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On the applicability of the standard approaches for evaluating
a neoclassical radial electric field in a tokamak edge region

M. A. Dorf,' R. H. Cohen,! A. N. Simakov,? and I. Joseph'
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The use of the standard approaches for evaluating a neoclassical radial electric field E,, i.e., the
Ampere (or gyro-Poisson) equation, requires accurate calculation of the difference between the
gyroaveraged electron and ion particle fluxes (or densities). In the core of a tokamak, the nontrivial
difference appears only in high-order corrections to a local Maxwellian distribution due to the intrinsic
ambipolarity of particle transport. The evaluation of such high-order corrections may be inconsistent
with the accuracy of the standard long wavelength gyrokinetic equation (GKE), thus imposing
limitations on the applicability of the standard approaches. However, in the edge of a tokamak,
charge-exchange collisions with neutrals and prompt ion orbit losses can drive non-intrinsically
ambipolar particle fluxes for which a nontrivial (E,-dependent) difference between the electron and
ion fluxes appears already in a low order and can be accurately predicted by the long wavelength
GKE. The parameter regimes, where the radial electric field dynamics in the tokamak edge region is
dominated by the non-intrinsically ambipolar processes, thus allowing for the use of the standard

@CrossMark

approaches, are discussed. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818777]

I. INTRODUCTION

It has been recently been demonstrated that the use of
the standard approaches (i.e., the gyro-Poisson or flux-sur-
face-averaged Ampere equation) that are utilized in the ma-
jority of drift-kinetic and gyro-kinetic codes for evaluating a
long-wavelength axisymmetric neoclassical radial electric
field E, has limited validity in the core of a tokamak. '
Briefly, the limitation comes from the fact that a difference
between the ion and the electron flux-surface-averaged parti-
cle fluxes (that determines the radial electric field) appears
only in high-order corrections to a local Maxwellian distribu-
tion (zero-order solution), whereas the standard drift-kinetic
equation3 or the long wavelength gyro-kinetic equation4 may
have insufficient accuracy to predict such high-order correc-
tions. The low-order identity between the electron and ion
fluxes for an arbitrary value of the radial electric field is a
manifestation of the so-called intrinsic ambipolarity.® In the
tokamak edge, however, charge-exchange collisions with
neutrals®’ and ion orbit losses® can drive non-intrinsically
ambipolar particle fluxes for which a nontrivial (E,-depend-
ent) difference between the electron and ion fluxes appears
already in the low-order corrections (accurately predicted by
the long wavelength GKE). Therefore, for the parameter
regimes where the non-intrinsically ambipolar processes
play a dominant role in determining the E,-dynamics, or,
equivalently, the non-intrinsically ambipolar (low-order)
particle fluxes are dominant over the intrinsically ambipolar
(high-order) particle fluxes, the standard approaches for eval-
uating E, can be used. While both the charge-exchange colli-
sions with neutrals and ion orbit losses are significant near
the last closed flux surface (separatrix), their influence rap-
idly decreases toward the core region. Indeed, the neutral
density exhibits an exponential decay due to ionization, and
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the ion orbit loss decreases due to the shift of the loss hole
toward the high-energy tail of the particle distribution. On
the other hand, the higher-order ambipolar particle losses are
generally small, and it is therefore of particular interest to
estimate the radial width of an edge layer where the non-
intrinsically ambipolar losses are still dominant.

The paper is organized as follows. First, following the dis-
cussion in Ref. 2, we assess the higher-order “intrinsically
ambipolar” particle fluxes and review the limitations of the
standard approaches for evaluating a neoclassical radial electric
field in a tokamak core. We then estimate the non-intrinsically
ambipolar fluxes driven by the charge-exchange collisions with
neutrals and the orbit ion losses, and evaluate the width of the
layer in the edge where the standard approaches can be used.

Il. LIMITATIONS OF THE STANDARD APPROACHES IN
ATOKAMAK CORE

In order to understand the limitations of the standard
approaches for evaluating a neoclassical radial electric field
in a tokamak core, it is first important to discuss the accuracy
of the standard “first-order” gyrokinetic equation4

19) o) .0 -

(;:JrRal];era\];_C[f]. (1)
Here, Eq. (1) for the ion gyrocenter distribution function f{R,
V|, #) is written in parallel velocity (v|)—magnetic moment
(1) coordinates, R = v /b + vy, v = —(1/m;v|)R - (ZeVr ®
+ uVRB), v, is the drift velocity composed of the E x B drift
and the magnetic drifts (i.e., curvature drift and VB drift), R is
the gyrocenter position coordinate, C[f] denotes the gyro-
averaged collision operator, B = B-b is the magnetic field with
b denoting the unit vector along the field, e is the electron
charge, Z and m; correspond to the ion charge state and mass,

© 2013 AIP Publishing LLC
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respectively, and in what follows we assume Z=1 for simpli-
city. For the case of the long-wavelength neoclassical electro-
static potential variations with e¢ ~T and k, p; ~ p;/L, < 1,
the gyrokinetic electrostatic potential in Eq. (1) is given by
® = @ + (ep?/2T;) (V. P)*, where p; is the ion gyroradius,
the bar over a variable denotes the gyro-average, k' and L,
describe the length scale for variations of neoclassical electro-
static potential and plasma pressure, respectively; and finally,
ion and electron temperatures of the same order are assumed,
ie, Ti~T,~T.

The accuracy of Eq. (1) can be characterized by three
dimensionless parameters: o ~ p;/Lp < 1 corresponding to
the accuracy of the magnetic drift velocity, 6, ~ gp;/L, < 1
describing the effects of finite drift-orbit width, and g ~
(ep/T)(kLp;) < 1 describing the finite Larmor radius (FLR)
polarization effects. Here, Lg is the characteristic length
scale for variation of the magnetic field, typically being the
order of the tokamak major radius, i.e., Lg ~ R, and ¢ is the
magnetic safety factor. Assuming the pressure length scale
to be the order of the tokamak minor radius, L, ~ a (charac-
teristic of a tokamak core region), the small parameters are
related as 0,/0g ~ ¢ and 03/d, ~ By/B,, where By and B,,
denote the poloidal and toroidal components of the magnetic
field, respectively. For the case of a large aspect ratio toka-
mak with ¢ = a/R < 1 and ¢ ~ 1, it follows that 6, /g ~ 1
and 0p/J, < 1. In the opposite limit of a spherical torus
with a ~ R, one obtains g ~ 6, ~ Jg. While the standard
gyro-kinetic equation [Eq. (1)] describes the finite-orbit-
width effect to any order in J,,, it takes into account only the
first-order corrections to the magnetic drifts and therefore is
accurate only through the first order in 0. Furthermore, the
majority of present numerical codes do not provide accurate
implementation of the gyro-averaged collision operator
through order 52, and therefore here we assume that Eq. (1)
is only accurate through the second order in Jg. [It is also
interesting to discuss the accuracy of Eq. (1) in the collision-
less limit. First, we note that Eq. (1) and the subsidiary rela-
tions that follow do not include fourth-order FLR
corrections, and therefore Eq. (1) cannot predict f to fourth
order in 52. Also, for the case of turbulent perturbations with
ep/T< 1 and k, p; ~ 1, Eq. (1) also fails to predict 52 cor-
rections. It is however intuitively appealing to assume for the
case of the neoclassical electric field with e@/T~1 and
ki p; < 1 that the collisionless limit of Eq. (1) is accurate
through order 52. The detailed analysis of this subject is,
however, outside the scope of the present work.]

For the case where the characteristic “radial” (i.e., nor-
mal to the magnetic flux surfaces) length-scales for varia-
tions of the ion temperature, Ly, and density, L,, are large
compared to the ion orbital excursion, a solution to the gyro-
kinetic equation (1) is close to a local Maxwellian distribu-
tion, Fy. Assuming, Ly~L,~L, and Jg~9, it is
straightforward to show for moderate (plateau) or weakly
(banana) collisional regimes that

fu = O(})Fu, )

where f, is the nth-order correction to the local Maxwellian
(zero-order) solution of Eq. (1), ie., f=Fy+fi+f+---
However, if the second-order effects in oz were properly
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retained, the corrections to the zeroth-order Maxwellian so-
lution would include the following missing terms:

3 = 0(8,08)Fu, (3a)

miss {0(5[2753) +0(8,05) + O(5,) }Fu- (3b)

Therefore, a solution to Eq. (1) that only includes the cor-
rections given in Eq. (2) is accurate through second order
(i.e., fo > f3"ss), if 8, > Jp. For instance, in the core of a
spherical torus with é=a/R~1, we obtain J, ~ dp, and
therefore already the second-order correction cannot be
accurately evaluated. On the other hand, at the top of the
pedestal of the DIII-D tokamak® corresponding to &~ 0.3,
q~4,B~18T, L,~a~05m, T;~400eV, and m; =2 my,
we obtain dz~ 10, §,~ 1072, implying that although the
second-order correction, f>, can be accurately evaluated, the
omitted second-order correction, f2’”"‘“ [Eq. (3a)] is still
larger than the third-order correction f53 [in Eq. (2)] pre-
dicted by Eq. (1). Here, m, denotes the proton mass.
Furthermore, the adopted assumption of J,~ dg in our
analysis implies that £ ~ f;.

The limited applicability of the standard approaches
[e.g., gyro-Poisson or the flux-surface-averaged Ampere
equations] for the evaluation of the neoclassical radial elec-
tric field now comes from the fact that a distribution function
needs to be accurately known through third order. Indeed, let
us consider the standard flux-surface-averaged Ampere equa-
tion for long-wavelength variations of the electrostatic
potential @ that is often used in numerical simulations for
evaluating a radial electric field'”

2
[<|V¢|2>+4nnimjcz<|vw > P

oy~

7 dne(T;). (4)

Here, n;(R) = (2n/m;) fBl*‘dVHduf(R,vH,u) is the ion
gyro-density, i is the poloidal flux function, and the
angular brackets (---) denote the flux surface average. The
second term on the left-hand-side (LHS) of Eq. (4) corre-
sponds to the classical polarization current density, with
4mnmic*/B* > 1 for a typical tokamak plasma, and the right-
hand-side (RHS) of Eq. (4) represents the neoclassical ion
current

0 = (Javiva-wur) =2 siavidutva- worr),
(5)

where Bj = b - (B + (m;v|/e)V x b) is the Jacobian of the
transformation from particle phase-space coordinates to the
gyrokinetic variables. Note that the small neoclassical
radial electron particle flux (T,) ~ z/giprBgVn,- ~
n,-l/,-,v(mg/m,-)l/zp%RBgVn,- is cancelled by the radial ion flux
driven by the ion-electron collisions,” and therefore is not
included in Eq. (4). Here, v,; and v;; are the electron-ion
and ion-ion collision frequencies, and Vi ~RBj is used.
For consistency, the collision operator in Eq. (1) should
not include weak ion-electron collisions. The radial elec-
tron current driven by the electron-electron collisions is
much smaller than the corresponding ion current, and is
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neglected in Eq. (4) as well. Finally, Eq. (4) provides no in-
formation about the small, O(d,), poloidal variations of the
neoclassical electrostatic potential. These poloidal variations
can be determined separately, for instance, by making use
of the quasi-neutrality condition along the magnetic field
lines, which only requires accurate evaluation of f;.

It is straightforward to show for a steady-state case
(or, during slow, transport-time-scale evolution) that the ion
particle flux in Eq. (5) generated by the first-order correction,
filin Eq. (2)], vanishes'!

() = <Jd3v(vd : w)f1> = —<éin3VV”CW> =0,

(6)

due to the momentum-conserving property of ion-ion colli-
sions. Here, I =RB,, and Q; = eB/m;c is the ion cyclotron fre-
quency. Also, for an up-down symmetric tokamak, the second-
order correction, f> [in Eq. (2)], produces zero particle flux as
well, ie., ([2) = ([d>V(vy- Vip)f) = 0.>'* Therefore, an
accurate calculation of the third-order correction, f3, is required
to obtain a nontrivial particle flux (I';) and describe the radial
electric field evolution [Eq. (4)], which can however be incon-
sistent with the accuracy of Eq. (1).

It is now important to estimate corrections to the ion par-
ticle flux that would be provided by the missing terms f3"s*
and f;’”“ [in Egs. (3a) and (3b)]. First, we note that the miss-
ing corrections in f, i.e., /3", [Eq. (3a)] would not generate a
nontrivial particle flux, even if properly retained. It follows
from the well-established fact demonstrated in both fluid"?
and kinetic'? theories that for an up-down-symmetric toka-
mak, the relaxation of the toroidal angular momentum occurs
on the transport time scale, 0(8°w,). Here, w, = Vr/gR is the
transit frequency, V7 is the ion thermal velocity, and
0~ 0,~0p is assumed for simplicity along with w,~ vy,
where v;; denotes the ion-ion collision frequency. From radial
force balance, one readily obtains the same-order relaxation
time for the radial electric field, which [by virtue of Eq. (4)]
requires that (I';) be fourth order, so the exact (I'») (evaluated
with f> + £3"5) must be zero. Therefore, only the omitted cor-
rections in f3, i.e., 3'”“‘, would generate nontrivial contribu-
tions to the ion particle flux. Assuming J, ~ Jg > 0p, it
follows that (I';) misses the contributions, which are compa-
rable to the one retained and can be estimated as

(T'3)~2 5583 n;VrRB. %)
Wy

Here, Viy ~ RBy and v; ~ V7 is used, and the coeffi-
cient v;; /@, comes from the subsidiary expansion in collision
frequency assuming weak collisionality regimes v; < o,
typical of a tokamak core. That is, the first order correction,
fi=0(,)Fy, should be considered as f; = O[5,(1 + v;;/
w4+ vi/w? + - -)|Fy, where the lowest-order (collision-
less) contribution does not contribute to the particle flux.

We now discuss another standard approach for evaluat-
ing E, in neoclassical simulations, which utilizes the long
wavelength limit, k| p; < 1, of the gyro-Poisson equation'

[ ¢ ad
@A (D—FWVL . (I’ZZVL(I)) = ne — n;,

mi;as;

®)
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with a Boltzmann (in the linear limit, adiabatic) model for
electrons

Ne = <ni0> <€Xp[€(I)/Te(l#)] (9)

exple®/T.(¥)])’

where n; = n;(R) = (2n/m;) medVHd,uf(R,v”, u) is the ion
gyro-density and n;o=n;(t =0). Note that although the ion
gyro-density, n;, is Egs. (8) and (9) should formally be eval-
uated at the spatial coordinate x, and not the gyro-center
coordinate R, a small difference of n;(x) — n[R(x)] =
O(K:p})n; < n; can be neglected. Indeed, retaining
these corrections in Egs. (8) and (9) yields (n% — n;)
= (n; — i) + O(k% p?)(n; — nyy), where the second term
O(K% p?)(n; — nyp), related to the discrepancy between 7,(x)
and n,(R), is much smaller than the left-hand-side of Eq. (8).
Applying flux surface averaging to Eq. (8), taking a time de-
rivative and making use of the gyro-kinetic density moment
equation (continuity equation), i.e.,

8<”i> _ 9 <Fi> — %<JB*|dV||d,u(Vd . Vlﬁ)f>, (10)

o oy

we obtain Ampere’s law [Eq. (4)]. Therefore, the limitations
on the applicability of the gyro-Poisson equation [Eq. (8)]
for evaluating E, in a tokamak core are the same as for
Ampere’s law [Eq. (4)]. Physically, the approach utilizing
gyro-Poisson’s equation relies on the accurate evaluation of
(n;) evolution, which, in turn, is directly related to the accu-
rate evaluation of (I';). It is straightforward to show that
Ampere’s law [Eq. (4)] also follows from the gyro-Poisson
equation for the case of kinetic electrons since the small ra-
dial electron and ion currents associated with the electron-
ion collisions cancel each other,” thus imposing the same
applicability limitations for that case.

It is worth noting that methods for evaluating a radial
electric field that require accurate evaluation of a distribution
function only through order n=2,>'5 and even n=1 (Ref.
12) are being developed as well. However, they are valid in
limited parameter regimes, and are challenging for numerical
implementation.

lll. APPLICABILITY OF THE STANDARD
APPROACHES IN ATOKAMAK EDGE

The edge of a tokamak is distinguished by the presence
of non-intrinsically ambipolar processes such as charge-
exchange collisions with neutrals and prompt ion orbit
losses. The ion particle flux driven by charge-exchange fric-
tion with neutrals can be estimated from Eq. (6) as follows:

1 _ c
<rChX> :_<§[Jd3VV|CChX[fa ﬂ]> NnLLR<VChX>ni(Vi _Vn(/))
(11)

where C[f,f,] is the gyroaveraged operator for charge-
exchange collisions, v = (0V) . 1tns Ny is the neutral den-
sity, (av),,, is the charge-exchange reactivity, and V;, and
V., are the toroidal ion and neutral flow velocities, respec-
tively. It is evident that the Ampere or gyro-Poisson
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equations can be applied for evaluating the radial electric
field in a tokamak edge region provided (') > (I'3). This
condition needs to be satisfied as the system relaxes to a
steady state, where, in the absence of other particle sources
or sinks, (I".;,) becomes equal to (I'5). In order to estimate
the friction force between ions and neutrals during the relax-
ation, one needs to take into account the dynamics of neu-
trals. Considering the flux-surface averaged toroidal angular
momentum equation for the neutral species and neglecting
the inertial term, it follows for the axisymmetric case that

(Rmunuvyi(Vip — Vip)) = (R - V - T1,.), (12)

where R is the major radius coordinate, I1, is the neutral vis-
cous tensor, v,; = Ve, (nm;)/(n,m,) is the neutral-ion charge-
exchange collision frequency, and m,, is the neutral mass. For
simplicity, here, we estimate the right-hand-side of Eq. (12) as
(R -V -T1,) ~ Ru,Vy,/%, where y, is the neutral viscos-
ity, T,, ~ T; is the neutral temperature, and /, is the characteris-
tic perpendicular length scale for variations of the neutral
toroidal flow velocity, which is the order of or larger than that
of the ion toroidal flow velocity, /;. For a strongly collisional
case with A,< 1, we adopt u, ~ n,T,/v, and readily
obtain from Eq. (12) that (Viy — Vup)/Vip ~ 2/ < 1,
where /,, ~ Vr,/v,; is the neutral mean-free-path, and Vr, =
\/(2T,/m,) is the thermal neutral velocity. It then follows
that the ion and neutral velocities are approximately equal,
Vo = Vig, I, [;, and the particle flux in Eq. (11) is given by
(Toe) ~ (mic/e)(ven) (A2 /B)n;Vi,. More detailed analysis
of the strongly collisional case can be found in Ref. 16. In the
opposite, weakly collisional limit, 4, > /;, the neutrals cannot
respond to rapid variations in the ion flow velocity. In this
limit, p, ~ myn,l,Vr,, and we obtain from Eq. (12) that
Vie — Vup ~ Vip, assuming the ion flow velocity variations
across the tokamak edge, AV, are the order of V,, consistent
with the experimental observations in Ref. 9. The particle flux
in a weakly collisional regime can therefore be estimated as
(Tepe) ~ (mic/e)(Vene)niVip. Adopting near-separatrix pa-
rameters characteristic of the DIII-D tokamak in the H-mode
confinement regime,9 T;,~200eV, n;~ 1019m73, m, ~ m,
and assuming (OV)e,~ 3 X 10m3~ ' it follows that
An~ 50 cm, which is the order of the distance between the di-
vertor plates and the X point. The length scale for variations
of the diamagnetic-size toroidal ion flow velocity is the
order of several centimeters,” and therefore this parameter

Fo
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regime corresponds to a weakly collisional case, with
Viep = Vnp ~ Vip. It now follows that the Ampere or gyro-
Poisson equations can be applied for evaluating a radial elec-
tric field in a tokamak edge region provided

B‘P (O’V) o <I’Zn> Vi )
2o NP e \Tn) U 1
By Q; > @, 535’” (13)

where a diamagnetic level of the ion toroidal flow velocity,
Vip~0,Vr, has been adopted. For the parameters of the
DIII-D tokamak pedestal 1region,9 the inequality in Eq. (13)
can be expressed as n,>3 X 10" m™3, where vilw;~0.1
was assumed. Note that while a typical neutral density can
be as high as ~10'"m™> at the divertor plates, it rapidly
decreases toward the core region due to ionization.®’
Numerical studies show, however, that the condition in
Eq. (13) can be well-satisfied even at the top of the pedestal.7

We now discuss the effects of the non-intrinsically
ambipolar ion orbit losses®*'” shown in Fig. 1. Here, let
us consider the electron and ion species being distributed
initially according to local Maxwellian distributions with
equal charge densities. Furthermore, we assume a weakly
collisional regime with 1/,—,—<<£”2wt. As the system relaxa-
tion occurs, the ion orbit losses produce a large non-
intrinsically ambipolar ion particle flux (the corresponding
electron particle flux is much smaller), thus leading to the
rapid generation of a radial electric field in accordance
with Eq. (4) [or, Eq. (8)]. This electric field will, in turn,
suppress the ion orbit losses by shifting them toward the
high-energy tail of the ion distribution due to develop-
ment of a potential barrier and E,-shear. It is important to
note that if the (I',,) dependence on the radial electric
field is represented by a monotonically decreasing func-
tion, e.g., (Iiss) = Lerirexp(—E,/Eqi), then, in the ab-
sence of other non-intrinsically ambipolar processes, the
final steady-state value of the radial electric field can only
be determined with limited (e.g., logarithmic) accuracy
E, = E.yIn(T,;/(I'3s)). However, if other non-
intrinsically ambipolar processes are present, e.g., charge-
exchange collision with neutrals, then the electric field
can be accurately determined from the condition
<rloss> + <Fc‘l1x> =0, PTOVided <Floss>7 <rchx> > <F3>

In order to evaluate the threshold in the condition
(T)pss) > (I3), it is sufficient to estimate small suprather-
mal ion orbit losses from the flux surfaces corresponding to

Vv N A (b)
/

loss / , , ,
hol 4 FIG. 1. Prompt ion orbit losses (sim-
ole y plified model). (a) Shown schema-
y tically are the lost (solid red curve) and
e confined (dashed blue curve) ion tra-
) jectories corresponding to w >w, and
\/— ) w <w,, respectively. The VB drift is
‘c'," assumed to be directed downward. (b)
Y Schematic of a loss hole in the velocity
! phase-space corresponding to the outer

w>w,

v

midplane.
Vi
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w.>T; (Fig. 1). Here, w.(/) denotes a critical energy at
which the particle’s banana orbit width, A.(w.) becomes
comparable to the distance between the flux surface under
consideration, ¥/, and the separatrix, i.e.,

We - lp - lpsep

Ac‘(wc') ~ \/Epie T BoR

. (14)

where p;g = Vym,c/(eBy) is the ion thermal poloidal gyrora-
dius. Note that in deriving Eq. (14), we neglected the effects
of quasi-stationary E, on the suprathermal ion trajectories.
Indeed, even for the case of the H-mode confinement regime,
the potential variations Ag ~ T;/e that occur in the pedestal
region with a characteristic length-scale of order p;y should
not significantly affect the suprathermal ion dynamics. Also,
for simplicity of the present calculations, we assume that lost
ion trajectories correspond to w > w,. (Fig. 1). During the ini-
tial relaxation period [of the order of transient time scale,
Ty ~ 8’1/2qR/\/wc/m,-], the collisionless orbit losses are
primarily attributed to depletion of the initial particle distri-
bution in the high-energy loss-hole regions of the ion phase-
space. After this short initial stage, the losses are due to the
slow collisional ion scattering into the loss holes. Note
that the loss holes remain nearly empty provided
vi(we) < &2 /(we./m;)/(gR). Similarly to Egs. (6) and
(11), the particle flux associated with the ion orbit loss can
be related during the quasi-stationary evolution of the system
to the corresponding sink of the flux-surface averaged toroi-
dal angular momentum attributed to the collisional popula-
tion of the suprathermal loss holes

<Floss> ~ (I/Qi)vh)ssﬂloss- (15)

Here, Vl‘fss ~ e(we /m[)l/ % is the parallel velocity of the

lost ions and 71,5 ~ (Tj/WC)3/2Vjin exp(—w,/T;) is the parti-
cle loss rate due to the scattering into the loss hole, where v;;
denotes the collision frequency corresponding to a thermal

ion and the factor of (T;/ WC)3/ ? comes from the energy de-
pendence of the ion-ion collision frequency. Note that the
losses from the outer midplane are used in Eq. (15) to repre-
sent the corresponding flux-surface averaged value. It is
straightforward to show that ion orbit loss from that location
is dominant for a given magnetic flux surface.’ It now read-
ily follows that:

Ao\’ A?
(D) 1oss ~ nviiAo <—) exp (- —5 | RBy, (16)
Ac A}

where we introduced the thermal banana orbit width
Ao = \/¢p;y. The non-intrinsically ambipolar ion particle
flux associated with the ion orbit losses [Eq. (16)] is domi-
nant over the high-order flux in Eq. (7) within the region
determined from

Ao\’ A2 ;
(AL) exp (— AS) > \/Eép. 17

For the parameters characteristic of the DIII-D tokamak ped-
estal region,” the threshold in the inequality in Eq. (16) cor-
responds to A, =3.5A0=4.2cm.

Phys. Plasmas 20, 082515 (2013)

It is also interesting to discuss the initial collisionless
ion losses that occur during the short transient time,
Ty~ eV 2gR /+/We/mi, and become increasingly important
in the region of close proximity to separatrix. Indeed, as the
size of the loss-holes increases toward the separatrix, these
prompt losses can become sufficiently large to generate a
strong electrostatic potential barrier, Ap >T;, so as to sub-
stantially suppress the losses. After the initial transient stage,
the collisional losses will continue to determine the E,-dy-
namics. In order to show that the initial transient losses can
indeed produce significant electrostatic potential variations,
we estimate the largest possible radial electric field, Eﬁjf”,
generated due to the collisionless ion losses, assuming that
the loss holes are completely emptied out during the initial
transient time period. Making use of Eq. (4), we obtain

(minc® [BY)ES™ (W) ~ eANS(¥)/A(Y).  (18)

Here,  ANS(W) ~ [V [Vy| ' Ady/enexp(—w,/T;) ~
VenA(W) (A3 /A.) exp(—A2/A2) is the initial number of
ions inside the loss-holes integrated over a plasma volume
bounded by the magnetic flux W =0 corresponding to the
magnetic axis, A(\P) is the area of the magnetic flux surface,
and we made use of [ exp(—r)dt ~x'e™ for x> 1.
From Eq. (18), it now follows that the variation of the elec-
trostatic potential within a single thermal-banana-width,
Ao~ Ag, layer (adjacent to the separatrix) is given by
eA@/T; ~ q*/\/¢ > 1. Therefore, the potential barrier can
become strong enough to significantly suppress the ion losses
and prevent a pronounced depletion of the initial ion distri-
bution inside the loss-hole regions near the separatrix.

Finally, we note that the ion orbit-loss process can, in
principle, introduce large nonlinear perturbations to the edge
of a tokamak. Therefore, the properties of the edge steady
state can depend on the assumptions of the initial plasma dis-
tribution inside the loss-hole regions of the phase space. As
an illustrative example, in the present work, we adopt a local
Maxwellian distribution to describe the initial state of the
system, because it is often used in numerical simulations to
initialize a tokamak edge.

IV. DISCUSSION

The standard approaches [i.e., Eq. (4) or (8)] for evaluat-
ing a long-wavelength radial electric field can be applicable
in a tokamak edge, where low-order non-intrinsically ambi-
polar particle fluxes associated with the charge-exchange
collisions with neutrals and prompt ion orbit losses are domi-
nant over intrinsically ambipolar high-order fluxes (also
present in a tokamak core). The non-intrinsically ambipolar
fluxes are assessed, and the width of a layer inside the last
closed flux surface where the standard approaches can be
used is estimated. However, the aforementioned standard
approaches have limited validity within the framework of
standard gyrokinetics to evaluate the long-wavelength radial
electric field in the tokamak core.

We also note that the problem of E, relaxation is closely
related to the problem of plasma toroidal rotation. Indeed,
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the radial electric field and the ion toroidal velocity, V,, are
directly related through radial force balance; and physically,
the condition (I'3) < (T'¢py), (Tjoss) means that the relaxa-
tion of both E, and V, occurs on a time scale faster than the
transport time scale. It also means that the relaxation of the
toroidal angular momentum is dominated (over the neoclass-
ical viscosity) by the torque provided by charge-exchange
collisions [Eq. (11)] with neutrals or large orbit losses
[Eq. (15)]. Accordingly, the applicability of the standard
approaches can be numerically analyzed for a given simula-
tion by diagnosing the time evolution of the flux-surface
averaged  gyrokinetic toroidal angular ~momentum,
P, = <fBﬁded,u(1/B)V”f>. The standard approaches can be
used in the edge region of an up-down symmetric tokamak
when the time evolution of P, (with a diamagnetic level of
the toroidal flow velocity, V,~0d,V7) occurs on a time
scale shorter than 7, = (P,,/P)"" ~ [(Qi/3,Vr)(T3/nRBy)
(B,/Bo)] " ~ [512,1/,-,-q(B¢/B9)]7 , l.e., the transport time
scale.

Finally, we would like to emphasize that the present
studies are performed for the case of axisymmetric particle
transport. In order to generalize the analysis to including tur-
bulent transport one needs to perform detailed studies to
determine the order of the distribution function correction
for which the difference between turbulent electron and ion
particle fluxes becomes nontrivial (for an arbitrary value of
the radial electric field). If the order is sufficiently high and
is inconsistent with the accuracy of the gyrokinetic equation,
then the conditions in Eqs. (13) and (17) need to be modified
to include the maximum of the high-order (non-intrinsically
ambipolar) turbulent and neoclassical particle fluxes.
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