model (gm¼ 1)

The poloidal velocity coefficient, k, and the heat diffu-

sivity, v, are given in this regime approximately by40

k ¼ 1:17
ð1� 1:46

ffiffi
e
p
Þ

h2
; (36)

v ¼ 0:71�ce
�3=2q2 Ti0

miX̂
2

i

; (37)

where h ¼ 1þ ecos h and X̂i ¼ ZieB0=mic.

(b) Weakly collisional (banana) regime (�* 
 1), large
aspect ratio (e
 1), non-conservative Lorentz model (gm¼ 0)

The analysis in Ref. 40 performed for the case of a

momentum-conserving Lorentz model can be generalized in

a straightforward manner to obtain

Vh ¼
ð1� 1:46

ffiffi
e
p
Þ

h

cTi0

ZieBT

� d ln ni0

dr
þ Zie

Ti0

dU
dr
þ fx2g � 3

2

� �
d ln Ti0

dr

� �
; (38)

Q ¼ �e�1=2q2ni0
T2

i0

miX̂
2

i

d ln ni0

dr
þ Zie

Ti0

dU
dr
� 3

2

d ln Ti0

dr

� ��

� fx2�DðxÞg þ
d ln Ti0

dr
fx4�DðxÞg

�
; (39)

where the operator {A(x)} is defined for an arbitrary function

A(x) as

fAðxÞg ¼ 8

3
ffiffiffi
p
p
ð1

0

AðxÞe�x2

x4dx: (40)

As discussed in Sec. III, collisions that do not conserve mo-

mentum generate a non-trivial particle flux in order (jn,Tqi)
2.

Following the analysis in Ref. 40, it is straightforward to

show that

C ¼ �e�1=2q2ni0
Ti0

miX̂
2

i

d ln ni0

dr
þ Zie

Ti0

dU
dr
� 3

2

d ln Ti0

dr

� ��

� f�DðxÞg þ
d ln Ti0

dr
fx2�DðxÞg

�
: (41)

The quasi-stationary radial electric field can now be obtained

from the requirement of the quasi-neutrality, which for the

case of the adiabatic electron response in Eq. (6) requires

C¼ 0. It follows that

k ¼ 1:17
ð1� 1:46

ffiffi
e
p
Þ

h2
; (42)

v ¼ 0:71�ce
�3=2q2 Ti0

miX̂
2

i

; (43)

which is identical to the corresponding values of the poloidal

velocity coefficient and heat diffusivity obtained for the con-

servative version of the Lorentz collision model [Eqs. (36)

and (37)].

(c) Strongly collisional (Pfirsch-Schluter) regime (�cVT/
qR � 1), large aspect ratio (e 
 1), non-conservative Lor-
entz model (gm¼ 0)

Extending the analysis in Ref. 45 to the case where the

collision frequency is an arbitrary function of a particle’s

speed, it is straightforward to show that

C ¼ �q2ni0
2Ti0

miX̂
2

i

B0

BT

d ln ni0

dr
þ Zie

Ti0

dU
dr
� 3

2

d ln Ti0

dr

� ��

� f�DðxÞg þ
d ln Ti0

dr
fx2�DðxÞg

�
(44)

and

Q ¼ �q2ni0
2T2

i0

miX̂
2

i

B0

BT

d ln ni0

dr
þ Zie

Ti0

dU
dr
� 3

2

d ln Ti0

dr

� ��

� fx2�DðxÞg þ
d ln Ti0

dr
fx4�DðxÞg

�
: (45)

Again, determining the radial electric field by forcing the

particle flux in Eq. (44) to zero, we obtain

v ¼ 0:71�cq2 2Ti0

miX̂
2

i

B0

BT
: (46)

It can be shown for a strongly collisional regime that the

quasi-stationary toroidal flow velocity corresponding to the

non-conservative Lorentz collision model, gm¼ 0, is much

smaller than the diamagnetic velocity. We can therefore

neglect the term (Zie/c)VuBh in Eq. (16) to obtain

k ffi 1:17
B0

BT
: (47)

In conclusion, we briefly discuss some features of the ra-

dial electric field time evolution. The system relaxation to a

quasi-stationary state shown in Fig. 3 is accompanied by

GAM oscillations.46 There are two mechanisms for the

GAM relaxation: collisional, which occurs on a collision

time scale �1/�c, and collisionless phase mixing. Collision-

less relaxation of long-wavelengths GAMs with k?qi 
 1

occurs as the result of wave-particle interaction between

GAMs and passing particles whose poloidal velocity satisfies

the resonant condition jvres
h j=r � xGAM. Here, xGAM � VT=R

is the GAM frequency. Assuming Er
 VTBh/c, which corre-

sponds to the parameters of the illustrative simulations in

Fig. 3, it follows that vres
h ¼ vres

jj Bh=B, and we obtain a well-

known result jvres
jj j � qVT . Note that the parameters of the il-

lustrative numerical simulations in Fig. 3 correspond to

q0¼ 1.2, therefore the resonant velocity is close to the ther-

mal velocity, and the collisionless relaxation is strong. In

particular, it is evident for the weakly collisional regime (see

Fig. 3) that the GAM relaxation occurs on a time scale less

than 1/�c, i.e., the collisionless relaxation dominates. After

GAM oscillations are damped, the radial electric field
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continues to relax to its quasi-stationary (“neoclassical”)

value on a collisional time scale.46

Finally, we note that although the second burst of GAMs,

which occurs at �ct� 0.5 for the weakly collisional case, can

be attributed to the physical effects of nonlinear wave-particle

interaction, its parameters are sensitive to the velocity grid re-

solution. For instance, the burst appears at a slightly later time

and has a substantially smaller amplitude when the velocity-

space resolution is increased. This reduction with mesh reso-

lution implies that the burst can be also attributed to the nu-

merical recurrence phenomena described in Ref. 47. While a

detailed analysis of this effect is outside the scope of the pres-

ent work, it is important to note that the characteristics of the

system in the final relaxed (quasi-stationary) state are numeri-

cally converged. That is, an increase in the phase-space reso-

lution does not affect the results shown in Fig. 4.

V. LINEARIZED MODEL COLLISION OPERATOR

For the case where the particle distribution function is

close to a local Maxwellian distribution, a linearized approxi-

mation to the full non-linear Fokker-Planck collision operator,

CFP, is often used to describe the like-species collisions, i.e.,

CFP½f ; f � � CFP½df ;FM� þ CFP½FM; df �; (48)

where df ¼ f � FM. The first term on the right-hand-side of

Eq. (48) describes collisions with a Maxwellian background,

including energy diffusion and pitch angle scattering, and is

given by40

CFP½df ;FM� ¼ CL½df �

þ 1

2

1

v2

@

@v
v3 �sðxÞdf þ �jjðxÞv

@df

@v

� �� �
:

(49)

Here, CL[df] is the Lorentz operator defined in Eq. (27),

x¼ v/VT is the normalized particle speed, �sðxÞ ¼ 4x�1

�cGðxÞ, and �jjðxÞ ¼ 2x�3�cGðxÞ. The constant collision fre-

quency �c¼ const and the coefficient G(x) are defined in

Sec. IV. The exact evaluation of the second term in Eq. (48)

is, however, nearly as challenging as the evaluation of the

full nonlinear Fokker-Plank operator. Therefore, in simpli-

fied linearized collision models, this term is typically

replaced by a few terms chosen to ensure that the model op-

erator maintains certain features (e.g., conservation proper-

ties) of the original linearized operator [Eq. (48)]. The

following linearized collision model21 is utilized in the

COGENT code

CFP½FM; df � ! �s
2v � �U½df �

V2
T

FM þ �E
v2

V2
T

�Q½df �FM; (50)

where

�EðvÞ ¼ �
�c

v4FM

@

@v
v5�jjFM; (51)

and the functionals �U½df � and �Q½df � are now uniquely chosen

to ensure the momentum and energy conservation properties21

�U½df � ¼ 3

2

ð
�svdfd3vð

x2�sFMd3v

; (52)

�Q½df � ¼

ð
v2�Edfd3vð

v2x2�EFMd3v

: (53)

As shown in Ref. 21, this model linearized collision operator

[Eqs. (48)–(53)] ensures the following properties of the origi-

nal linearized collision operator: it conserves particles,

momentum, and energy, obeys Boltzmann’s H-theorem (colli-

sions cannot decrease entropy), and vanishes for the case

where df is represented by a linear combination of FM, vFM,

and v2FM.

A detailed gyrokinetic formulation of the linearized

model operator [Eqs. (48)–(53)] is given in Ref. 21. However,

for the case of long-wavelength neoclassical simulations con-

sidered in this work, it is sufficient to use the simplified “drift-

kinetic” version of the operator (see Sec. IV), which takes on

the following form in the (vk, l) coordinates

B�jjC
COGENT
LINEAR ½f � ¼

@ðPl
L þPl

EDÞ
@l

þ @ðP
vjj
L þP

vjj
EDÞ

@vjj

þ gmMR þ gE

@Pl
ER

@l
þ @P

vjj
ER

@vjj

� �
: (54)

The first two terms on the right-hand-side of Eq. (54) corre-

spond to CFP½df ;FM� in Eq. (48), where the collisional Lor-

entz fluxes P
vjj
L and Pl

L are specified by Eqs. (31) and (32),

and the energy-diffusion collision fluxes P
vjj
ED and Pl

ED are

given by

P
vjj
ED ¼

1

2
�sðxÞvjjB�jjdf þ 1

2
�jjðxÞvjj 2l

@B�jjdf

@l
þ vjj

@B�jjdf

@vjj

� �
;

(55)

Pl
ED ¼ �sðxÞlB�jjdf þ �jjðxÞl 2l

@B�jjdf

@l
þ vjj

@B�jjdf

@vjj

� �
:

(56)

Note that similar to the implementation of the Lorentz

operator (see Sec. III), the collision fluxes in Eqs. (55) and

(56) are calculated for the combination B�jjdf . From Eqs.

(50) and (52), it follows that the momentum restoring term

MR is

MR ¼ �sðxÞvjjFMB

ð
B�jjdvjjdldf vjjð

Bdvjjdl�sðxÞvjjFM

: (57)

The last two terms in the curly brackets on the right-hand-

side of Eq. (54) correspond to the conservative (divergent)

form of the energy restoring term, where
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P
vjj
ER ¼ �

1

2
�sðxÞvjjBFM

ð
B�jjdvjjdlx2�EðxÞdfð
Bdvjjdlx4�EðxÞFM

; (58)

Pl
ER ¼ ��sðxÞlBFM

ð
B�jjdvjjdlx2�EðxÞdfð
Bdvjjdlx4�EðxÞFM

: (59)

Finally, as in Sec. IV, x ¼ ðv2
jj þ 2lB=miÞ1=2=VT , df ¼ f

�FM, and the switches gm and gE take on only zero or unity

values. The model energy restoring term specified by Eqs.

(50) and (51) can be implemented in the conservative form

[see Eqs. (54), (58), and (59)], and therefore the finite-volume

(conservative) discretization scheme provides exact (numeri-

cal) particle conservation.

The implementation of the model linearized operator

[Eqs. (54)–(59)] has been tested in a series of verification

studies. First, accurate annihilation of the distribution func-

tion perturbation df represented by a linear combination of

FM, v‖FM, and v2FM is demonstrated. Next, Fig. 5 shows the

results of the neoclassical simulations performed with the

model linearized operator. The system parameters assumed

in these simulations are the same as in Fig. 4 (see Sec. IV).

The results of the numerical simulations for the poloidal ve-

locity coefficient, k, and heat diffusivity, v¼�Q/[ni(dTi/

dr)], are compared to approximate analytical predictions that

take into account the effects of a finite inverse aspect ratio

(e) and provide interpolation between the weakly collisional

(banana) and strongly collisional (Pfirsch-Schluter) regimes.

Figure 5 illustrates the NCLASS-code48 predictions for the

poloidal velocity coefficient and Chang-Hinton predictions49

for the ion heat diffusivity. Assuming no Shafranov shift

[consistent with the magnetic geometry in Eq. (8)], the

Chang and Hinton approximation has the following form:

v ¼ K2e
1=2 q2

ih

si
: (60)

Here, qih ¼ VTmic=ðZieBpÞ is the poloidal gyroradius,

si ¼ 3
ffiffiffi
p
p

=ð2
ffiffiffi
2
p

�cÞ, and the coefficient K2 is given by

K2 ¼
0:66þ 1:88

ffiffi
e
p
� 1:54e

1þ 1:03
ffiffiffiffiffi
��
p

þ 0:31�� 1þ 3

2
e2

� �

þ 0:58e��
1þ 0:74e3=2�� 1þ 3

2
e2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p� �

; (61)

where the normalized collision frequency is given in Eq. (35).

Figure 5 shows that the results of the simulations are

found to be consistent with the analytical predictions in Refs.

48 and 49. Note, however, that exact agreement should not be

expected since the analytical studies assume collision models

that are different from the one given in Eqs. (54)–(59), and

furthermore there are no analytical methods for a rigorous

treatment of the intermediate collisionality regime, i.e.,

�*� 1. The level of quantitative discrepancy is found to be

similar to that observed in verification studies performed with

other gyrokinetic codes.17,18

VI. EFFECTS OF A STRONG RADIAL ELECTRIC FIELD

The properties of neoclassical transport can be significantly

affected by a strong radial electric field corresponding to

Er � VTBh=c: (62)

A radial electric field of this magnitude can be present in the

steep edge of a tokamak under H-mode conditions. Indeed,

the length scale for plasma density variations in a tokamak

edge can be of the order of the poloidal ion gyroradius,

jnqih� 1, and the estimate in Eq. (62) follows from the ra-

dial force balance equation [Eq. (16)], provided the ion flow

velocities are less than the thermal velocity, i.e., Vh, Vu<VT.

FIG. 5. Plots of the poloidal velocity coefficient, k, evaluated at the outer midplane (h¼ 0), [frame (a)], and the normalized heat diffusivity, v=ðq̂2
i X̂ iÞ, [frame

(b)], versus the normalized collision frequency �* [Eq. (35)]. The results of the COGENT simulations (red dots) are compared with the results obtained with

the NCLASS code [blue dashed curve in frame (a)] and the Chang-Hinton analytical approximation [blue dashed curve in frame (b)] given in Eqs. (60) and

(61). The parameters of the simulations correspond to e0¼ 0.1, q0¼ 1.2, qi/R0¼ 1.7� 10�5, r0/Dn¼ r0/DT¼ 71, qihjn¼qihjT¼ 0.007, (rmax-rmin)/r0¼ 0.1.

The grid resolution is nr¼ 32, nh¼ 16, nvk¼ 96, nl¼ 48, with jvkjmax/VT¼ 3, lmaxBu/T0¼ 9 in the banana regime, and nr¼ 32, nh¼ 16, nvk¼ 48, nl¼ 32, with

jvkjmax/VT¼ 3.5, lmaxBu/T0¼ 11 in the Pfirsch-Schluter regime. Results are obtained using the momentum and energy conserving form, i.e., gE¼ gm¼ 1, of

the model linearized operator given in Eq. (54).
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Recent analytical studies demonstrated that the presence

of the strong radial electric field given in Eq. (62) signifi-

cantly modifies the conventional results of the neoclassical

formalism developed for a tokamak core region where

Er
VTBh/c.22,23 In particular, it was shown that a strong ra-

dial electric field provides suppression of the neoclassical ion

heat flux. Also, it was demonstrated for a weakly collisional

(banana) regime that the poloidal ion flow can change its

direction as compared with its core counterpart. The modifi-

cations come primarily from the fact that the conventional

neoclassical analysis neglects the E�B drift velocity contri-

bution to the poloidal advection term in the ion drift-kinetic

equation, i.e., ð _R � ehÞr�1@f=@h � ðvjj=qRÞ@f=@h is assumed.

While this assumption is typically valid in the tokamak core

region, the presence of a strong radial electric field in the

edge [Eq. (62)] makes the contribution of the E�B drift to

the ion poloidal velocity comparable to the parallel streaming

contribution, and therefore it can no longer be neglected.22,23

Retaining the E�B piece of the advection velocity in the

analysis of the quasi-stationary neoclassical equilibrium, i.e.,

ð _R � ehÞr�1@f=@h � ðvjj=qRþ cErBu=B2rÞ@f=@h, has im-

portant consequences. In particular, the E�B velocity modi-

fies the shape of the boundary between trapped and passing

particles, shifting it toward the tail of the ion distribution

function. For a weakly collisional regime, this leads to a sup-

pression of ion heat flux and a change in the poloidal flow

direction.22

The gyrokinetic model implemented in the COGENT

code [Eqs. (1)–(4)] offers an accurate description of long-

wavelength neoclassical physics including the parameter re-

gime where a radial electric field is the order of that in Eq.

(62), provided Bh
 Bu. It is therefore of considerable practi-

cal interest to numerically investigate the effects of a strong

radial electric field on the neoclassical transport coefficients.

Figure 6 shows the results of the numerical simulations corre-

sponding to the case of a weakly collisional regime with

�*¼ 0.3 obtained using the conservative version of the linear-

ized collision model, i.e., gm¼ gE¼ 1. Each data set illus-

trated in Fig. 6, which includes the poloidal velocity

coefficient, ion heat diffusivity, and normalized radial electric

field, corresponds to an independent simulation distinguished

by its value of the initial density gradient, jn. All data sets are

evaluated at the radial coordinate r� 0.98r0, corresponding

to a local maximum value of the radial electric field for the

simulation with the steepest density gradient. In order to

reduce the computational time required to simulate slow

(nearly collisionless) relaxation of large-amplitude GAM

oscillations associated with steep density gradients, we start

the simulations (in Fig. 6) with a higher collision frequency,

�*¼ 10.5. As the GAMs are rapidly (collisionally) damped,

the collision frequency is slowly (adiabatically) reduced to its

steady-state value of �*¼ 0.3. Finally, we consider inverse

density and temperature profiles, i.e., jn< 0, jT< 0, for the

simulations presented in this section. While similar results

are obtained in the interior of the simulation domain for either

sign of jn and jT, fewer numerical artifacts near the domain

boundaries are observed for the case where jn< 0, jT< 0.

Consistent with the analytical prediction in Ref. 22, the

simulations recover a change in the poloidal velocity direction

and a suppression of ion heat flux. However, there is also a

pronounced quantitative discrepancy. The latter can plausibly

be attributed to finite inverse aspect ratio, e, corrections.

Indeed, the analytical calculation in Ref. 22 retains only the

lowest order effects in e. For instance, in the limit of a small

radial electric field Er
 VTBh/c, corresponding to the conven-

tional neoclassical formalism, the analysis in Ref. 22 recovers

k¼ 1.17. However, for the case of e0¼ 0.029, which is used in

the present illustrative simulations, a more accurate estimate

[Eq. (36)] predicts a significantly different value, k¼ 0.88.

Also, the differences between the linearized collision model in

Eqs. (54)–(59) and that used in Ref. 22 become increasingly

important for finite values of e. Finally, for the case of steep

density gradients, jnqih� 1, and a non-uniform temperature

distribution, nonlocal effects appear for finite values of e. That

is, the variations in the ion density become pronounced on the

banana-width length scale, Dban� e1/2qih. The analytical treat-

ment in Ref. 22 assumes the local-theory limit (jnDban
 1),

which implies e1/2 
 1. However, this constraint is not well-

satisfied in the present simulations corresponding to e1/

2¼ 0.17. Also note that the collisionality constraint for a

weakly collisional (banana) regime, i.e., �* 
 1, is not well-

satisfied in the present simulations performed for �*¼ 0.3. In

principle, an attempt to reproduce the results of the analytical

results quantitatively could be made by decreasing the colli-

sion frequency along with the inverse aspect ratio, e. How-

ever, a significant decrease in the inverse aspect ratio below

its present value of e0¼ 0.029 would require simulation times

beyond the scope of this initial study.

In conclusion, we note that a strongly sheared equilib-

rium electric field can significantly suppress turbulent

FIG. 6. Plots of the poloidal velocity coefficient, k (blue diamonds), and the

normalized ion heat diffusivity, v/vBAN (red circles) evaluated at h¼p and

r� 0.98r0, versus the normalized radial electric field. Here, vBAN is the

weakly collisional ion heat diffusivity given in Eq. (37). The parameters of

the simulations are e0¼ 0.029, q0¼ 1.2, �*¼ 0.3, qi/R0¼ 9.2� 10�5, (in r0/

Dn)¼ r0/DT¼ 21, qihjT¼�0.13, (rmax�rmin)/r0¼ 0.4375, jvkjmax/VT¼ 3.5,

lmaxBu/T0¼ 9. The normalized density gradients used in the simulations cor-

respond to �qihjn¼ 0.13; 0.67; 1.61; 2.2. The grid resolution is [nr¼ 48,

nh¼ 32, nvk¼ 96, nl¼ 48], and [nr¼ 64, nh¼ 32, nvk¼ 128, nl¼ 80] for the

simulations with the minimum and maximum values of the density gradient,

respectively. Results are obtained using the momentum and energy conserva-

tive form, i.e., gE¼ gm¼ 1, of the model linearized operator given in Eq. (54).
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transport,50 therefore a detailed analysis of neoclassical

transport in the steep edge region of a tokamak is of consid-

erable practical importance. In addition to a strong radial

electric field, the edge of a diverted tokamak is distinguished

by ion orbit losses, which can also significantly influence the

properties of neoclassical transport. While the orbit loss

effects provide a significant challenge for a detailed analyti-

cal analysis, our newly available divertor version of the

COGENT code, which includes both the pedestal and the

scrape-off-layer (SOL) regions, will allow us to perform a

detailed numerical investigation of these phenomena.

VII. CONCLUSIONS

In this paper, we report on the development and applica-

tion of the nonlinear continuum gyrokinetic code COGENT

for edge plasma simulations. The code is distinguished by

the use of a fourth-order finite-volume (conservative) discre-

tization combined with arbitrary mapped multiblock grid

technology (nearly field-aligned on blocks) to handle the

complexity of divertor geometry with high accuracy. While

the discussion of the numerical algorithms and the initial

advection tests is reported elsewhere,13,14 the present work

discusses the implementation of various collision models

and analyzes code results for advanced neoclassical simula-

tions including the effects of self-consistent variations in the

electrostatic potential. In particular, we discuss the imple-

mentation and testing of the Krook, Lorentz, and recently

model linearized collision operators proposed.21 The results

of the neoclassical simulations performed with these opera-

tors are found to be in good agreement with various analyti-

cal predictions.

In addition, we give results of the first numerical simula-

tions of neoclassical transport including the effects of a

strong (self-consistent) radial electric field on the ion poloi-

dal flow and heat flux. Recent analytical studies22,23 demon-

strated that the presence of a strong radial electric field of

order Er�VTBh/c, which is consistent with a subsonic pedes-

tal equilibrium under H-mode conditions, modifies the con-

ventional results of the neoclassical formalism developed for

the core region, where Er 
 VTBh/c. In particular, it was

shown that a strong radial electric field provides suppression

of the neoclassical ion heat flux. In addition, it was demon-

strated for a weakly collisional (banana) regime that the

poloidal ion flow can change its direction as compared with

its core counterpart. These earlier findings were applied to

elucidate the discrepancy between the conventional banana

regime predictions and recent experimental measurements of

the impurity flow performed on the Alcator C-Mod toka-

mak.24 The results of the self-consistent numerical simula-

tions obtained using the COGENT code in a weakly

collisional regime are found to be in good qualitative agree-

ment with the theoretical predictions in Ref. 22. In particular,

a change in the poloidal ion flow direction and a suppression

of the ion heat flux are demonstrated. A quantitative discrep-

ancy between the results of the analytical analysis and the

numerical simulations is discussed and shown to be likely

due to a combination of finite aspect-ratio, finite orbit-size,

and finite-collision-frequency effects. Finally, we note again

that the results of the self-consistent neoclassical simulations

for the case of steep density gradients (characteristic of a

tokamak edge) are obtained with the closed-flux-surface ver-

sion of the code. Our future work will extend the analysis to

include the effects of ion orbit losses by making use of the

newly available divertor version of the COGENT code,

which includes both the pedestal and the scrape-off-layer

regions.
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