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Simulation of neoclassical transport with the continuum gyrokinetic code

COGENT
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The development of the continuum gyrokinetic code COGENT for edge plasma simulations is
reported. The present version of the code models a nonlinear axisymmetric 4D (R, v, w)
gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is
the particle gyrocenter coordinate in the poloidal plane, and v and p are the guiding center velocity
parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a
fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock
grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor
geometry with high accuracy. Topics presented are the implementation of increasingly detailed
model collision operators, and the results of neoclassical transport simulations including the effects
of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions.
© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4776712]

. INTRODUCTION

Due to a wide range of collisionality regimes, short radial
length scales for density and temperature variations (compa-
rable to particle drift orbit excursions), and scale lengths
along the magnetic field comparable to collisional mean free
paths, a kinetic simulation is required for an accurate model-
ing of transport processes in the edge of a tokamak.' Pres-
ently, there are two main approaches to solving a kinetic
equation: (i) the particle-in-cell (PIC) method, in which one
uses macroparticles to integrate along the characteristic of the
kinetic equationz’5 and (ii) the continuum method in which
the kinetic equation is discretized on a phase-space grid.®™®
The application of the PIC approach to some important prob-
lems of tokamak edge dynamics may, however, require a
very large number of macroparticles to suppress numerical
noise. Among these problems is the simulation of low-
amplitude turbulence under H-mode conditions, subject to an
adequate representation of the background quasi-equilibrium
dynamics.l Moreover, even for the case of axisymmetric
(non-turbulent) transport, adequate modeling of the electron
and ion heat fluxes to the divertor plates requires resolving
the energy distribution function for suprathermal particles,
which implies a very large total number of macroparticles per
cell.” For instance, as pointed out in Ref. 9 for the case of a
PIC code written in one dimension of configuration space, to
have a moderate noise level of ¢ ~ 1/+/N, ~ 0.1 for particles
with energy &.T = 10T, requires [¢exp(—¢)o?] ' ~ 10° parti-
cle per cell. Here, N, is the number of macroparticles with
energy ¢., and T is the effective temperature of the particle
distribution. These and other issues motivate the use of con-
tinuum kinetic codes for the numerical modeling of a toka-
mak edge.

Making use of advanced numerical methods from the
fluid community and building on the success of continuum
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core-region codes (e.g., GYRO,10 GENE,11 etc.) and the con-
tinuum edge code TEMPEST,8 the edge simulation labora-
tory collaboration (ESL)12 has started development of a new
continuum kinetic code COGENT for edge plasma simula-
tions. The code is distinguished by the use of a fourth-order
finite-volume (conservative) discretization'>'* combined
with arbitrary mapped multiblock grid technology'* (nearly
field-aligned on blocks) to handle the complexity of divertor
geometry with high accuracy. Another distinguishing feature
of the code is the use of the Colella-Sekora flux-limiter to
suppress unphysical oscillations about discontinuities while
maintaining high-order accuracy elsewhere.'> Finally, the
code is written in v|-u (parallel velocity — magnetic moment)
variables, which avoids “cut-cell” issues appearing, for
instance, when E — u (energy — magnetic moment) variables
are used such that the v =0 phase-space boundary does not
align with the mesh.

It is of great importance for gyrokinetic code develop-
ment to analyze numerical and physical properties of
reduced collision models as well as to achieve a detailed
understanding of code performance in neoclassical simula-
tions, which is an important step in the process of modeling
the complex tokamak plasma dynamics.'®'? In the present
work, we report on the implementation of a succession of
increasingly comprehensive collision operators and discuss
their performance in neoclassical simulations carried out
using the local closed-flux-surface version of the COGENT
code. This work extends our previous analysis*® to including
the effects of a self-consistent electric field and also imple-
menting more detailed collision options. In particular, here
we discuss the implementation and testing of a recently pro-
posed model linearized collision operator.?!

Finally, we present self-consistent neoclassical simula-
tions performed for the case of steep density gradients,
L~ p;p, characteristic of a tokamak edge under H-mode

© 2013 American Institute of Physics
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conditions. Here, p;y is the poloidal ion gyro-radius, and L is
the radial length-scale for variation of the plasma density.
Recent analytical studies demonstrated that a strong radial
electric field consistent with these steep density gradients
can have a significant influence on the properties of neoclass-
ical transport in a tokamak pedestal.>>~* In particular, a sup-
pression of the ion heat flux and a change in the poloidal ion
flow direction in a weakly collisional (banana) regime were
demonstrated. In this work, we present first numerical simu-
lations of these phenomena demonstrating qualitative agree-
ment with the results of the analytical calculations.

The paper is organized as follows: The simulation
model is summarized in Sec. II. In Sec. III, we report on
benchmark exercises using the simple Krook collision
model to test the code performance in self-consistent neo-
classical simulations. The implementation and testing of the
Lorentz operator and the model linearized collision opera-
tor are discussed in Secs. IV and V, respectively. Finally, in
Sec. VI, we present the results of neoclassical simulations
taking into account the effects of a strong (self-consistent)
radial electric field.

Il. SIMULATION MODEL

The present 4D version of the COGENT code solves an
axisymmetric gyrokinetic equation for a gyrocenter distribu-
tion function f,,(R,v,u,f) written in conservative form?>

OB, mf“
o VRBILL) +

8l (B = BLGLAL (D)

Here, o denotes the particle species, V is the gradient with
respect to R, and the guiding center velocity R is given by

R, =

B (Z,eNVO + uVB)|.  (2)
[lox

The evolution of the guiding center parallel velocity is deter-
mined from

B; - (Z,eN® + uVB), 3)

where m, and Z, are the species mass and charge state,
respectively, e is the electron charge, ®(R,f) describes the
long wavelength neoclassical electrostatic potential variation,
B(R) = Bb is the magnetic field with b denoting the unit vec-
tor along the field, B} (R, v|) = B + (m,v|/Z,e)V x b, and
Bua(R V) = B, - b. Finally, C[f,] denotes the collision oper-
ator, and the presently available collision models include a
simple drag-diffusion operator in parallel velocity,” Krook
collisions (Sec. III), Lorentz collisions (Sec. IV), and a linear-
ized model Fokker-Planck collision operator conserving mo-
mentum and energy”’ (Sec. V).

The present version of the code utilizes a long wave-
length approximation, k;p, < 1, to represent the gyroki-
netic Poisson equation for electrostatic potential variations in
the form?’
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Here, p,=V7,/Q, is the particle thermal gyroradius,
Q,=Z,eB/(m,c) is the cyclotron frequency, k' represents
the characteristic length-scale for variations of the electro-
static potential, V, =V —b(b - V), and the guiding center
density 7, .. is specified by

2 2
Nyge = JBJdV|d#{fa 322 o M ifx} )

Electrons can be modeled either kinetically or through use of
a Boltzmann (in the linear limit, adiabatic) approximation,
with various options for the coefficient of the Boltzmann fac-
tor.'*2® In particular, for the single-ion-species neoclassical
simulations reported in this work, we use a Boltzmann model
for the electron density of the form

P )

(exple®/T.())]) ©

Here,  is the poloidal flux function, T,(i) corresponds to
the electron temperature distribution across magnetic flux
surfaces, n; is the initial ion density distribution, and Z; =1
is assumed. Making use of the long wavelength approxima-
tion, we neglect the small “pressure-term” corrections [the
second term in the curly brackets in Eq. (5)] and adopt
Nige = (2/m;) jfBH dvydp and njg = (2n/m;) [fi(t =0 Bj;
dv)du for the COGENT implementation of the gyro-
Poisson system. The flux surface average operator intro-
duced in Eq. (6) is defined as

dl dl
V)(Y) = ”/3“ 7

where the integration should be taken one turn around the
torus in the polodial direction. Finally, for all neoclassical
simulations discussed here, the Neumann boundary condi-
tion, d®/Oy =0, is imposed at the domain boundaries. Note
that the electron model in Eq. (6) yields a zero flux surface
averaged radial electron particle flux. The quasi-neutrality of
the “final” quasi-stationary state, therefore, requires the cor-
responding flux surface averaged ion particle flux to be zero
as well.

The COGENT code has various options for the magnetic
field geometry. In particular, the Miller model®’ is available
to describe a closed flux surface (core) region. Also, X-point
(single-null) geometry is available in the divertor version of
the code. For simplicity, here we consider a magnetic geom-
etry with concentric circular flux surfaces yielding

B,(r,0)
Be(r, 0)

= BrRo/(Ro + rcos ), (8a)
= B,Ro/(Ry + rcos0). (8b)

Here, r is the minor radius coordinate, 6 is the poloidal
angle increasing in the counterclockwise direction, =0
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corresponds to the outer midplane, and the directions of the
coordinate system unit vectors are given by [e. X e,] = ey.
For the simulations reported, we adopt a “local” magnetic
geometry, taking By and B), to be constants. The safety factor
q and the inverse aspect ratio ¢, which are used below, are
defined as g = ¢B /By, and ¢ =r1/R,, where Ry is the tokamak
major radius. We also introduce gy = &yB/B,, and &, =ro/Ry,
where 7o = (";uin + T'max)/2 corresponds to the middle of the
simulation domain, and r,,, and r,,, are the minor radius
coordinates corresponding to the domain boundaries. Unless
stated otherwise (e.g., Sec. VI), we present the result of the
numerical simulations evaluated at r = ry,.

For simplicity, we consider the case of a single ion spe-
cies with Z; =1, and m; =2m,,, where m,, is the proton mass.
The initial distribution function is taken to be a local Max-
wellian distribution

N1
Fu(r,0,v), 1) = (7’) no; ()

27‘CT,‘()(I‘)
2
mivi - uB(r,0)
— 9
2T,~o(r) T,‘o(i‘) ‘| ( )

X exp [

where the initial density and temperature profiles are speci-
fied by

nio(r) = no{1 — 1, A, tanh[(r — ro) /A, }, (10)
Tio(r) = To{l — krArtanh[(r — ro)/Ar]}. (11

The electron temperature in Eq. (6) is assumed to be equal to
the ion temperature at the middle of the domain, i.e.,
T.(r)=T,. Finally, for future reference, we define the ion
thermal velocity as V= QTo/m)">.

Neoclassical verification studies involve detailed anal-
ysis of the flux-surface-averaged radial particle and heat
fluxes as well as the parallel V) and poloidal Vj flow veloc-
ities. These quantities are calculated in the code as follows:

2 .
r- <Jnjgrdv|dﬂ(R . e,)f>, (12)
2n Vﬁ uB .
0= J—Bﬁdvnd,um,- o>+ —+Ze® | (R-e)f ), (13)
m; 2 n;
1 2

1 (2n , .
Vo = —‘[%B”dVHd,u(R : eg)f

n;

2
[v X (bj%B*dvdeﬂ ey, (15)

Z,-en,-

where n; = J"(Zn/m,-)Bﬁdeduf, e, denotes the unit vector in
the poloidal direction, and the subscript i (denoting ions) has
been suppressed in the notation for f,, R,, and Bﬁm. The diag-
nostics in Eq. (13) corresponds to the total (i.e., the sum of
kinetic and potential) energy flux. However, in the final state
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where the ion particle flux I' decays to zero, the energy flux
in Eq. (13) becomes equal to the conductive heat flux.'®®
Details of the poloidal flow velocity diagnostics [Eq. (15)],
which involves not only the guiding center flow (the first
term) but also the curl of the magnetization (the second
term), can be found in Ref. 29.

Although the flow velocity diagnostics introduced in
Egs. (14) and (15) seem intuitively appealing, it is important
to discuss their accuracy in representing the actual velocity
moments of the fully kinetic (6D) distribution function. Note
that the guiding center parallel velocity coordinate, v, is not
identical to a particle’s parallel velocity. A finite difference
associated with the so-called Banos drift®° appears already in
first order in o;, where 0;,=(p;/Ro) < 1, and therefore the
flow velocity calculations are, in principal, only accurate in
the zero order. However, for the case of the neoclassical sim-
ulations performed here, the solution to Eq. (1) remains close
to the initial distribution [Eq. (9)], f=Fy + O(0,qxrR)Fy;,
where 9,qirR < 1. Therefore, the change of the flow veloc-
ities with time is accurately described by Egs. (14) and (15)
through order 6;, and it is only the initial values that are
missing J;-corrections. Moreover, for the case where
rokr~ 1 (typical for a tokamak core) and By > B, varia-
tions in the flow velocities, O(d,qx7R)V7, associated with
variations in the distribution function, are much larger than
the missing corrections associated with the initial flows,
0(9;)V7. Therefore, the flow velocity diagnostics given in
Egs. (14) and (15) is accurate in that regime. Note that varia-
tions in the ion flow become even more dominant relative to
the initial missing corrections for the case of steep density
gradients, characteristic of a tokamak pedestal under the
H-mode conditions.

It is important to remark that the axisymmetric gyroki-
netic simulation model specified by Eqgs. (1)—(4) is not accu-
rate enough to adequately describe the slow evolution of a
long wavelength (k;L ~ 1) neoclassical radial electric
field®' ™ in a quasi-stationary state, where the particle fluxes
across the magnetic surfaces are, to order 5?, independent of
the radial electric field (so-called intrinsic ambipolarity).
However, here we restrict our studies to the analysis of a
not-intrinsically ambipolar®* rapid initial relaxation of the
local Maxwellian distribution [Eq. (9)] toward a quasi-
stationary state (neoclassical quasi-equilibrium). The subse-
quent slow (transport time scale, z/iiéfz) evolution of the
quasi-stationary state including the evolution of a pressure
profile, “intrinsically ambipolar” radial electric field, and the
toroidal angular momentum is not considered. Here, vj
denotes the ion-ion collision frequency.

The quasi-stationary state is characterized by radial
force balance

Zie 1 d[)l oD
2V By — VoB,) — — P 7097 — |
c (VoBo — VoBy) n; dr i or 0, (16)

where V, and V) are the toroidal and poloidal ion flow veloc-
ity, respectively, and p;=n;T; is the ion thermal pressure.
The quasi-equilibrium neoclassical value of the poloidal
flow velocity in Eq. (16) is set during the rapid relaxation
(occurs on the collisional time scale) by the parallel viscous
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forces associated with the static magnetic field variation and
is given by

c dT[()
ZieB dr

Vo = a7)

Here, & is the poloidal flow coefficient, which depends on
the plasma collisionality. For the case where E, < VBy/c,
which is typical for a tokamak core, & is equal —2.1 in the
Pfirsch-Schluter (highly collisional) regime, —0.5 in the pla-
teau (moderately collisional) regime and 1.17 in the banana
(weakly collisional) regime.”® In contrast to the poloidal
flow, the flux-surface-averaged toroidal angular momentum,
P, = (minRV, — RE.By/(4nc)) remains nearly constant
during the rapid (collisional) relaxation. Therefore, the radial
electric field corresponding to the relaxed quasi-stationary
state is determined as a linear function of the initial toroidal
angular momentum and the pressure gradient diamagnetic
flows consistent with Eq. (16). It is also important to note
that while the flux-surface-averaged toroidal angular
momentum remains nearly constant, generation of poloidal
variations in the toroidal velocity at the level of the diamag-
netic flow velocity can occur on the fast (collisional)
time scale along with the relaxation of the poloidal flow.

lll. NEOCLASSICAL SIMULATIONS WITH THE KROOK
COLLISION MODEL

The benchmark exercises carried out with the Krook
collision model are used to test the performance of the
COGENT code in self-consistent neoclassical simulations.
In particular, for the case of a uniform temperature profile,
kr=0, we recover the Boltzmann relation for the self-
consistent distribution of potential variations. We then study
generation of ion poloidal flow for the case of a nonuniform
temperature distribution and find the results of the numerical
simulations in very good agreement with the predictions of
an analytical calculation developed below for the case of the
particle-conserving Krook model.

For the case of a single ion species, the following Krook
model is used:

B‘*‘CK[f] ycBuéf—i—r]pup JBHdVHd,uéf

+;7mycv||FMB JBHdeduchV” (18)

Here, 6f =f — Fu, v. is the collision frequency, and 1, and
1, take only the two values of either zero or unity to turn off
(on) the corresponding particle and momentum restoring
terms.

The results of the numerical simulations performed with
the particle and momentum conserving version of the Krook
model (i.e., n, =1, ,,= 1) for the case of a zero temperature
gradient, k=0, are shown in Fig. 1. It is readily seen that,
after the relaxation of the initial transients corresponding to
the geodesic acoustic mode (GAM) excitations,*® the system
reaches a quasi-stationary state in which the potential distri-
bution is described by the Boltzmann relation, i.e.,

Phys. Plasmas 20, 012513 (2013)
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FIG. 1. Neoclassical simulations for zero-temperature-gradient plasmas,
ey =0, with small &"?pgic, = 0.024 [(a), (c)] and large &"*p;gi, = 0.4 [(b),
(d)] density gradients. Frames (a) and (b) show the time evolution of the nor-
malized radial electric field, eE,ry/T,. Frames (c) and (d) compare the radial
electric field (red dots) to the Boltzmann relation (blue curve). The parame-
ters of the simulations are &, = 0.1, go = 1.2, p/Ro=1.2 x 10~*, ro/A, = 106,
vqRo/Vy=0.4. The grid resolution is n,.= 128, ny=16, n, =48, n,=32
[(@), (¢)] and n, =96, ny= 16, n, =48, n, =32 [(b), (d)]. The velocity grid
size corresponds to |V|j|lmax/V7=3.5, tmaxBo/To=11. Results are obtained
using the particle- and momentum-conserving version of the Krook collision
model, 1, =1,,= 1.

n;ldp;/dr 4+ ed®/0r = 0, consistent with negligible genera-
tion of toroidal ion flow. Here, p,; and n; are the ion pressure
and density in the quasi-equilibrium state. The simulations
also demonstrate that the Boltzmann relation remains valid
even for large density gradients, \/ep;pk, ~ 1, consistent
with the numerical results in Ref. 37 and analytical predic-
tions in Refs. 38 and 39. Here, p,y = Vym;c/(Z;eB,) denotes
the poloidal gyroradius.

Next, consider the case where the temperature distribu-
tion is not uniform. The temperature gradients generate a
poloidal ion flow, and the electric field is no longer described
by the simple Boltzmann relation. We present an analytical
calculation of the quasi-stationary radial electric field for the
case of the particle conserving Krook model (17, =1, #,,, = 0),
assuming a large aspect ratio ¢ = a/Ro < 1 and neglecting the
effects of trapped particles provided v.>> &"?V;/gR. Note
that the latter condition is different from the corresponding
conventional condition 1/(,>>.93/2VT/qR and is discussed in
detail later in this section. Following the method developed
in Ref. 40, consider a steady-state drift-kinetic equation for
the first order correction to a local Maxwellian distribution,

fi =F—F,, written in energy W= (mv?/2 + e®) and mag-

netic moment variables

Vi Of

B 3
ok 20 sinf = —vf) + v, niOJd vfi. (19)

da—

Here, the gradient of a local Maxwellian distribution, F,,
[see Eq. (9)], is given by
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8FM o dll’ln,'()
Wyi

e 00 (mv2 3> dlIn T,‘():|
or Ty Or 2 Fi-

dr T,‘O or + 2T,‘0 2 dr
(20)

Vg = (vi/2+vﬁ)/RQ,- is the radial drift velocity, and

v =/ (2/m)W — e®(r,0) — uB(r,0)] is a parallel veloc-
ity, which in general depends on the poloidal angle coordi-
nate. However, under the assumptions of the present
analysis, we can neglect the poloidal variations correspond-
ing to the magnetic mirror force. Also, poloidal variations in
the neoclassical electrostatic potential are generally small.
Therefore, we can neglect the poloidal variations in the par-
allel velocity, and taking f; =f, cos 0 + f_sind, it is straight-
forward to show that

ull Jd3f+—0 21)
o

i0

of- + vy —ve—

dFy

Fy
—oufy v —veH ‘Pff——w——, 22)
njo dr

where we introduced w, = v /gR.

Although it does not seem plausible to obtain an analytic
solution to the system of integral equations (21) and (22),
one can still calculate the flux surface average of the radial
particle flux, I' = ([ d®vfiv,sin 0) and then obtain an equa-
tion for the radial electric field from the quasi-neutrality con-
dition, which requires zero quasi-stationary ion particle flux,
I'=0 (see Sec. II). Note that if we were to consider a physi-
cally more adequate momentum conserving version of the
Krook model (i.e., 17, =#,,= 1), the quasi-stationary particle
flux would be intrinsically ambipolar (see Sec. II). That is,
the quasi-stationary value of the ion particle flux would be
zero through order (tcT,o,-)2 [and through order (KTpi)3 for an
up-down symmetric tokamak™>*'] independent of the radial
electric field. Therefore, for the case of the momentum-
conserving Krook model, we would only be able to deter-
mine the combination E, + VB, but not the electric field
separately (as discussed in Sec. II). Note that the fact that a
quasi-stationary value of the radial electric field can be deter-
mined independently of V, for the case where n,=1, #,,=0
is consistent with fast (collisional) relaxation of the toroidal
angular momentum provided by a non-zero parallel friction
force. Finally, we also note that a quasi-stationary state with
zero particle flux is only consistent with a particle-
conserving (1, =1) version of the Krook collision model.
For the simplest case of a non-conservative Krook operator,
i.e., n,=1n,=0, the ion particle flux would have to balance
the particle production associated with the non-conservative
collisional model.

It is straightforward to show from Egs. (21) and (22)

that
2
Ve p ve Fuf s
~ — | d’vf_
P a)2+V2n, J vy — ;2+V3n10J vf-
Ve dFM

- ¢ y,2M 23
w? + 12 Va0 23)

and it now follows that the radial particle flux that
I = (1/2)[ d®vf_v, is given by

Phys. Plasmas 20, 012513 (2013)

1 V2 Fy
(& )| &2 c = 24
+2(J Vf)J Yor 42 g &9

Finally, operating on Eq. (19) with fd3v, we obtain

14 dFM V2. FM
& < —_— 1—|& £ .
J Vw,2+uf_vd dr/( J ch,2+u(2,nl«o

(25)

Jcﬂvf, =

The radial electric field appears in the term dFy,/dr [in Egs.
(24) and (25)] and can be found by forcing the radial particle
flux in Eq. (24) to zero. For instance, when v, < Vr/gR,
corresponding to the plateau regime, we make use of
ve/(w? 4+ 1?) = nd(w,) to obtain

g*n'/? (d Inn;o

3dInT; dd
; n ()+ e > (6)

)
I'=—oroin dr 2 dr | Todr

where @1 = Vr/qR is the thermal transit frequency. It now
follows that a quasi-stationary value of the radial electric
field is given by eE, = ny'dpio/dr + 0.5dTy/dr. Neglecting
the small term eByV,,/c < 2¢T;p max{x,, xr }cos 0 in the ra-
dial force balance equation [Eq. (16)], we readily obtain the
well-known result k = —0.5 for the poloidal flow coefficient
in the plateau regime [see Eq. (17)].

As the collision frequency decreases, the main contribu-
tion to the integrals in Egs. (24) and (25) comes from
the resonant particles whose parallel velocity satisfies
vﬂ” /qR ~ v.. Because the analytical model in Egs. (19) and
(20) neglects the mirror force and the effects of trapped par-
ticles, it is only valid in the regime where v" “lvi> el/2,
which requires v. > ¢ I 2VT/qR It is important to note that in
contrast to the Krook operator in Eq. (18), a more adequate
collision model (e.g., Lorentz, linearized Fokker-Planck,
etc.) provides an “enhanced” collision frequency for small
pitch-angle scattering, vz~ (v/vH)zyc. Replacing v, with
Ve as done in Ref. 40 yields the conventional plateau re-
gime condition, i.e., v, > & 2VT/qR.

Finally, for the strongly collisional (Pfirsch-Schluter) re-
gime, the first order correction to the local Maxwellian distri-
bution decreases with an increase in the collision frequency,
fi 1/‘1 (see Eq. (23)). Accordingly, the ion heat flux
decreases as Q x v, !, in contrast to the conventional neo-
classical result predicting Q Vlz This discrepancy appears
due to the fact that the Krook model annihilates only a local
Maxwellian distribution, implying f; =0, whereas a more
complete collision model has nontrivial solutions to C[f,] = 0.

Figure 2 shows the dependence of the poloidal velocity
coefficient on the collision frequency obtained in the numeri-
cal simulations and evaluated by making use of the diagnos-
tics defined in Eq. (15). The results of the numerical
simulations are compared to the analytical predictions, where
the polodial velocity coefficient is evaluated as k =
(kn + k1 — E,/Tj0) /1c7, assuming a negligible toroidal flow

velocity. This assumption, i.e., V,By < VB, is verified for
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FIG. 2. Poloidal velocity coefficient & for the case of a non-zero temperature
gradient. The polodial velocity coefficient is evaluated at 0 = /2. The param-
eters of the simulations correspond to &y =0.01, go = 1.2, p;/Ry =4.54 X 1077,
ro/Ar=167, k,=0, pigkt=0.018, (Fmax—"min)/ro=0.15. The grid resolution
is n,= 128, ny=32, ny| = 80, n,, = 64, and the velocity grid size corresponds
t0 V) |max/V7r=3.5, UmaxBo/To=9. Results are obtained using the particle-
conserving version of the Krook collision model, i.e., 7, =1, 11,,,= 0.

the simulations over the entire range of the collision frequen-
cies considered. As expected from the analytical analysis,
excellent agreement between the simulations and the theoreti-
cal predictions is evident for v, > e 2VT/qR.

IV. LORENTZ COLLISION MODEL

We next consider the implementation of the Lorentz col-
lision model and report on the results of neoclassical bench-
mark simulations. Note that the Lorentz operator is typically
included in more detailed collision models, and therefore
investigation of its performance is of considerable practical
importance. Written using the variables of particle’s speed
v=Ivl, pitch-angle {=v/v, and gyro-angle ( velocity, the
Lorentz operator takes on a form

1 (v\[0 L of 1
al =30 (3) |50 - D e+ T ag] - @D

Here, vp(x) = v [Y(x) — G(x)]/x* is the collisional coeffi-
cient corresponding to collisions with a Maxwellian back-
ground characterlzed by the thermal velocity Vy, Y(x)

= (2/y/m)[yedy is the error function, and G(x)
= [¥Y(x) — xY(x)]/2x%. For the case of ion like-species colli-
sions, the physical collision frequency, v., corresponds to
ve = 4nn;Zte*InA/(m?V3), which varies spatially owing to
the ion density and temperature dependence. Here, InA
denotes the Coulomb logarithm. However, for the clarity of
the verifications studies, in what follows (Secs. IV-VI), we
take v.=const with its value being specified where
appropriate.

An accurate gyrokinetic formulation of the Lorentz op-
erator [Eq. (27)] would involve relating particle’s coordi-
nates (r,v,£,{) to the corresponding gyrokinetic variables
(R, v, 1, gi) used in Eq. (1) and then performing proper gyro-
averaging. However, this procedure is significantly sim-

Phys. Plasmas 20, 012513 (2013)

plified for the case of long-wavelength neoclassical
simulations. Note the Lorentz operator annihilates a local
Maxwellian distribution function, which is also a zero order
solution to the gyrokinetic Eq. (1). Therefore, in order to pre-
serve the accuracy of the Lorentz collision model to order J;
= (pi/Ry), it is sufficient to consider the lowest (zero) order
relation between particle’s velocity coordinates and the cor-
responding gyrocenter coordinates, i.e.,

VR (vﬁ + 2,uB/m,-)1/2, and (=~ (yu. (28)

VI =V

Furthermore, considering the long-wavelength (drift-kinetic)
limit with max{x,p; xrp;} < 1, we can neglect the differ-
ence between the gyro-averaged and local quantities. Finally,
we neglect the ~9*/9(* term in Eq. (27), assuming that the
classical gyro-diffusion is small compared to its neoclassical
counterpart.

To make use of a finite-volume (conservative) numerical
algorithm, we need to express the collision operator in con-
servative form, i.e.,

0 0

CLlf] = o0 Uy, (T ()] + Vwa ” Vv, L, ()], (29)

VH K

where (IT,', TI}) are the covariant coordinates of a vector
flux Il;, and Jvu-u is the Jacobian of the transformation (vy,
Vy, V) — (V||, i, {gr). Consistent with Eq. (28), we consider
only the lowest-order approximation, taking Jy , = B/m;.
The pitch-angle scattering part of the Lorentz operator can
be represented in divergence form as

1 v\ 0 2 of 1 0 :
2057 381 - €05 =7 ogmi0)
1 0
+JV78[“H LA, BO)

where Il; = 0 and I = (1/2)vp(1 — E*)9f /O¢ are the co-
variant coordinates of the vector flux Il; in the speed-pitch
angle velocity coordinate system (v, &, {), and J, ; = V2 is
the Jacobian of the transformation (vy, vy, v,) — (v, &, 0.
Making use of the corresponding relations™* for transforma-
tion of a vector’s covariant coordinates between (v, &, {) and
(V|js tt, gi) coordinate systems, it is straightforward to show
that

v B 0 )
I, (f) = vp(x (%%— '“a_i) (31)
i 5 0 )
I} (f) = vp(x) (%Vzﬂa—{l—vﬂgfl) (32)

where x = (v + 2uB/m;)'? | Vy.

For the case of a single ion species, the following Lor-
entz model describing like-particle collisions is implemented
in the code:
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B*CCOGENT[ﬂ _Q[H# BS ] i[HVH B*S }
1¢r ~ on 1 Hf)+6vH L (B}jof)

(33)

+ NV FyB 77—,
JBdVHd,uVDVHFM

where 0f = f — Fy. The second term in Eq. (33) is a mo-
mentum restoring term, where the switch 5,, takes on only
zero or unity values. Note that for the sake of implementa-
tion simplicity, the collision operator in Eq. (33) contains

Vil

terms HZ(Bﬁéf) and II'(Bjdf) instead of the more

intuitively appealing Bﬁl‘[ﬁ(éf) and BﬁHZ“(éf). However,

the difference appears only in order 5,.2, which is higher order
than the gyrokinetic formulation under consideration.

Although the Lorentz operator in Eq. (33) conserves
energy analytically, spurious diffusion in the energy space
can appear due to the discrete (finite-difference) numerical
evaluation of the pitch—angle scattering part of the operator.
Note that the system’s energy would be exactly conserved
numerically if, for instance, energy — magnetic moment
variables were used to implement the Lorentz operator.
Although, the energy-magnetic moment coordinates is
indeed a common choice for the implementation of a gyro-
kinetic system, it introduces other numerical issues, such as
velocity-grid “cut-cells” at the v =0 boundary. The issue
of the spurious energy diffusion was addressed in more
detail in Ref. 20, where we demonstrated that while a 2™
order accurate implementation of the Lorentz operator gen-
erates significant numerical diffusion, a 4™ order implemen-
tation suppresses it to a tolerable level. Furthermore, in the
same work,”® we performed simulations of neoclassical
transport making use of the Lorentz model [Eq. (33)] with
1, =0 and recovered the analytical results of Ref. 45 for
the particle and heat fluxes. Note that those neoclassical
simulations were performed for the case of a zero electric
field and assumed vp(x) = 1.

Here, we present results of neoclassical verification stud-
ies that include the effects of self-consistent electrostatic

(@)
Egs. (47)

| Egs. (36), (42)
0.5 I 3

-1.5 - ¢

‘2 T T T T

001 01 1 10 100
14
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FIG. 3. Time evolution of the normalized radial electric field, eE,ro/T, for
the weakly collisional (solid red curve) and strongly collisional (dashed pur-
ple curve) cases. Results are obtained using the conservative, i.e., #,,= 1,
version of the Lorentz collision model. The parameters of the simulations
correspond to go=0.1, go=12, p/Ro=1.7%x107° ro/A,=ro/Ar=71,
piokn = pigkT=0.007, (Fmax—"min)/To=0.1. The grid resolution is n, =32,
ng=16, ny =96, n, =48, with |v‘|\mux/VT: 3, HmaxBo/To =9 in the banana
regime, and n,=32, nyg=16, n, =48, n,=32, with [v|na/V7r=3.5,
HmaxBo/To =11 in the Pfirsch-Schluter regime.

potential variations and are performed with both the conserv-
ative (1,,= 1) and non-conservative (7,,=0) versions of the
Lorentz model. The results of the illustrative neoclassical
simulations are shown in Figs. 3 and 4. Figure 3 illustrates
the time evolution of the self-consistent radial electric field
corresponding to weakly collisional (banana) and strongly
collisional (Pfirsch-Schluter) regimes. Figure 4 shows the
poloidal velocity coefficient, k [see Eq. (17)], and the ion heat
diffusivity

0

 ni(dT;/dr) (34

X:

plotted for different values of the normalized collision fre-
quency defined by

4 gR B
_& _9h0 32, Do

V¥ — 5 1Z5 5 35
3y Vr “Br (35)
Z/(/aizgi)
1.E-03 - (b)
Eqgs. (46)
,0
1.E-04 - pid
"4
4
1.E-05 - v
'Y
1.E-06 - s
,I
27 Egs. (37), (43)
1.E-07 x x : :
001 0.1

1,410 100

FIG. 4. Plots of the poloidal velocity coefficient, &, evaluated qt29 = /2 [frame (a)], and the normalized heat diffusivity, y/( ﬁfﬁi), [frame (b)], versus the nor-
malized collision frequency v* [Eq. (35)]. Here, p; = 2T;o/mQ;. The results of COGENT simulations obtained using the conservative, i.e., 11,,= 1, (blue dia-
monds) and non-conservative, i.e., 17,, = 0, (green triangles) versions of the Lorentz collision operator are compared against the analytical predictions given in

Sec. III. The parameters of the simulations are the same as in Fig. 3.
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where By = (B + B[27)1/ *. The parameters of these illustrative
examples correspond to: go=1.2, &y=0.1, p;ok,= piokr
=0.007, p/Ro=1.7% 107>, ro/A,=ro/Ar=71, and (rpu—
Fmin)To=0.1. The results of the numerical simulations are
found in good agreement with the following analytical
predictions.

(a) Weakly collisional regime (v* < 1), large aspect ra-
tio (¢ < 1), momentum-conservative Lorentz model (1,,= 1)

The poloidal velocity coefficient, k, and the heat diffu-
sivity, y, are given in this regime approximately by’

(1 —1.46\/¢)

k=117 5, (36)

T;
7 =0Ty 2 (37)

miQ i
where h = 1 + ¢cos 0 and Q[ = ZieBy/mjc.
(b) Weakly collisional (banana) regime (v* < 1), large
aspect ratio (¢ < 1), non-conservative Lorentz model (11,, = 0)
The analysis in Ref. 40 performed for the case of a
momentum-conserving Lorentz model can be generalized in
a straightforward manner to obtain

(1 —1.464/2) Ty

V)=
0 h ZieBr
dinny Zied®d 5 3\ dInTy
Zied® 2 38
x { ar Ty dr * ({x } 2) dr |’ (38)

T2 dlnn;
0=~ ng—"25 [( 2+
miQ d}’ Ti(] dr

Zie do 3dIn Ti0>

dInT;
2" 0 {x*vp (x)}} , (39)

x {¥vp(x)} +

where the operator {A(x)} is defined for an arbitrary function
A(x) as

N L
= 3\/EJ0 A(x)e " x*dx. (40)

As discussed in Sec. 111, collisions that do not conserve mo-
mentum generate a non-trivial particle flux in order (K,LTpf)z.
Following the analysis in Ref. 40, it is straightforward to

{AM)}

show that
= —8_1/261211,-0 T,'A . |:(d11’1 nio + Q@ _ ia’ln Ti0>
miQ; dr Todr 2 dr
d In T,‘
x {vp(x)} +TO{X2VD(X)}]. (41)

The quasi-stationary radial electric field can now be obtained
from the requirement of the quasi-neutrality, which for the
case of the adiabatic electron response in Eq. (6) requires
I'=0. It follows that

(1 —1.46\/¢)

k=117, (42)

T;
1 =0Tl =2, (43)

m,‘Qi
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which is identical to the corresponding values of the poloidal
velocity coefficient and heat diffusivity obtained for the con-
servative version of the Lorentz collision model [Egs. (36)
and (37)].

(c) Strongly collisional (Pfirsch-Schluter) regime (v.V/
gR > 1), large aspect ratio (¢ < 1), non-conservative Lor-
entz model (11, = 0)

Extending the analysis in Ref. 45 to the case where the
collision frequency is an arbitrary function of a particle’s
speed, it is straightforward to show that

2 2T,'0 Bo dln njo Z,'é dq) 3dln T,'()
I'=—q niOiAzB* d =z
m;Q; BT r Todr 2 dr
dlIlTl'
< o)) + o (o) m
and
2, 2Tq Bo [(dInng  Zied® 3dInTy
0= —q'ny AzBf P T—d——i o
mQ, °T r io ar 1
dlnT,-
x {*vp(x)} + 0 0 ity (x)}} . (45)

Again, determining the radial electric field by forcing the
particle flux in Eq. (44) to zero, we obtain

—. (46)

It can be shown for a strongly collisional regime that the
quasi-stationary toroidal flow velocity corresponding to the
non-conservative Lorentz collision model, #,,=0, is much
smaller than the diamagnetic velocity. We can therefore
neglect the term (Z;e/c)V B in Eq. (16) to obtain

By

k=1.17—. 47
B 7)

In conclusion, we briefly discuss some features of the ra-
dial electric field time evolution. The system relaxation to a
quasi-stationary state shown in Fig. 3 is accompanied by
GAM oscillations.*® There are two mechanisms for the
GAM relaxation: collisional, which occurs on a collision
time scale ~1/v., and collisionless phase mixing. Collision-
less relaxation of long-wavelengths GAMs with &k, p; < 1
occurs as the result of wave-particle interaction between
GAMs and passing particles whose poloidal velocity satisfies
the resonant condition [vj**|/r ~ wgam. Here, wgay ~ Vr/R
is the GAM frequency. Assuming E, < V7By/c, which corre-
sponds to the parameters of the illustrative simulations in
Fig. 3, it follows that vj* = vﬂ”Bg /B, and we obtain a well-
known result |vﬂ“| ~ ¢V7. Note that the parameters of the il-
lustrative numerical simulations in Fig. 3 correspond to
qo= 1.2, therefore the resonant velocity is close to the ther-
mal velocity, and the collisionless relaxation is strong. In
particular, it is evident for the weakly collisional regime (see
Fig. 3) that the GAM relaxation occurs on a time scale less
than 1/v,., i.e., the collisionless relaxation dominates. After
GAM oscillations are damped, the radial electric field



012513-9 Dorf et al.
continues to relax to its quasi-stationary (“neoclassical”)
value on a collisional time scale.*®

Finally, we note that although the second burst of GAMs,
which occurs at vt~ 0.5 for the weakly collisional case, can
be attributed to the physical effects of nonlinear wave-particle
interaction, its parameters are sensitive to the velocity grid re-
solution. For instance, the burst appears at a slightly later time
and has a substantially smaller amplitude when the velocity-
space resolution is increased. This reduction with mesh reso-
lution implies that the burst can be also attributed to the nu-
merical recurrence phenomena described in Ref. 47. While a
detailed analysis of this effect is outside the scope of the pres-
ent work, it is important to note that the characteristics of the
system in the final relaxed (quasi-stationary) state are numeri-
cally converged. That is, an increase in the phase-space reso-
lution does not affect the results shown in Fig. 4.

V. LINEARIZED MODEL COLLISION OPERATOR

For the case where the particle distribution function is
close to a local Maxwellian distribution, a linearized approxi-
mation to the full non-linear Fokker-Planck collision operator,
Crp, is often used to describe the like-species collisions, i.e.,

Crplf,f] = CrplOf , Fu] + Crp[Fum, of], (48)

where 0f = f — F). The first term on the right-hand-side of
Eq. (48) describes collisions with a Maxwellian background,
including energy diffusion and pitch angle scattering, and is
given by*"

Crp[of, Fu] = CL[f]

(49)

Here, C;[0f] is the Lorentz operator defined in Eq. (27),
x=v/Vy is the normalized particle speed, v (x) = 4x~!
v.G(x), and v)|(x) = 2x1,.G(x). The constant collision fre-
quency v.=const and the coefficient G(x) are defined in
Sec. IV. The exact evaluation of the second term in Eq. (48)
is, however, nearly as challenging as the evaluation of the
full nonlinear Fokker-Plank operator. Therefore, in simpli-
fied linearized collision models, this term is typically
replaced by a few terms chosen to ensure that the model op-
erator maintains certain features (e.g., conservation proper-
ties) of the original linearized operator [Eq. (48)]. The
following linearized collision model®' is utilized in the
COGENT code

2v-U[d Vo
Crp[Fu, 6f] — stiz[f]FM + VEWQ[(sf}FM, (50)
T T
where
ve O
ve(v) = —V4FMEV5VHFM, (51)

and the functionals U[Jf] and Q[df] are now uniquely chosen
to ensure the momentum and energy conservation properties>'
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B 3 Jusvéfdz’v
Olof) =5¢——— (52)
szuSFMd3v
B JvzyEéfd3v
0of) = ———. (53)
Jv2x2uEFMd3v

As shown in Ref. 21, this model linearized collision operator
[Egs. (48)—(53)] ensures the following properties of the origi-
nal linearized collision operator: it conserves particles,
momentum, and energy, obeys Boltzmann’s H-theorem (colli-
sions cannot decrease entropy), and vanishes for the case
where Jf is represented by a linear combination of Fy;, vFy,,
and Vv?F),.

A detailed gyrokinetic formulation of the linearized
model operator [Egs. (48)—(53)] is given in Ref. 21. However,
for the case of long-wavelength neoclassical simulations con-
sidered in this work, it is sufficient to use the simplified “drift-
kinetic” version of the operator (see Sec. IV), which takes on
the following form in the (v, u) coordinates

(T} + Thy)  O(TT," 4 T1,,)
* ~COGENT _ L ED L ED
B\ Crvear [f] = o + v,
ort, oIl
M ER | ZER Y 4
+ M R+nE{ ou + 8v|} (54)

The first two terms on the right-hand-side of Eq. (54) corre-
spond to Crp[df, Fy] in Eq. (48), where the collisional Lor-
entz fluxes HZ” and I} are specified by Egs. (31) and (32),
and the energy-diffusion collision fluxes IT,}, and TIf,, are
given by

V| 1 * S 1 8B‘*‘5f aBméf
Mep =3 vsVBjOf 3 (v 265 = V175, = )
(55)
) ) oBjof  OBjof
Mep = vsCo)uBjof v (| 2u—5 =+ vi—5, = |-
(56)

Note that similar to the implementation of the Lorentz
operator (see Sec. III), the collision fluxes in Egs. (55) and
(56) are calculated for the combination Bﬁéf. From Egs.
(50) and (52), it follows that the momentum restoring term
My is

JBdeHd,uéfVH

Mg = vg(x)v FuB (57)

JBdVHdﬂVs(x)VHFM

The last two terms in the curly brackets on the right-hand-
side of Eq. (54) correspond to the conservative (divergent)
form of the energy restoring term, where
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, JBl*‘dv”d,LszuE(x)éf
HE‘I‘? = —= VHBFM 5 (58)
Jde||dux4VE(x)FM

JB dvdp*ve(x)f
1%, = —v,(x)uBFy J . (9

deHd,u.x ve(x)Fy

Finally, as in Sec. IV, x = (Vﬁ +2,uB/m,-)1/2/VT, of =f
—F);, and the switches 7,, and # take on only zero or unity
values. The model energy restoring term specified by Egs.
(50) and (51) can be implemented in the conservative form
[see Egs. (54), (58), and (59)], and therefore the finite-volume
(conservative) discretization scheme provides exact (numeri-
cal) particle conservation.

The implementation of the model linearized operator
[Egs. (54)—(59)] has been tested in a series of verification
studies. First, accurate annihilation of the distribution func-
tion perturbation Jf represented by a linear combination of
Fy, viF g, and v?F), is demonstrated. Next, Fig. 5 shows the
results of the neoclassical simulations performed with the
model linearized operator. The system parameters assumed
in these simulations are the same as in Fig. 4 (see Sec. IV).
The results of the numerical simulations for the poloidal ve-
locity coefficient, k, and heat diffusivity, y = —Q/[n;(dT;/
dr)], are compared to approximate analytical predictions that
take into account the effects of a finite inverse aspect ratio
(¢) and provide interpolation between the weakly collisional
(banana) and strongly collisional (Pfirsch-Schluter) regimes.
Figure 5 illustrates the NCLASS-code*® predictions for the
poloidal velocity coefficient and Chang-Hinton predictions*”
for the ion heat diffusivity. Assuming no Shafranov shift
[consistent with the magnetic geometry in Eq. (8)], the
Chang and Hinton approximation has the following form:

(a)

0.01 0.1 1 10 100 1000

v*

FIG. 5. Plots of the poloidal velocity coefficient, k, evaluated at the outer midplane (0 = 0), [frame (a)], and the normalized heat diffusivity, y/ (pl
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2
= Kye!2 P (60)

i

Here, p;y = Vrmic/(ZieB,) is the poloidal gyroradius,
7, = 3y/7/(2v/2v,), and the coefficient K, is given by

0.66 + 1.88+/c — 1.54¢ 3,
1+=
1+ 1.03/vx +0.31vx

28
0.58¢evx 3
— = (14+ZZ—V1-—¢ 61
1+0.74g3/2u*< a0 g)’ ©D

2=

where the normalized collision frequency is given in Eq. (35).

Figure 5 shows that the results of the simulations are
found to be consistent with the analytical predictions in Refs.
48 and 49. Note, however, that exact agreement should not be
expected since the analytical studies assume collision models
that are different from the one given in Egs. (54)—(59), and
furthermore there are no analytical methods for a rigorous
treatment of the intermediate collisionality regime, i.e.,
V' ~1. The level of quantitative discrepancy is found to be
similar to that observed in verification studies performed with
other gyrokinetic codes.'”"'®

VI. EFFECTS OF A STRONG RADIAL ELECTRIC FIELD

The properties of neoclassical transport can be significantly
affected by a strong radial electric field corresponding to

E,A ~ VTB()/C. (62)

A radial electric field of this magnitude can be present in the
steep edge of a tokamak under H-mode conditions. Indeed,
the length scale for plasma density variations in a tokamak
edge can be of the order of the poloidal ion gyroradius,
K,pio~ 1, and the estimate in Eq. (62) follows from the ra-
dial force balance equation [Eq. (16)], provided the ion flow
velocities are less than the thermal velocity, i.e., Vg, V, < V7.

A2 A
Z/(pi Qi)
1.E-03 - (b)
1E-04 - s
7
L d = -
1.E-05 - )/
7
1606 | ¥
e

1.E_07 T T T T 1

001 01 1 10 100 1000

V*

i), [frame

(b)], versus the normalized collision frequency v* [Eq. (35)]. The results of the COGENT simulations (red dots) are compared with the results obtained with
the NCLASS code [blue dashed curve in frame (a)] and the Chang-Hinton analytical approximation [blue dashed curve in frame (b)] given in Egs. (60) and

(61). The parameters of the simulations correspond to ¢, =0.1, go=1.2, p;//Ry=1.7 X 1073, ro/A, =ro/Ar=11, Piogkn =
The grid resolution is 1, =32, ng= 16, n, =96, n, =48, with |V|||max/V7 =3, limaxB

PioKT = 0. 007 (’ ‘max~/ mm)/’ 0= =0.1.
»/To="9 in the banana regime, and n,. =32, ng = 16, n,| =48, n, = 32, with

[Vl max/Vr=13.5, tmaxBo/To= 11 in the Pfirsch-Schluter regime. Results are obtained using the momentum and energy conserving form, i.e., 5z =1, =1, of

the model linearized operator given in Eq. (54).
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Recent analytical studies demonstrated that the presence
of the strong radial electric field given in Eq. (62) signifi-
cantly modifies the conventional results of the neoclassical
formalism developed for a tokamak core region where
E, < VyBg/c.**** In particular, it was shown that a strong ra-
dial electric field provides suppression of the neoclassical ion
heat flux. Also, it was demonstrated for a weakly collisional
(banana) regime that the poloidal ion flow can change its
direction as compared with its core counterpart. The modifi-
cations come primarily from the fact that the conventional
neoclassical analysis neglects the E x B drift velocity contri-
bution to the poloidal advection term in the ion drift-kinetic
equation, i.e., (R - eg)r~'9f /00 ~ (v||/qR)0f /00 is assumed.
While this assumption is typically valid in the tokamak core
region, the presence of a strong radial electric field in the
edge [Eq. (62)] makes the contribution of the E x B drift to
the ion poloidal velocity comparable to the parallel streaming
contribution, and therefore it can no longer be neglected.****
Retaining the E x B piece of the advection velocity in the
analysis of the quasi-stationary neoclassical equilibrium, i.e.,
(R -e)r—'9f /00 ~ (vV||/gR + cE.B,/B*r)0f /00, has im-
portant consequences. In particular, the £ x B velocity modi-
fies the shape of the boundary between trapped and passing
particles, shifting it toward the tail of the ion distribution
function. For a weakly collisional regime, this leads to a sup-
pression of ion heat flux and a change in the poloidal flow
direction.”

The gyrokinetic model implemented in the COGENT
code [Egs. (1)—(4)] offers an accurate description of long-
wavelength neoclassical physics including the parameter re-
gime where a radial electric field is the order of that in Eq.
(62), provided By < B,,. It is therefore of considerable practi-
cal interest to numerically investigate the effects of a strong
radial electric field on the neoclassical transport coefficients.
Figure 6 shows the results of the numerical simulations corre-
sponding to the case of a weakly collisional regime with
v" = 0.3 obtained using the conservative version of the linear-
ized collision model, i.e., 17,,=ng=1. Each data set illus-
trated in Fig. 6, which includes the poloidal velocity
coefficient, ion heat diffusivity, and normalized radial electric
field, corresponds to an independent simulation distinguished
by its value of the initial density gradient, r,. All data sets are
evaluated at the radial coordinate =~ 0.98r,, corresponding
to a local maximum value of the radial electric field for the
simulation with the steepest density gradient. In order to
reduce the computational time required to simulate slow
(nearly collisionless) relaxation of large-amplitude GAM
oscillations associated with steep density gradients, we start
the simulations (in Fig. 6) with a higher collision frequency,
v*=10.5. As the GAMs are rapidly (collisionally) damped,
the collision frequency is slowly (adiabatically) reduced to its
steady-state value of v '=03. Finally, we consider inverse
density and temperature profiles, i.e., x,, <0, k7 <0, for the
simulations presented in this section. While similar results
are obtained in the interior of the simulation domain for either
sign of k, and xr, fewer numerical artifacts near the domain
boundaries are observed for the case where x,, < 0, k7 < 0.

Consistent with the analytical prediction in Ref. 22, the
simulations recover a change in the poloidal velocity direction
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FIG. 6. Plots of the poloidal velocity coefficient, k£ (blue diamonds), and the
normalized ion heat diffusivity, y/ygan (red circles) evaluated at 6 =7 and
r~0.98ry, versus the normalized radial electric field. Here, ygan is the
weakly collisional ion heat diffusivity given in Eq. (37). The parameters of
the simulations are ¢y =0.029, ¢o=1.2, v*=0.3, p;/Ry=9.2 x 1075, (in ro/
A)=ro/Ar =21, pigkr=—0.13, Gimax—rumin)lro =04375, |V|[umux/Vr =35,
UmaxB o/To=9. The normalized density gradients used in the simulations cor-
respond to —p;pk, =0.13; 0.67; 1.61; 2.2. The grid resolution is [n, =48,
ng =32, ny =96, n, =48], and [n,= 64, ny= 32, n, = 128, n, = 80] for the
simulations with the minimum and maximum values of the density gradient,
respectively. Results are obtained using the momentum and energy conserva-
tive form, i.e., §z =1, = 1, of the model linearized operator given in Eq. (54).

and a suppression of ion heat flux. However, there is also a
pronounced quantitative discrepancy. The latter can plausibly
be attributed to finite inverse aspect ratio, &, corrections.
Indeed, the analytical calculation in Ref. 22 retains only the
lowest order effects in ¢. For instance, in the limit of a small
radial electric field E, < VBy/c, corresponding to the conven-
tional neoclassical formalism, the analysis in Ref. 22 recovers
k=1.17. However, for the case of &y = 0.029, which is used in
the present illustrative simulations, a more accurate estimate
[Eq. (36)] predicts a significantly different value, k= 0.88.
Also, the differences between the linearized collision model in
Eqgs. (54)—(59) and that used in Ref. 22 become increasingly
important for finite values of ¢. Finally, for the case of steep
density gradients, x,p;0~ 1, and a non-uniform temperature
distribution, nonlocal effects appear for finite values of . That
is, the variations in the ion density become pronounced on the
banana-width length scale, A, ~ gl zpig. The analytical treat-
ment in Ref. 22 assumes the local-theory limit (x,Ap,, < 1),
which implies e? <« 1. However, this constraint is not well-
satisfied in the present simulations corresponding to &
2=0.17. Also note that the collisionality constraint for a
weakly collisional (banana) regime, i.e., v* < 1, is not well-
satisfied in the present simulations performed for v* =0.3. In
principle, an attempt to reproduce the results of the analytical
results quantitatively could be made by decreasing the colli-
sion frequency along with the inverse aspect ratio, ¢&. How-
ever, a significant decrease in the inverse aspect ratio below
its present value of &y =0.029 would require simulation times
beyond the scope of this initial study.

In conclusion, we note that a strongly sheared equilib-
rium electric field can significantly suppress turbulent
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transport,”® therefore a detailed analysis of neoclassical
transport in the steep edge region of a tokamak is of consid-
erable practical importance. In addition to a strong radial
electric field, the edge of a diverted tokamak is distinguished
by ion orbit losses, which can also significantly influence the
properties of neoclassical transport. While the orbit loss
effects provide a significant challenge for a detailed analyti-
cal analysis, our newly available divertor version of the
COGENT code, which includes both the pedestal and the
scrape-off-layer (SOL) regions, will allow us to perform a
detailed numerical investigation of these phenomena.

VIl. CONCLUSIONS

In this paper, we report on the development and applica-
tion of the nonlinear continuum gyrokinetic code COGENT
for edge plasma simulations. The code is distinguished by
the use of a fourth-order finite-volume (conservative) discre-
tization combined with arbitrary mapped multiblock grid
technology (nearly field-aligned on blocks) to handle the
complexity of divertor geometry with high accuracy. While
the discussion of the numerical algorithms and the initial
advection tests is reported elsewhere,'>'* the present work
discusses the implementation of various collision models
and analyzes code results for advanced neoclassical simula-
tions including the effects of self-consistent variations in the
electrostatic potential. In particular, we discuss the imple-
mentation and testing of the Krook, Lorentz, and recently
model linearized collision operators proposed.”!' The results
of the neoclassical simulations performed with these opera-
tors are found to be in good agreement with various analyti-
cal predictions.

In addition, we give results of the first numerical simula-
tions of neoclassical transport including the effects of a
strong (self-consistent) radial electric field on the ion poloi-
dal flow and heat flux. Recent analytical studies**** demon-
strated that the presence of a strong radial electric field of
order E, ~ VBy/c, which is consistent with a subsonic pedes-
tal equilibrium under H-mode conditions, modifies the con-
ventional results of the neoclassical formalism developed for
the core region, where E, < VyBy/c. In particular, it was
shown that a strong radial electric field provides suppression
of the neoclassical ion heat flux. In addition, it was demon-
strated for a weakly collisional (banana) regime that the
poloidal ion flow can change its direction as compared with
its core counterpart. These earlier findings were applied to
elucidate the discrepancy between the conventional banana
regime predictions and recent experimental measurements of
the impurity flow performed on the Alcator C-Mod toka-
mak.?* The results of the self-consistent numerical simula-
tions obtained using the COGENT code in a weakly
collisional regime are found to be in good qualitative agree-
ment with the theoretical predictions in Ref. 22. In particular,
a change in the poloidal ion flow direction and a suppression
of the ion heat flux are demonstrated. A quantitative discrep-
ancy between the results of the analytical analysis and the
numerical simulations is discussed and shown to be likely
due to a combination of finite aspect-ratio, finite orbit-size,
and finite-collision-frequency effects. Finally, we note again

Phys. Plasmas 20, 012513 (2013)

that the results of the self-consistent neoclassical simulations
for the case of steep density gradients (characteristic of a
tokamak edge) are obtained with the closed-flux-surface ver-
sion of the code. Our future work will extend the analysis to
include the effects of ion orbit losses by making use of the
newly available divertor version of the COGENT code,
which includes both the pedestal and the scrape-off-layer
regions.
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