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The use of the standard approaches for evaluating a neoclassical radial electric field Er, i.e., the

Ampere (or gyro-Poisson) equation, requires accurate calculation of the difference between the

gyroaveraged electron and ion particle fluxes (or densities). In the core of a tokamak, the nontrivial

difference appears only in high-order corrections to a local Maxwellian distribution due to the intrinsic

ambipolarity of particle transport. The evaluation of such high-order corrections may be inconsistent

with the accuracy of the standard long wavelength gyrokinetic equation (GKE), thus imposing

limitations on the applicability of the standard approaches. However, in the edge of a tokamak,

charge-exchange collisions with neutrals and prompt ion orbit losses can drive non-intrinsically

ambipolar particle fluxes for which a nontrivial (Er-dependent) difference between the electron and

ion fluxes appears already in a low order and can be accurately predicted by the long wavelength

GKE. The parameter regimes, where the radial electric field dynamics in the tokamak edge region is

dominated by the non-intrinsically ambipolar processes, thus allowing for the use of the standard

approaches, are discussed. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818777]

I. INTRODUCTION

It has been recently been demonstrated that the use of

the standard approaches (i.e., the gyro-Poisson or flux-sur-

face-averaged Ampere equation) that are utilized in the ma-

jority of drift-kinetic and gyro-kinetic codes for evaluating a

long-wavelength axisymmetric neoclassical radial electric

field Er has limited validity in the core of a tokamak.1,2

Briefly, the limitation comes from the fact that a difference

between the ion and the electron flux-surface-averaged parti-

cle fluxes (that determines the radial electric field) appears

only in high-order corrections to a local Maxwellian distribu-

tion (zero-order solution), whereas the standard drift-kinetic

equation3 or the long wavelength gyro-kinetic equation4 may

have insufficient accuracy to predict such high-order correc-

tions. The low-order identity between the electron and ion

fluxes for an arbitrary value of the radial electric field is a

manifestation of the so-called intrinsic ambipolarity.5 In the

tokamak edge, however, charge-exchange collisions with

neutrals6,7 and ion orbit losses8 can drive non-intrinsically

ambipolar particle fluxes for which a nontrivial (Er-depend-

ent) difference between the electron and ion fluxes appears

already in the low-order corrections (accurately predicted by

the long wavelength GKE). Therefore, for the parameter

regimes where the non-intrinsically ambipolar processes

play a dominant role in determining the Er-dynamics, or,

equivalently, the non-intrinsically ambipolar (low-order)

particle fluxes are dominant over the intrinsically ambipolar

(high-order) particle fluxes, the standard approaches for eval-

uating Er can be used. While both the charge-exchange colli-

sions with neutrals and ion orbit losses are significant near

the last closed flux surface (separatrix), their influence rap-

idly decreases toward the core region. Indeed, the neutral

density exhibits an exponential decay due to ionization, and

the ion orbit loss decreases due to the shift of the loss hole

toward the high-energy tail of the particle distribution. On

the other hand, the higher-order ambipolar particle losses are

generally small, and it is therefore of particular interest to

estimate the radial width of an edge layer where the non-

intrinsically ambipolar losses are still dominant.

The paper is organized as follows. First, following the dis-

cussion in Ref. 2, we assess the higher-order “intrinsically

ambipolar” particle fluxes and review the limitations of the

standard approaches for evaluating a neoclassical radial electric

field in a tokamak core. We then estimate the non-intrinsically

ambipolar fluxes driven by the charge-exchange collisions with

neutrals and the orbit ion losses, and evaluate the width of the

layer in the edge where the standard approaches can be used.

II. LIMITATIONS OF THE STANDARD APPROACHES IN
A TOKAMAK CORE

In order to understand the limitations of the standard

approaches for evaluating a neoclassical radial electric field

in a tokamak core, it is first important to discuss the accuracy

of the standard “first-order” gyrokinetic equation4

@f

@t
þ _R

@f

@R
þ _vjj

@f

@vjj
¼ �C½f �: (1)

Here, Eq. (1) for the ion gyrocenter distribution function f(R,

vjj, l) is written in parallel velocity (vjj)—magnetic moment

(l) coordinates, _R ¼ vjjbþ vd, _vjj ¼ �ð1=mivjjÞ _R � ðZerRU
þlrRBÞ, vd is the drift velocity composed of the E�B drift

and the magnetic drifts (i.e., curvature drift and rB drift), R is

the gyrocenter position coordinate, �C½f � denotes the gyro-

averaged collision operator, B 5 B�b is the magnetic field with

b denoting the unit vector along the field, e is the electron

charge, Z and mi correspond to the ion charge state and mass,
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respectively, and in what follows we assume Z¼ 1 for simpli-

city. For the case of the long-wavelength neoclassical electro-

static potential variations with eu�T and k?qi � qi=Lp � 1,

the gyrokinetic electrostatic potential in Eq. (1) is given by

U ¼ �u þ ðeq2
i =2TiÞðr?�uÞ2, where qi is the ion gyroradius,

the bar over a variable denotes the gyro-average, k�1
? and Lp

describe the length scale for variations of neoclassical electro-

static potential and plasma pressure, respectively; and finally,

ion and electron temperatures of the same order are assumed,

i.e., Ti�Te� T.

The accuracy of Eq. (1) can be characterized by three

dimensionless parameters: dB � qi=LB � 1 corresponding to

the accuracy of the magnetic drift velocity, dp � qqi=Lp � 1

describing the effects of finite drift-orbit width, and dE �
ðeu=TÞðk?qiÞ � 1 describing the finite Larmor radius (FLR)

polarization effects. Here, LB is the characteristic length

scale for variation of the magnetic field, typically being the

order of the tokamak major radius, i.e., LB � R, and q is the

magnetic safety factor. Assuming the pressure length scale

to be the order of the tokamak minor radius, Lp � a (charac-

teristic of a tokamak core region), the small parameters are

related as dp=dE � q and dB=dp � Bh=Bu, where Bh and Bu

denote the poloidal and toroidal components of the magnetic

field, respectively. For the case of a large aspect ratio toka-

mak with e ¼ a=R� 1 and q � 1, it follows that dp=dE � 1

and dB=dp � 1. In the opposite limit of a spherical torus

with a � R, one obtains dB � dp � dE. While the standard

gyro-kinetic equation [Eq. (1)] describes the finite-orbit-

width effect to any order in dp, it takes into account only the

first-order corrections to the magnetic drifts and therefore is

accurate only through the first order in dB. Furthermore, the

majority of present numerical codes do not provide accurate

implementation of the gyro-averaged collision operator

through order d3
E, and therefore here we assume that Eq. (1)

is only accurate through the second order in dE. [It is also

interesting to discuss the accuracy of Eq. (1) in the collision-

less limit. First, we note that Eq. (1) and the subsidiary rela-

tions that follow do not include fourth-order FLR

corrections, and therefore Eq. (1) cannot predict f to fourth

order in d4
E. Also, for the case of turbulent perturbations with

eu/T� 1 and k?qi � 1, Eq. (1) also fails to predict d3
E cor-

rections. It is however intuitively appealing to assume for the

case of the neoclassical electric field with eu/T� 1 and

k?qi � 1 that the collisionless limit of Eq. (1) is accurate

through order d3
E. The detailed analysis of this subject is,

however, outside the scope of the present work.]

For the case where the characteristic “radial” (i.e., nor-

mal to the magnetic flux surfaces) length-scales for varia-

tions of the ion temperature, LT, and density, Ln, are large

compared to the ion orbital excursion, a solution to the gyro-

kinetic equation (1) is close to a local Maxwellian distribu-

tion, FM. Assuming, LT� Ln�Lp and dE� dp, it is

straightforward to show for moderate (plateau) or weakly

(banana) collisional regimes that

fn ¼ Oðdn
pÞFM; (2)

where fn is the nth-order correction to the local Maxwellian

(zero-order) solution of Eq. (1), i.e., f¼FMþ f1þ f2þ � � �.
However, if the second-order effects in dB were properly

retained, the corrections to the zeroth-order Maxwellian so-

lution would include the following missing terms:

f miss
2 ¼ OðdpdBÞFM; (3a)

f miss
3 ¼ fOðd2

pdBÞ þ Oðdpd
2
BÞ þ Oðd3

EÞgFM: (3b)

Therefore, a solution to Eq. (1) that only includes the cor-

rections given in Eq. (2) is accurate through second order

(i.e., f2 � f miss
2 ), if dp � dB. For instance, in the core of a

spherical torus with e¼ a/R� 1, we obtain dp � dB, and

therefore already the second-order correction cannot be

accurately evaluated. On the other hand, at the top of the

pedestal of the DIII-D tokamak9 corresponding to e� 0.3,

q� 4, B� 1.8 T, Lp� a� 0.5 m, Ti� 400 eV, and mi¼ 2 mp,

we obtain dB� 10�3, dp� 10�2, implying that although the

second-order correction, f2, can be accurately evaluated, the

omitted second-order correction, f miss
2 [Eq. (3a)] is still

larger than the third-order correction f3 [in Eq. (2)] pre-

dicted by Eq. (1). Here, mp denotes the proton mass.

Furthermore, the adopted assumption of dp� dE in our

analysis implies that f miss
3 � f3.

The limited applicability of the standard approaches

[e.g., gyro-Poisson or the flux-surface-averaged Ampere

equations] for the evaluation of the neoclassical radial elec-

tric field now comes from the fact that a distribution function

needs to be accurately known through third order. Indeed, let

us consider the standard flux-surface-averaged Ampere equa-

tion for long-wavelength variations of the electrostatic

potential U that is often used in numerical simulations for

evaluating a radial electric field10

hjrwj2i þ 4pnimic
2 jrwj2

B2

* +" #
@2U
@t@w

¼ 4pehCii: (4)

Here, niðRÞ ¼ ð2p=miÞ
Ð

B	jjdvjjdlf ðR; vjj; lÞ is the ion

gyro-density, w is the poloidal flux function, and the

angular brackets h� � �i denote the flux surface average. The

second term on the left-hand-side (LHS) of Eq. (4) corre-

sponds to the classical polarization current density, with

4pnimic
2/B2� 1 for a typical tokamak plasma, and the right-

hand-side (RHS) of Eq. (4) represents the neoclassical ion

current

hCii ¼
ð

d3vðvd � rwÞf
� �

¼ 2p
mi

ð
B	jjdvjjdlðvd � rwÞf

� �
;

(5)

where B	jj 
 b � ðBþ ðmivjj=eÞr � bÞ is the Jacobian of the

transformation from particle phase-space coordinates to the

gyrokinetic variables. Note that the small neoclassical

radial electron particle flux hCei � �eiq2
eRBhrni �

ni�iiðme=miÞ1=2q2
i RBhrni is cancelled by the radial ion flux

driven by the ion-electron collisions,5 and therefore is not

included in Eq. (4). Here, �ei and �ii are the electron-ion

and ion-ion collision frequencies, and rw�RBh is used.

For consistency, the collision operator in Eq. (1) should

not include weak ion-electron collisions. The radial elec-

tron current driven by the electron-electron collisions is

much smaller than the corresponding ion current, and is

082515-2 Dorf et al. Phys. Plasmas 20, 082515 (2013)



neglected in Eq. (4) as well. Finally, Eq. (4) provides no in-

formation about the small, O(dp), poloidal variations of the

neoclassical electrostatic potential. These poloidal variations

can be determined separately, for instance, by making use

of the quasi-neutrality condition along the magnetic field

lines, which only requires accurate evaluation of f1.

It is straightforward to show for a steady-state case

(or, during slow, transport-time-scale evolution) that the ion

particle flux in Eq. (5) generated by the first-order correction,

f1 [in Eq. (2)], vanishes11

hC1i 

ð

d3vðvd � rwÞf1

� �
¼ � I

Xi

ð
d3v vjj �C½f1�

� �
¼ 0;

(6)

due to the momentum-conserving property of ion-ion colli-

sions. Here, I¼RBu and Xi¼ eB/mic is the ion cyclotron fre-

quency. Also, for an up-down symmetric tokamak, the second-

order correction, f2 [in Eq. (2)], produces zero particle flux as

well, i.e., hC2i ¼ h
Ð

d3vðvd � rwÞf2i ¼ 0.2,12 Therefore, an

accurate calculation of the third-order correction, f3, is required

to obtain a nontrivial particle flux hC3i and describe the radial

electric field evolution [Eq. (4)], which can however be incon-

sistent with the accuracy of Eq. (1).

It is now important to estimate corrections to the ion par-

ticle flux that would be provided by the missing terms f miss
2

and f miss
3 [in Eqs. (3a) and (3b)]. First, we note that the miss-

ing corrections in f2, i.e., f miss
2 , [Eq. (3a)] would not generate a

nontrivial particle flux, even if properly retained. It follows

from the well-established fact demonstrated in both fluid13

and kinetic12 theories that for an up-down-symmetric toka-

mak, the relaxation of the toroidal angular momentum occurs

on the transport time scale, O(d2xt). Here, xt¼VT/qR is the

transit frequency, VT is the ion thermal velocity, and

d� dp� dB is assumed for simplicity along with xt� �ii,

where �ii denotes the ion-ion collision frequency. From radial

force balance, one readily obtains the same-order relaxation

time for the radial electric field, which [by virtue of Eq. (4)]

requires that hCii be fourth order, so the exact hC2i (evaluated

with f2 þ f miss
2 ) must be zero. Therefore, only the omitted cor-

rections in f3, i.e., f miss
3 , would generate nontrivial contribu-

tions to the ion particle flux. Assuming dp � dE � dB, it

follows that hC3i misses the contributions, which are compa-

rable to the one retained and can be estimated as

hC3i�
�ii

xt
dBd3

PniVTRBh: (7)

Here, rw � RBh and vd � dBVT is used, and the coeffi-

cient �ii=xt comes from the subsidiary expansion in collision

frequency assuming weak collisionality regimes �ii � xt

typical of a tokamak core. That is, the first order correction,

f1¼O(dp)FM, should be considered as f1 ¼ O½dpð1þ �ii=
xt þ �2

ii=x
2
t þ � � �Þ�FM, where the lowest-order (collision-

less) contribution does not contribute to the particle flux.

We now discuss another standard approach for evaluat-

ing Er in neoclassical simulations, which utilizes the long

wavelength limit, k?qi � 1, of the gyro-Poisson equation14

1

4pe
D2Uþ e

miX
2
i

r? � ðnir?UÞ ¼ nad
e � ni; (8)

with a Boltzmann (in the linear limit, adiabatic) model for

electrons

ne ¼ hni0i
exp½eU=TeðwÞ�
hexp½eU=TeðwÞ�i

; (9)

where ni ¼ niðRÞ ¼ ð2p=miÞ
Ð

B	jjdvjjdlf ðR; vjj; lÞ is the ion

gyro-density and ni0¼ ni(t¼ 0). Note that although the ion

gyro-density, ni, is Eqs. (8) and (9) should formally be eval-

uated at the spatial coordinate x, and not the gyro-center

coordinate R, a small difference of niðxÞ � ni½RðxÞ� ¼
Oðk2

?q
2
i Þni � ni can be neglected. Indeed, retaining

these corrections in Eqs. (8) and (9) yields hnad
e � nii

¼ hni � ni0i þ Oðk2
?q

2
i Þhni � ni0i, where the second term

Oðk2
?q

2
i Þhni � ni0i, related to the discrepancy between ni(x)

and ni(R), is much smaller than the left-hand-side of Eq. (8).

Applying flux surface averaging to Eq. (8), taking a time de-

rivative and making use of the gyro-kinetic density moment

equation (continuity equation), i.e.,

@hnii
@t
¼ � @

@w
hCii ¼ �

@

@w

ð
B	jjdvjjdlðvd � rwÞf

� �
; (10)

we obtain Ampere’s law [Eq. (4)]. Therefore, the limitations

on the applicability of the gyro-Poisson equation [Eq. (8)]

for evaluating Er in a tokamak core are the same as for

Ampere’s law [Eq. (4)]. Physically, the approach utilizing

gyro-Poisson’s equation relies on the accurate evaluation of

hnii evolution, which, in turn, is directly related to the accu-

rate evaluation of hCii. It is straightforward to show that

Ampere’s law [Eq. (4)] also follows from the gyro-Poisson

equation for the case of kinetic electrons since the small ra-

dial electron and ion currents associated with the electron-

ion collisions cancel each other,5 thus imposing the same

applicability limitations for that case.

It is worth noting that methods for evaluating a radial

electric field that require accurate evaluation of a distribution

function only through order n¼ 2,2,15 and even n¼ 1 (Ref.

12) are being developed as well. However, they are valid in

limited parameter regimes, and are challenging for numerical

implementation.

III. APPLICABILITY OF THE STANDARD
APPROACHES IN A TOKAMAK EDGE

The edge of a tokamak is distinguished by the presence

of non-intrinsically ambipolar processes such as charge-

exchange collisions with neutrals and prompt ion orbit

losses. The ion particle flux driven by charge-exchange fric-

tion with neutrals can be estimated from Eq. (6) as follows:

hCchxi¼�
I

Xi

ð
d3vvjj �Cchx½f ; fn�

� �
�mic

e
Rh�chxiniðViu�VnuÞ;

(11)

where �Cchx½f ; fn� is the gyroaveraged operator for charge-

exchange collisions, �chx ¼ ðrvÞchxnn, nn is the neutral den-

sity, ðrvÞchx is the charge-exchange reactivity, and Viu and

Vnu are the toroidal ion and neutral flow velocities, respec-

tively. It is evident that the Ampere or gyro-Poisson
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equations can be applied for evaluating the radial electric

field in a tokamak edge region provided hCchxi � hC3i. This

condition needs to be satisfied as the system relaxes to a

steady state, where, in the absence of other particle sources

or sinks, hCchxi becomes equal to hC3i. In order to estimate

the friction force between ions and neutrals during the relax-

ation, one needs to take into account the dynamics of neu-

trals. Considering the flux-surface averaged toroidal angular

momentum equation for the neutral species and neglecting

the inertial term, it follows for the axisymmetric case that

h �Rmnnn�niðViu � VnuÞi ¼ h �Rû � r �Pni; (12)

where �R is the major radius coordinate, Pn is the neutral vis-

cous tensor, �ni¼ �chx(nimi)/(nnmn) is the neutral-ion charge-

exchange collision frequency, and mn is the neutral mass. For

simplicity, here, we estimate the right-hand-side of Eq. (12) as

h �Rû � r �Pni � RlnVnu=l2
n, where ln is the neutral viscos-

ity, Tn�Ti is the neutral temperature, and ln is the characteris-

tic perpendicular length scale for variations of the neutral

toroidal flow velocity, which is the order of or larger than that

of the ion toroidal flow velocity, li. For a strongly collisional

case with kn� ln, we adopt ln � nnTn=�ni and readily

obtain from Eq. (12) that ðViu � VnuÞ=Vnu � k2
n=l2n � 1,

where kn � VTn=�ni is the neutral mean-free-path, and VTn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Tn=mnÞ

p
is the thermal neutral velocity. It then follows

that the ion and neutral velocities are approximately equal,

Vnu�Viu, ln� li, and the particle flux in Eq. (11) is given by

hCchxi � ðmic=eÞh�chxiðk2
n=l2

nÞniViu. More detailed analysis

of the strongly collisional case can be found in Ref. 16. In the

opposite, weakly collisional limit, kn� li, the neutrals cannot

respond to rapid variations in the ion flow velocity. In this

limit, ln � mnnnlnVTn, and we obtain from Eq. (12) that

Viu � Vnu � Viu, assuming the ion flow velocity variations

across the tokamak edge, DViu, are the order of Viu consistent

with the experimental observations in Ref. 9. The particle flux

in a weakly collisional regime can therefore be estimated as

hCchxi � ðmic=eÞh�chxiniViu. Adopting near-separatrix pa-

rameters characteristic of the DIII-D tokamak in the H-mode

confinement regime,9 Ti� 200 eV, ni� 1019 m�3, mn�mi,

and assuming (rv)chx� 3� 1014 m3s�1,6 it follows that

kn� 50 cm, which is the order of the distance between the di-

vertor plates and the X point. The length scale for variations

of the diamagnetic-size toroidal ion flow velocity is the

order of several centimeters,9 and therefore this parameter

regime corresponds to a weakly collisional case, with

Viu�Vnu�Viu. It now follows that the Ampere or gyro-

Poisson equations can be applied for evaluating a radial elec-

tric field in a tokamak edge region provided

Bu

Bh

ðrvÞchxhnni
Xi

� �ii

xt
dBd2

p; (13)

where a diamagnetic level of the ion toroidal flow velocity,

Viu� dpVT, has been adopted. For the parameters of the

DIII-D tokamak pedestal region,9 the inequality in Eq. (13)

can be expressed as nn� 3� 1012 m�3, where �ii/xt� 0.1

was assumed. Note that while a typical neutral density can

be as high as �1019 m�3 at the divertor plates, it rapidly

decreases toward the core region due to ionization.6,7

Numerical studies show, however, that the condition in

Eq. (13) can be well-satisfied even at the top of the pedestal.7

We now discuss the effects of the non-intrinsically

ambipolar ion orbit losses8,9,17 shown in Fig. 1. Here, let

us consider the electron and ion species being distributed

initially according to local Maxwellian distributions with

equal charge densities. Furthermore, we assume a weakly

collisional regime with �ii� e1/2xt. As the system relaxa-

tion occurs, the ion orbit losses produce a large non-

intrinsically ambipolar ion particle flux (the corresponding

electron particle flux is much smaller), thus leading to the

rapid generation of a radial electric field in accordance

with Eq. (4) [or, Eq. (8)]. This electric field will, in turn,

suppress the ion orbit losses by shifting them toward the

high-energy tail of the ion distribution due to develop-

ment of a potential barrier and Er-shear. It is important to

note that if the hClossi dependence on the radial electric

field is represented by a monotonically decreasing func-

tion, e.g., hClossi ¼ Ccrit expð�Er=EcritÞ, then, in the ab-

sence of other non-intrinsically ambipolar processes, the

final steady-state value of the radial electric field can only

be determined with limited (e.g., logarithmic) accuracy

Er ¼ Ecrit lnðCcrit=hC3iÞ. However, if other non-

intrinsically ambipolar processes are present, e.g., charge-

exchange collision with neutrals, then the electric field

can be accurately determined from the condition

hClossi þ hCchxi ¼ 0, provided hClossi; hCchxi � hC3i.
In order to evaluate the threshold in the condition

hClossi � hC3i, it is sufficient to estimate small suprather-

mal ion orbit losses from the flux surfaces corresponding to

FIG. 1. Prompt ion orbit losses (sim-

plified model). (a) Shown schema-

tically are the lost (solid red curve) and

confined (dashed blue curve) ion tra-

jectories corresponding to w>wc and

w<wc, respectively. The rB drift is

assumed to be directed downward. (b)

Schematic of a loss hole in the velocity

phase-space corresponding to the outer

midplane.
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wc� Ti (Fig. 1). Here, wc(w) denotes a critical energy at

which the particle’s banana orbit width, Kc(wc) becomes

comparable to the distance between the flux surface under

consideration, w, and the separatrix, i.e.,

KcðwcÞ �
ffiffi
e
p

qih

ffiffiffiffiffi
wc

Ti

r
�

w� wsep

BhR
; (14)

where qih¼VTmic/(eBh) is the ion thermal poloidal gyrora-

dius. Note that in deriving Eq. (14), we neglected the effects

of quasi-stationary Er on the suprathermal ion trajectories.

Indeed, even for the case of the H-mode confinement regime,

the potential variations Du�Ti/e that occur in the pedestal

region with a characteristic length-scale of order qih should

not significantly affect the suprathermal ion dynamics. Also,

for simplicity of the present calculations, we assume that lost

ion trajectories correspond to w>wc (Fig. 1). During the ini-

tial relaxation period [of the order of transient time scale,

str � e�1=2qR=
ffiffiffiffiffiffiffiffiffiffiffiffi
wc=mi

p
], the collisionless orbit losses are

primarily attributed to depletion of the initial particle distri-

bution in the high-energy loss-hole regions of the ion phase-

space. After this short initial stage, the losses are due to the

slow collisional ion scattering into the loss holes. Note

that the loss holes remain nearly empty provided

�iiðwcÞ � e1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwc=miÞ

p
=ðqRÞ. Similarly to Eqs. (6) and

(11), the particle flux associated with the ion orbit loss can

be related during the quasi-stationary evolution of the system

to the corresponding sink of the flux-surface averaged toroi-

dal angular momentum attributed to the collisional popula-

tion of the suprathermal loss holes

hClossi � ðI=XiÞvloss
jj _nloss: (15)

Here, vloss
jj �

ffiffi
e
p
ðwc=miÞ1=2

is the parallel velocity of the

lost ions and _nloss � ðTi=wcÞ3=2�iin expð�wc=TiÞ is the parti-

cle loss rate due to the scattering into the loss hole, where �ii

denotes the collision frequency corresponding to a thermal

ion and the factor of ðTi=wcÞ3=2
comes from the energy de-

pendence of the ion-ion collision frequency. Note that the

losses from the outer midplane are used in Eq. (15) to repre-

sent the corresponding flux-surface averaged value. It is

straightforward to show that ion orbit loss from that location

is dominant for a given magnetic flux surface.9 It now read-

ily follows that:

hCiloss � n�iiK0

K0

Kc

� �2

exp �K2
c

K2
0

 !
RBh; (16)

where we introduced the thermal banana orbit width

K0 ¼
ffiffi
e
p

qih. The non-intrinsically ambipolar ion particle

flux associated with the ion orbit losses [Eq. (16)] is domi-

nant over the high-order flux in Eq. (7) within the region

determined from

K0

Kc

� �2

exp �K2
c

K2
0

 !
�

ffiffi
e
p

d3
p: (17)

For the parameters characteristic of the DIII-D tokamak ped-

estal region,9 the threshold in the inequality in Eq. (16) cor-

responds to Kc¼ 3.5K0¼ 4.2 cm.

It is also interesting to discuss the initial collisionless

ion losses that occur during the short transient time,

str � e�1=2qR=
ffiffiffiffiffiffiffiffiffiffiffiffi
wc=mi

p
, and become increasingly important

in the region of close proximity to separatrix. Indeed, as the

size of the loss-holes increases toward the separatrix, these

prompt losses can become sufficiently large to generate a

strong electrostatic potential barrier, Du� Ti, so as to sub-

stantially suppress the losses. After the initial transient stage,

the collisional losses will continue to determine the Er-dy-

namics. In order to show that the initial transient losses can

indeed produce significant electrostatic potential variations,

we estimate the largest possible radial electric field, Eloss
tr ,

generated due to the collisionless ion losses, assuming that

the loss holes are completely emptied out during the initial

transient time period. Making use of Eq. (4), we obtain

ðminc2=B2ÞEloss
tr ðWÞ � eDNloss

tr ðWÞ=AðWÞ: (18)

Here, DNloss
tr ðWÞ �

ÐW
0
jrwj�1Adw

ffiffi
e
p

n expð�wc=TiÞ �ffiffi
e
p

nAðWÞðK2
0=KcÞ expð�K2

c=K
2
0Þ is the initial number of

ions inside the loss-holes integrated over a plasma volume

bounded by the magnetic flux W¼ 0 corresponding to the

magnetic axis, A(W) is the area of the magnetic flux surface,

and we made use of
Ð1

x expð�t2Þdt � x�1e�x2

for x> 1.

From Eq. (18), it now follows that the variation of the elec-

trostatic potential within a single thermal-banana-width,

Kc�K0, layer (adjacent to the separatrix) is given by

eDu=Ti � q2=
ffiffi
e
p

> 1. Therefore, the potential barrier can

become strong enough to significantly suppress the ion losses

and prevent a pronounced depletion of the initial ion distri-

bution inside the loss-hole regions near the separatrix.

Finally, we note that the ion orbit-loss process can, in

principle, introduce large nonlinear perturbations to the edge

of a tokamak. Therefore, the properties of the edge steady

state can depend on the assumptions of the initial plasma dis-

tribution inside the loss-hole regions of the phase space. As

an illustrative example, in the present work, we adopt a local

Maxwellian distribution to describe the initial state of the

system, because it is often used in numerical simulations to

initialize a tokamak edge.

IV. DISCUSSION

The standard approaches [i.e., Eq. (4) or (8)] for evaluat-

ing a long-wavelength radial electric field can be applicable

in a tokamak edge, where low-order non-intrinsically ambi-

polar particle fluxes associated with the charge-exchange

collisions with neutrals and prompt ion orbit losses are domi-

nant over intrinsically ambipolar high-order fluxes (also

present in a tokamak core). The non-intrinsically ambipolar

fluxes are assessed, and the width of a layer inside the last

closed flux surface where the standard approaches can be

used is estimated. However, the aforementioned standard

approaches have limited validity within the framework of

standard gyrokinetics to evaluate the long-wavelength radial

electric field in the tokamak core.

We also note that the problem of Er relaxation is closely

related to the problem of plasma toroidal rotation. Indeed,
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the radial electric field and the ion toroidal velocity, Vu, are

directly related through radial force balance; and physically,

the condition hC3i � hCchxi; hClossi means that the relaxa-

tion of both Er and Vu occurs on a time scale faster than the

transport time scale. It also means that the relaxation of the

toroidal angular momentum is dominated (over the neoclass-

ical viscosity) by the torque provided by charge-exchange

collisions [Eq. (11)] with neutrals or large orbit losses

[Eq. (15)]. Accordingly, the applicability of the standard

approaches can be numerically analyzed for a given simula-

tion by diagnosing the time evolution of the flux-surface

averaged gyrokinetic toroidal angular momentum,

Pu ¼ h
Ð

B	jjdvjjdlðI=BÞvjjf i. The standard approaches can be

used in the edge region of an up-down symmetric tokamak

when the time evolution of Pu (with a diamagnetic level of

the toroidal flow velocity, Vu� dpVT) occurs on a time

scale shorter than su ¼ ð _Pu=PÞ�1 � ½ðXi=dpVTÞðC3=nRBhÞ
ðBu=BhÞ��1 � ½d2

p�iiqðBu=BhÞ��1
, i.e., the transport time

scale.

Finally, we would like to emphasize that the present

studies are performed for the case of axisymmetric particle

transport. In order to generalize the analysis to including tur-

bulent transport one needs to perform detailed studies to

determine the order of the distribution function correction

for which the difference between turbulent electron and ion

particle fluxes becomes nontrivial (for an arbitrary value of

the radial electric field). If the order is sufficiently high and

is inconsistent with the accuracy of the gyrokinetic equation,

then the conditions in Eqs. (13) and (17) need to be modified

to include the maximum of the high-order (non-intrinsically

ambipolar) turbulent and neoclassical particle fluxes.
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