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The first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the

magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code,

which is distinguished by fourth-order finite-volume discretization combined with mapped multi-

block grid technology to handle the strong anisotropy of plasma transport and the complex X-point

divertor geometry with high accuracy. The calculations take into account the effects of fully nonlin-

ear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics

discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxa-

tion in the presence of anomalous radial transport. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4943106]

I. INTRODUCTION

As magnetic fusion devices operate at higher power, it is

increasingly important to achieve an improved theoretical

understanding of edge plasma transport in order to control

core energy confinement and to maintain the necessary limit

on plasma heat flux to surrounding material components. The

problem provides substantial challenges for analytical or nu-

merical analysis due to (a) complex magnetic geometry

including both open and closed magnetic field lines B, (b)

steep radial gradients comparable to ion drift-orbit excursions,

and (c) a variation in the collision mean-free path along B

from long to short compared to the magnetic connection

length. A kinetic equation that includes a detailed collision op-

erator must be solved to capture these key features.

Furthermore, because it is important to simulate both short

timescale turbulence and long timescale transport, this is also

a multiscale temporal problem. Motivated in part by the suc-

cess of continuum kinetic codes for core physics1,2 and in part

by their potential for high accuracy, we have been developing

such a code, called COGENT, for the edge. One central fea-

ture of such a model that poses a challenge is the presence of

the magnetic separatrix within the simulation domain. In more

detail, strong anisotropy of plasma transport, which is much

faster along the field lines than in the perpendicular direction,

motivates the use of the flux-aligned coordinate surfaces for

continuum methods that discretize a kinetic equation for the

particle distribution function, f , on a phase-space grid.

However, such coordinate surfaces have diverging metric

coefficients at the X-point of the magnetic separatrix, thereby

introducing a challenge for high-order accurate discretization

methods. In contrast to the continuum approach, particle-in-

cell (PIC) methods use macroparticles to integrate along the

characteristic of a kinetic equation, and therefore are much

less sensitive to the presence of the X-point, where a particle’s

gyro-center velocity is well defined. Such PIC models have

been extensively used in the last decade for modeling the

tokamak edge.3–6 On the other hand, PIC codes may require a

very large number of particles to reduce numerical noise in

edge-plasma simulations to a tolerable level, where deviations

from the background distribution are large and the full-f

approach is required. Therefore, it is of great practical impor-

tance to develop a high-order gyrokinetic continuum code that

can handle the complexity of tokamak divertor geometry with

high accuracy. As we move forward, such continuum models

should be compared with codes based on PIC methods.

The present work reports on the development and appli-

cation of the first 4th-order finite-volume (continuum) gyroki-

netic code COGENT that simulates plasma transport in a

divertor geometry. Such progress in edge plasma modeling

was facilitated by the recent advances in computational meth-

ods associated with the development of a high-order mapped-

multiblock finite-volume discretization schemes.7–9 These nu-

merical algorithms employ multiple grid blocks (grid patches)

to represent the magnetic geometry structure of a diverted

tokamak. The coordinate surfaces of each block are aligned to

magnetic flux surface everywhere except near the X-point,

and a high-order interpolation is used to provide data commu-

nication in the region where the grid blocks overlap.

The present version of the COGENT code models a non-

linear axisymmetric 4D ðR; vk; lÞ gyrokinetic equation

coupled to the long-wavelength limit of the gyro-Poisson

equation. Here, R is the particle gyro-center coordinate in

the poloidal plane, and vk and l are the gyro-center velocity

parallel to the magnetic field and the magnetic moment,

respectively. The code has a number of collision models,

ranging from the simple Krook operator to the fully nonlin-

ear Fokker-Plank (FP) operator.10,11 Previously, COGENT

models and algorithms have been extensively verified with

the annular-geometry version of the code in simulations of

neoclassical transport and collisionless relaxation of geo-

desic acoustic modes.12,13 Here, we report on the first results

of cross-separatrix transport simulations obtained with the

divertor-version of the code, which includes both the pedes-

tal and the scrape-off-layer (SOL) regions. In particular, we

apply COGENT to the problem of ion orbit loss and the
Note: Paper GI2 2, Bull. Am. Phys. Soc. 60, 109 (2015).
a)Invited speaker.
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associated toroidal rotation driven by this mechanism. The

“intrinsic” toroidal rotation (i.e., that occurs in the absence

of any auxiliary injected torque) has been routinely observed

in a tokamak edge in the direction of the plasma current,

Ip,14 and the ion orbit losses are considered as one of the

plausible underlying mechanisms for this phenomenon.15,16

Another topic presented concerns relaxation of the edge

plasma in the presence of anomalous radial transport. We

note that some aspects of the cross-separatrix plasma trans-

port have been previously investigated with COGENT’s

predecessor—the TEMPEST code.17 While providing im-

portant insights, the earlier analysis did not take into account

the effects of electric fields and fully nonlinear Fokker-

Planck collisions. Also, the simulations employed computa-

tional grids flux-aligned in the entire simulation domain

including the X-point region, which led to a degraded accu-

racy (i.e., lower order) of the discretization schemes.

This paper is organized as follows: The simulation

model is summarized in Sec. II. In Sec. III, the code is veri-

fied against an analytical calculation of the collisionless ion

orbit loss. The orbit-loss-driven toroidal rotation and the

effects of fully nonlinear Fokker-Plank collisions and elec-

trostatic potential variations are investigated in Secs. IV and

V, respectively. Finally, in Sec. VI we present an illustrative

simulation of edge plasma relaxation taking into account the

effects of anomalous radial transport, ion-ion FP collisions,

and the self-consistent evolution of a radial electric field.

II. SIMULATION MODEL

The present version of the COGENT code solves an axi-

symmetric 4D gyrokinetic equation for a gyro-center distri-

bution function faðR; vk; l; tÞ given by18

@B�kafa

@t
þrR � _RaB�kafa

� �
þ @

@vk
_vkB

�
kafa

� � ¼ Ca B�kafa
� �

:

(1)

Here, a denotes the particle species, R is the gyro-center

coordinate in the poloidal plane, rR is the gradient with

respect to R, and the gyro-center velocity _R is given by

_Ra ¼
1

B�ka
vkB

�
a þ

1

Zae
b� ZaerUþ lrBð Þ

� 	
: (2)

The evolution of the gyro-center parallel velocity is specified

by

_vk ¼ �
1

maB�ka
B�a � ZaerUþ lrBð Þ; (3)

where ma and Za are the species mass and charge state,

respectively, e is the fundamental charge, BðRÞ ¼ Bb is the

magnetic field with b denoting the unit vector along the field,

B�aðR; vkÞ � Bþ ðmavk=Zae Þr� b , B�kaðR; vkÞ � B�a � b,

and the long wavelength (drift-kinetic) limit, k?qa � 1, is

presently assumed to describe electrostatic potential varia-

tions, UðR; tÞ, and collision models, Ca½fa�. Here, qa ¼
VT;a=Xa is the particle thermal gyroradius, VT;a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ta=ma

p

is the thermal velocity, Xa ¼ ZaeB=ðmacÞ is the cyclotron fre-

quency, and k�1
? represents the characteristic length-scale for

variations in the electrostatic potential and distribution function

perturbations. The implementation and testing of the corre-

sponding long-wavelength 2D gyro-Poisson equation coupled

to the Boltzmann model for electrons is described in our previ-

ous works12,13 that focused on modeling the closed field line

pedestal region. While recognizing the importance of poloidal

potential variations in edge plasmas, here we restrict our initial

studies of cross-separatrix transport to include only the effects

of a radial electric field, Er. The corresponding simplified flux-

surface average model for Er is described in detail in Sec. V.

The collisional models available in the COGENT code include

a simple drag-diffusion operator in parallel velocity,10 Krook

collisions, Lorentz collisions, linearized model Fokker-Planck

collision operator conserving momentum and energy,12 and

the full nonlinear Fokker-Plank operator.11 Finally, model

terms describing the effects of anomalous radial transport can

be added in Eq. (1) as discussed in detail in Sec. VI.

The COGENT code has various options for the magnetic

field geometry. In particular, the Miller model19 is available

in the closed flux surface version of the code to describe the

core region, and the divertor version of code supports a

single-null geometry with closed and open magnetic field

lines. For simplicity and for the purposes of code verifica-

tion, here we adopt the following model single-null magnetic

geometry (Fig. 1) that is roughly consistent with the parame-

ters characteristic of the DIII-D tokamak. The normalized

poloidal flux function is specified by

wNðR; ZÞ ¼ cos ½c1ðR� R0Þ=LN � þ c2 sin ½ðZ � Z0Þ=LN �
� c3ðZ � Z0Þ=LN; (4)

for Z > Zx, and it is symmetric around the plane Z ¼ Zx, i.e.,

wNðR; ZÞ ¼ wNðR; 2Zx � ZÞ. Here, R and Z are the radial

FIG. 1. Schematic of the COGENT spatial grid and coordinate system. The

frames show (a) the multiblock grid structure, where blocks are distin-

guished by color; (b) the coordinate system and directions of the plasma cur-

rent, Ip, and the toroidal magnetic field, B/; and (c) zoom-in on the grid

structure near the X-point.
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and vertical coordinates, respectively, Zx ¼ Z0

�LN arccosðc3=c2Þ corresponds to the vertical position of the

X-point, c1 ¼ 1:2; c2 ¼ 0:9, and c3 ¼ 0:7 are the constant

shape factors, LN ¼ 1 m is a normalizing spatial scale, R0 ¼
1:6 m is the major radius coordinate corresponding to the loca-

tion of the magnetic axis, and Z0 ¼ 0:4mþ LN arccosðc3=c2Þ
is a constant vertical shift adopted for visualization purposes.

For the simulations reported, the radial width of the open and

closed field line regions is taken to be DR ¼ 6:7 cm as meas-

ured at the top of the tokamak. The poloidal ðBR; BZÞ and to-

roidal ðB/Þ components of the magnetic field are determined

from

BR ¼ �
1

R

@w
@Z

; BZ ¼
1

R

@w
@R

; B/ ¼ �I=R; (5)

where the poloidal flux is given by

w ¼ wN
�BhRmp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½@wN=@R�2 þ ½@wN=@Z�2

q� ��1




Rmp; Zmp

: (6)

Here, �Bh ¼ 0:17 T is the magnitude of the poloidal magnetic

field at the intersection of the separatrix and the outboard mid-

plane corresponding to Rmp ¼ 2:107 m and Zmp ¼ Z0

þLN arccosðc3=c2Þ ¼ 1:76 m, and the directions of the coordi-

nate system unit vectors are given by ½eR � e/� ¼ eZ [see Fig.

1(b)]. To describe the toroidal magnetic field, we take

I ¼ 3:5 T �m, except for the simulations reported in Sec. V

[in Figs. 8 and 9], where I ¼ 0:5 T �m is used. Finally, for all

simulations reported, a single deuterium ion species is consid-

ered, i.e., Zi ¼ 1 and mi ¼ 2mp, where mp denotes the proton

mass.

As mentioned earlier, continuum methods solve a ki-

netic equation [e.g., Eq. (1)] by discretizing it on a computa-

tional phase-space grid. Due to strong anisotropy of plasma

transport, it is highly advantageous to use a computational

grid that is aligned with the magnetic flux surfaces.

However, for the case of a divertor geometry, such a coordi-

nate system has diverging metric coefficients at the X-point

(as evidenced by the kink in the poloidal magnetic field),

which can significantly degrade the convergence properties

of a numerical scheme. In order to take advantage of highly

efficient high-order (here, 4th-order) finite-volume algo-

rithms,7 the COGENT code adopts the mapped multiblock
approach,9 in which the spatial simulation domain is divided

into logical blocks [Fig. 1(a)]. The computational grid of

each block is flux-aligned everywhere excluding a small vi-

cinity of the X-point, where the grid is smoothly extended

[Fig. 1(c)]. Note that arbitrary geometry of the radial grid

lines, hðR; ZÞ ¼ const, is allowed and that local grid ortho-

gonality is not assumed. The kinetic equation is solved in

each block (with the use of its own computational grid) sub-

ject to high-accuracy coupling across the block boundaries.

A detailed description of the method and its application to

the case of X-point geometry is discussed in detail in Ref. 9.

It is important to note that poloidal/radial transport anisot-

ropy becomes less pronounced near the X-point, where the

de-alignment from the magnetic flux surfaces takes place.

Indeed, the poloidal projection of the ion parallel streaming

velocity, Vh 	 VTiðBh=BÞ, and the vertical component of the

magnetic drift velocity, VrB 	 V2
Ti=ðXiRÞ, become compara-

ble as the poloidal magnetic field goes to zero at the X-point.

Therefore, the loss of flux-alignment in a small vicinity of

the X-point that occurs in the adopted multiblock approach

should not, in principle, degrade the code performance.

III. PROMPT ION ORBIT LOSSES: VERIFICATION TEST

The analysis is begun with a simple test case of colli-

sionless ion dynamics in the absence of electric fields. While

overly simplified, the model describes prompt orbit losses

and can elucidate the effect of intrinsic toroidal rotation due

to this mechanism. Furthermore, this model allows for ana-

lytical calculation of the loss-cone boundaries, which is used

here for verification purposes. For the present test case, the

initial Maxwellian distribution with spatially uniform den-

sity, n0 ¼ 1019 m�3, and temperature, T0 ¼ 900 eV, profiles,

and a zero parallel flow velocity is subject to collisionless

relaxation until the orbit-loss regions are depleted. The

boundary condition at the inner radial boundary (of the core

region) is taken to be the initial Maxwellian distribution, and

all other boundaries, i.e., the divertor plates and outer radial

boundaries, are assumed to absorb particles. Figure 2(a)

shows the velocity phase space obtained at the outboard mid-

plane, 3.2 cm inside the last closed flux surface (LCFS), i.e.,

the magnetic separatrix. The evident loss-cone is associated

with the prompt ion orbit losses. Integrated over the velocity

space, such a distribution yields a non-trivial toroidal flow

velocity in the direction of the plasma current (co-Ip).

FIG. 2. Collisionless relaxation of an ion Maxwellian distribution with uni-

form density, n0 ¼ 1019 m�3, and temperature, T0 ¼ 900 eV, profiles, in the

absence of electric fields. Frame (a) shows the velocity phase-space slice of

the ion distribution (in arbitrary units) obtained at R ¼ 2:075 m and

Z ¼ 1:76 m, which corresponds to the point on the outer midplane, 3.2 cm

inside the magnetic separatrix. Bold curves show the analytical solution for

the loss-cone boundaries [Eq. (8)]. The spatial grid resolution corresponds to

½Nw ¼ 32; Nh ¼ 128�; ½Nw ¼ 32; Nh ¼ 170�; and ½Nw ¼ 32; Nh ¼ 42� in

the CORE, SOL, and PF regions, respectively. The velocity grid is

½Nvk ¼ 96; Nl ¼ 66�, and the maximum values of jvkj and l correspond to

vmax
k =VT0 ¼ 2.0, B0lmax=T0 ¼ 2.3, where B0 ¼ 1:0 T, VT0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0=mi

p
, and

mi ¼ 2. The initial Maxwellian distribution is used to specify the inflow

fluxes at the inner radial boundary, and all other boundaries are assumed to

absorb particles. Frame (b) shows the ion “separatrix” trajectory obtained

for to vk=VT0 ¼ 0.68, 2B0l=T0 ¼ 1:78, which corresponds to the “high-l”

boundary of the loss-cone region.
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The COGENT simulations show excellent agreement

with the analytical calculation of the loss cone boundaries

[Fig. 2(a)], which is obtained as follows: For a given value

of the parallel velocity, the value of magnetic moment at the

“high-l” boundary of the loss-cone region, lhi
bndðvkÞ [see Fig.

2(a)], corresponds to the “separatrix” particle trajectory

shown in Fig. 2(b). Particles launched from the outboard

midplane with the same value of the parallel velocity, vk,
have confined orbits for l > lbnd

lo , and are lost to the divertor

plates for lbnd
lo < l < lbnd

hi . The “low-l” boundary of the

loss-cone region, llo
bndðvkÞ, corresponds to the usual

“trapped–passing” boundary that separates banana and pass-

ing orbits, where particles launched with l < lbnd
hi have

confined (passing) orbits. The “low-l” and “high-l” bounda-

ries intersect at lmin and vmin
k , which determines the minimal

particle energy Emin ¼ miðvmin
k Þ

2=2þ lmin B corresponding

to a lost orbit. Also note that, for higher particle energies,

the “low-l” boundary rolls over toward the vk-axis (see

Refs. 4 and 15 for details). The analysis of that part of the

loss-cone boundary is outside the scope of the present verifi-

cation test.

Using the conservation of particle energy, E ¼ miv
2
k=2

þlB, magnetic moment, l, and angular momentum,

p/ ¼ miRvkB/=Bþ ðe=cÞw, the ðR; ZÞ trajectory of a parti-

cle launched from the location R ¼ R0, Z ¼ Z0, with

vk ¼ vk;0, l ¼ l0, is specified by the following equation:

Tp R; Zð Þ � mR0vk;0
B/ R0; Z0ð Þ
B R0; Z0ð Þ þ

e

c
w R0; Z0ð Þ � w R; Zð Þ½ �6miR

B/ R; Zð Þ
B R; Zð Þ v2

k;0 þ
2

mi
l0 B R0; Z0ð Þ � B R; Zð Þ½ �

� �1=2

¼ 0: (7)

The “high-l” boundary, lhi
bndðvkÞ, can now be found by mak-

ing use of the singularity condition at the X-point of the sep-

aratrix particle trajectory shown in Fig. 2(b), i.e.,

@Tp R;Zð Þ
@R






Rxp ;Zxp

¼0;
@Tp R;Zð Þ

@Z






Rxp ;Zxp

¼0; Tp Rxp
;Zxp

� �¼0;

(8)

where Rxp
and Zxp

are the radial and vertical coordinates of

the X-point, respectively. The solution to system (8) yields

the “high-l” boundary of the loss-cone for the configuration

point R ¼ R0, Z ¼ Z0. The “low-l” boundary (here, the

trapped-passing boundary) can be found from

@Tp R; Zð Þ
@R






Rtp;Zmp

¼ 0; Tp Rtp; Zmpð Þ ¼ 0; (9)

where the first equation in system (9) corresponds to the con-

dition that the vertical component of the particle velocity

vanishes at the inboard midplane, i.e., Z ¼ Zmp, and Rtp

denotes the radial particle coordinate at this turning point.

Finally, the minimal energy point (lmin, vmin
k ) can be deter-

mined by requiring that Eqs. (8) and (9) are simultaneously

satisfied for l0 ¼ lmin and vk;0 ¼ vmin
k .

IV. TOROIDAL ROTATION AND THE EFFECTS
OF COLLISIONS

Ion dynamics and generation of plasma toroidal rotation

are now discussed in more detail, including the effects of the

fully nonlinear ion-ion Fokker-Plank collision model. As an

illustrative example, we consider relaxation of an initial

Maxwellian distribution with spatially uniform density,

n0 ¼ 1019 m�3, and temperature, T0 ¼ 300 eV, and a zero

parallel flow velocity. These values of the plasma density and

temperature are consistent with the near-separatrix parameters

characteristic of the DIII-D tokamak (e.g., see Ref. 14). The

same Maxwellian distribution is used to specify inflow fluxes

at the inner radial core boundary, and all other boundaries

(i.e., the divertor plates and outer radial boundaries) are

assumed to absorb particles. The spatial grid resolution is

given by ½Nw ¼ 32; Nh ¼ 72�, ½Nw ¼ 32; Nh ¼ 96�, and

½Nw ¼ 32; Nh ¼ 24� in the core, SOL, and private flux (PF)

regions, respectively. The velocity grid is ½Nvk ¼ 72;
Nl ¼ 48�, and the total number of cells corresponds to

21� 106. Here, Nw;h;vk; l correspond to the number of cells in

the directions of the radial coordinate, poloidal coordinate,

parallel velocity, and magnetic moment, respectively. The

same grid resolution is used for all simulations that follow,

expect for those discussed in Sec. VI. The code performance

scales well with the number of processors, and it takes

approximately 2000 CPU hours [e.g., 4 h� 400 processors] to

simulate 1 ms of ion dynamics on the Edison cluster of the

NERSC computing system.20

We begin with analysis of the collisionless case [see Figs.

3(a) and 3(c)]. Figure 3(a) shows the ion-species density after

2.5 ms, which corresponds to 83 transit time periods of a ther-

mal ion defined as, str ¼ ð �B/= �BhÞð�a=VT0Þ ¼ 30 ls. Here, the

minor radius, �a ¼ Rmp � R0, and the magnetic field compo-

nents correspond to the intersection of the outboard midplane

and the separatrix, and VT0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0=mi

p
. It is readily seen that

the ion density is significantly depleted on open field lines

except for the regions (at the outboard mid-plane and at the

inboard side of Z ¼ Zx plane), where the magnetic-well effect

provides confinement of ions with a sufficiently large ratio

jv?=vkj. Figure 3(c) illustrates the formation of the loss-cone

region in the ion velocity phase-space at the outboard mid-

plane. Note that although the grid resolution used for the sim-

ulations in this section is coarser than that of the verification

test in Sec. III, there is still good agreement with the analytic

calculation of the loss-cone boundaries [Fig. 3(c)]. Associated

with the presence of prompt ion orbit loss is the development

of the parallel ion flow velocity (Figs. 4 and 5). Note that

Bh=B/ 	 0:1, so here the parallel and toroidal flow velocities

are nearly the same. The time evolution of the ion parallel

flow velocity is shown in Fig. 4, and its radial profile obtained

along the outboard and inboard midplanes at 2.5 ms is

056102-4 Dorf et al. Phys. Plasmas 23, 056102 (2016)



illustrated in Fig. 5. By analyzing Figure 5, we note the rapid

decay of the parallel flow velocity toward the core of a toka-

mak, which corresponds to the shift of the velocity loss-cone

toward a high-energy (exponentially decaying) tail of the ion

distribution. Also, consistent with the arguments in Ref. 14,

the parallel flows developed at the inboard midplane deep

in the pedestal region are in the counter-Ip direction and much

smaller than the co-Ip outboard flows. However, note that

near the separatrix, the inboard parallel flows become

more pronounced and can be larger than their outboard

counterpart.

The collisionless results in Figs. 3(c) show that the

prompt ion orbit loss can provide significant deviation from a

Maxwellian distribution, and therefore the fully nonlinear FP

collision operator may be needed in order to provide accurate

description of collisional effects. The FP collision model has

been implemented and tested in the COGENT code,11 and it

is applied here to investigate the effects of ion-ion collisions

on the dynamics of ion species in a tokamak edge. For the pa-

rameters of the present illustrative example, the characteristic

ion-ion collision time sii ¼ 3
ffiffiffiffiffiffiffiffiffiffi
miT

3
0

q
=ð4

ffiffiffi
p
p

n0kiie
4Þ 
 1 ms is

much larger than the ion transit time period, sii 
 33str, corre-

sponding to a weakly collisional regime. Here, kii ¼
23� lnfZ3

i ðT0½eV�Þ�3=2ð2n0½cm�3�Þ1=2g is the Coulomb loga-

rithm for ion-ion collisions.21 The results for the ion density

and velocity phase-space are shown in Figs. 3(b) and 3(d),

respectively. It is readily seen that the ion density inside the

magnetic wells in the SOL region is significantly depleted due

to collisional scattering across the trapped-passing boundaries.

Also, significant collisional repopulation of the loss cone is

observed. Collisional scattering of ions into the loss-cone

regions followed by their loss to the divertor plates provides a

continuous loss of the angular momentum from closed field

line region, as seen in Fig. 4.

A deviation of the ion distribution function from a

Maxwellian function is determined by the competition

between ion orbit loss, which depletes the loss-cone regions

of the velocity phase-space, and the collisions, which provide

the loss-cone repopulation and tend to restore a Maxwellian

distribution. Figure 6 shows the normalized deviation from

the local Maxwellian distribution, dfi=maxðFMÞ computed at

the same location as that used in Figs. 3(c) and 3(d). Here,

dfi ¼ ðfi � FMÞ and FM is the equivalent local Maxwellian

distribution, which has the same density, temperature, and

parallel flow velocity as the original distribution, fi, and

maxðFMÞ denotes its maximum value. As expected, a pro-

nounced deviation is observed within the loss-cone region [cf.

Fig. 3(c)], where the corresponding locally normalized quan-

tity, ðfi � FMÞ=FM, reaches near-unity values. It is instructive

to consider the applicability of a linearized collision operator,

CL½fi� ¼ CFP½dfi;FM� þ CFP½FM; dfi�, which neglects the non-

linear correction CFP½dfi; dfi� for edge plasma modeling. That

is, the linearized model assumes the scattering background to

be a Maxwellian distribution, FM, and to quantify this approx-

imation error, one needs to compute the difference in the

Rosenbluth potentials due to dfi. While such detailed analysis

is outside the scope of the present work the results in Fig. 6

FIG. 3. Relaxation of a Maxwellian distribution with uniform density, n0 ¼ 1019 m�3, and temperature, T0 ¼ 300 eV, profiles in the absence of electric fields.

The results correspond to the time instant t ¼ 2:5 ms. Frames (a), (b) and (c), (d) show the normalized ion density, n=n0, and velocity phase-space (in arbitrary

units) obtained for the Fokker-Planck collision model [(b) and (d)] and for the collisionless case [(a) and (c)], respectively. The plots in frames (c) and (d) are

obtained at R ¼ 2:09 m and Z ¼ 1:76 m, which corresponds to the point on the outer midplane, 1.7 cm inside the separatrix. The bold curves in frame (c) show

the analytical solution for the loss-cone boundaries [Eq. (8)]. The spatial grid resolution corresponds to ½Nw ¼ 32; Nh ¼ 72�; ½Nw ¼ 32; Nh ¼ 96�; and ½Nw ¼
32; Nh ¼ 24� in the CORE, SOL, and PF regions, respectively. The velocity grid is ½Nvk ¼ 72; Nl ¼ 48�, and the maximum values of jvkj and l correspond to

vmax
k =VT0 ¼ 3.0, B0lmax=T0 ¼ 3.5, where B0 ¼ 1:0 T, VT0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0=mi

p
, and mi ¼ 2. The initial Maxwellian distribution is used to specify the inflow fluxes at

the inner radial boundary, and all other boundaries are assumed to absorb particles.
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suggest that nonlinear contributions to the collision operator

can be of a non-negligible level.

V. EFFECTS OF THE RADIAL ELECTRIC FIELD

The radial electric field, Er, can have a substantial effect

on ion orbit losses and the associated development of parallel

flows. We note that pronounced poloidal variations in the

electrostatic potential can occur in the edge of a tokamak,

especially under the H-mode conditions, where the edge gra-

dients are large and substantial deviations from a local

Maxwellian distribution can develop for ion species. The

effects of poloidal electric fields will be a subject of our

future studies, and here we assume that the electrostatic

potential is constant on flux surfaces, i.e., UðR; ZÞ ¼ UðwÞ.

This simplified model still captures important physical phe-

nomena and is also of particular importance for code

verification.

First consider a simple test case that includes a fixed (i.e.,

not evolving in time) electric field and the ion-ion (FP) colli-

sions. The simulations are initialized with a uniform tempera-

ture distribution, T0 ¼ 300 eV, the poloidally independent

density function, n0ðR; ZÞ ¼ n0ðwÞ illustrated in Fig. 7(a), and

a zero parallel flow velocity. The electrostatic potential distri-

bution is chosen to be consistent with the Boltzmann equilib-

rium, i.e., Zien0ð@U0=@wÞ ¼ �T0ð@n0=@wÞ [Fig. 7(a)]. Also,

for comparison purposes, we consider the case with a zero

electric field, i.e., U0 ¼ 0. The relaxation of the system is

simulated for 2.5 ms, and the results are shown in Fig. 7. For

the case of a zero potential, the system develops large flows

across the entire core region to balance the pressure gradient

force. While the pressure gradient decreases toward the sepa-

ratrix, the ion orbit losses become more pronounced and

enhance the parallel flow in the edge region [Fig. 7(b)]. In

contrast, for the case of the initial Boltzmann equilibrium,

deep in the core region the steady-state is maintained and no

flows are developed. However, the presence of ion orbit loss

drives the system away from the initial state toward equilib-

rium, which has parallel flows near the separatrix [Fig. 7(b)].

Also note that the near-separatrix parallel flows are less than

those developed for the zero-Er case. The possible explana-

tions include the combination of (a) mitigation of the ion orbit

loss due the presence of the radial electric field and (b)

enhanced radial transport of the angular momentum in the

regions where the distribution function substantially deviates

from a local Maxwellian distribution.

We now extend the analysis to include the effects of a

self-consistent radial electric field. It can be shown for the

case where poloidal variations in an electrostatic potential

FIG. 4. Time evolution of the normalized ion parallel momentum obtained

at R ¼ 2:09 m, Z ¼ 1:76 m for the collisionless (solid red line) and colli-

sional (dashed blue line) cases. The parameters of the simulation are the

same as in Fig. 3.

FIG. 5. Radial profiles of the parallel flow velocity computed along the

inboard (red squares) and outboard (blue diamonds) midplane versus the ra-

dial distance from the inner core boundary. The outboard flows are in the

co-Ip direction, and the inboard flows are in the counter-Ip direction. The

results are obtained for the collisionless case and correspond to the time

instant t ¼ 2:5 ms. The vertical dashed line shows the location of the separa-

trix. The parameters of the simulation are the same as in Fig. 3.

FIG. 6. Deviation of the ion distribution function from the “equivalent”

Maxwellian distribution, FM , which has the same density, parallel velocity,

and temperature. Plotted is the normalized deviation dfNi¼ðfi�FMÞ
=maxðFMÞ, obtained at R¼2:09m, Z¼1:76 m for the collisional case at

2:5ms. The parameters of the simulation are the same as in Fig. 3.
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are neglected that the evolution of a radial electric field on

closed flux surfaces is determined by3,22

c2nimi

ZieB2
jrwj2

� �
@U
@t@w

¼ hrw � Cii; (10)

where

Ci ¼
ð
ð2p=miÞB�kdvkdl _Ri fi (11)

denotes the neoclassical radial ion particle flux. The flux-

surface average operator introduced in Eq. (10) is given by

hvi ¼
þ
vjrwj�1dA

�þ
jrwj�1dA; (12)

where dA is the surface element of a magnetic flux surface.

Equation (10) describes the balance between the polarization

and neoclassical ion currents assuming much smaller elec-

tron contributions. It is important to note that in contrast to

modeling the dynamics of Er in the core region, where the

intrinsic ambipolarity of plasma transport requires higher ac-

curacy of the gyro-kinetic equation than that of Eq. (1),23 the

presence of processes that are not intrinsically ambipolar,

such as orbit loss and collisions with neutrals, can justify the

use of Eq. (1) and (10)–(11) in the edge region of a toka-

mak.24 The self-consistent model for the radial electric field

specified by Eq. (10) has been implemented in the COGENT

code for the closed field line region. The present implemen-

tation, however, computes the right-hand side of Eq. (10)

neglecting the difference between the COGENT grid surfa-

ces, wC, and magnetic flux surfaces, w, which deviate

slightly from each other near the X-point. The accuracy of

such an approximation can be checked systematically by

making use of less-deviated computational grids, although

higher resolution may be needed to resolve rapidly varying

metric coefficients near the X-point. For additional verifica-

tion, a lower-order (2nd-order) version of the code has been

developed for the case of the model geometry considered

here (see Fig. 1). This COGENT version makes use of the

analytical representation of the metric coefficients and

employs a flux-aligned coordinate system for the entire sim-

ulation domain. For the simulations presented in this section,

it has been verified that the difference in the flux-surface av-

erage radial particle flux [in Eq. (10)] corresponding to slight

deviations of the computational grid from the magnetic flux

surfaces near the X-point produces a small effect.

It follows from Eq. (10) that the ion orbit losses, which

generate the outward radial particle flux, will produce a build

up of the inward radial electric field. The corresponding

potential barrier will act, in turn, to mitigate the losses. On

open field lines, i.e., in the SOL and PF regions, the radial

variations in the electrostatic potential are primarily deter-

mined by the sheath physics effects at the divertor plates,

and can be roughly estimated as UðwÞ 	 Teðw; hplateÞ=e,

where Teðw; hplateÞ is the electron temperature at the plates.25

As the electron temperature typically increases toward the

strike points, the radial electric field in the SOL region is typ-

ically directed inward, and therefore a jump in the electric

field can be expected across the separatrix. Details of the

potential distribution in the open field line regions are out-

side the scope of the present studies, and in what follows we

either set the electric field to zero in the SOL and PF regions,

or adopt an ad-hoc extrapolation model in order to avoid

strong discontinuities in numerical solutions.

The effects of a self-consistent radial electric field have

been tested for collisionless relaxation of a uniform

Maxwellian distribution. It is observed for the parameters char-

acteristic of the DIII-D tokamak (i.e., those used in Sec. IV)

that the radial width of the pedestal structure becomes very

narrow (plausibly due to the orbit squeezing effect), so that

resolving the ion gyro-radius scale, qi, becomes necessary.

FIG. 7. Collisional relaxation of a Maxwellian distribution with non-

uniform density [blue diamonds in frame (a)] and uniform temperature

T0¼ 300 eV, profiles in the presence of a fixed radial electric field. The par-

allel flow velocity [frame (b)] is shown for the cases of a zero electric field

(blue diamonds) and the Boltzmann equilibrium model (red squares), where

the corresponding radial electric field is illustrated by the red squares in

frame (a). The results in frames (a) and (b) are obtained along the outboard

midplane at t ¼ 2:5 ms and plotted against the radial distance from the inner

core boundary. The vertical dashed lines show the location of the separatrix.

The spatial grid resolution corresponds to ½Nw ¼ 32; Nh ¼ 72�; ½Nw ¼
32; Nh ¼ 96�; and ½Nw ¼ 32; Nh ¼ 24� in the CORE, SOL, and PF regions,

respectively. The velocity grid is ½Nvk ¼ 72; Nl ¼ 48�, and the maximum

values of jvkj and l correspond to vmax
k =VT0 ¼ 3.0, B0lmax=T0 ¼ 3.5, where

B0 ¼ 1:0 T, VT0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0=mi

p
, and mi ¼ 2. The initial Maxwellian distribu-

tion is used to specify the inflow fluxes at the inner radial boundary, and all

other boundaries are assumed to absorb particles.
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Note that for the zero-Er case discussed in Sec. IV, it was suffi-

cient to resolve a much larger banana orbit width, KB 	 6qi,

to obtain a converged solution. In addition to a significant

increase in the number of radial cells, having such a small ra-

dial cell size substantially decreases the time step needed for

stability of the explicit time integration scheme employed in

COGENT. In short, a stable time step for the considered colli-

sionless advection problem is determined by the Courant con-

straint, i.e., Dt < minðDh=vh;Dw=vwÞ, where Dh and Dw are

the cell sizes, and vh 	 ð �Bh= �B/ÞVT and vw 	 ðqi=R0ÞVT

are the particle streaming velocities in the poloidal and radial

directions, respectively. Assuming, for simplicity, Dw	Lw=N,

Dh	2p�a=N, we obtain Dt<N�1ðR0=VT0Þminð2p�q;Lw=qiÞ.
Here, �q¼ð �B/= �BhÞð�a=R0Þ
3 is the local magnetic safety fac-

tor at the intersection of the outboard midplane and magnetic

separatrix, Lw is the characteristic radial scale that needs to be

resolved, and N denotes the number of cells in each spatial

direction. For the case of conventional neoclassical studies of a

tokamak core [e.g., as in Ref. 12], the radial gradients are

weak, Lw�KB, and the time step is restricted by the parallel

streaming. In contrast, for the case of edge plasma modeling

discussed here, the time step is restricted by the radial advec-

tion across steep radial gradients, and therefore, its value

decreases by the factor of KB=qi	6 when the effects of self-

consistent radial electric field are included. The severe require-

ments for the grid resolution and stable time step for the

parameters characteristic of the DIII-D tokamak make the cor-

responding simulations of the idealized test case very time-

consuming.

Therefore, for illustrative purposes, results are given for

simulations performed for the following model parameters:
�Bh ¼ 0:17 T, I ¼ 0:5 T �m, and T0 ¼ 1000 eV. These relaxed

parameters correspond to a significantly larger value of the

ion gyro-radius, qi 	 2 cm. Moreover, the similar values of

the poloidal and toroidal magnetic field components opti-

mize the number of time steps required to simulate the char-

acteristic relaxation time corresponding to the ion transient

time period, str ¼ ð �B/= �BhÞð�a=VT0Þ ¼ 2:3 ls. Note that the

standard gyrokinetic model18 used in COGENT fails to accu-

rately describe magnetized plasmas for the case where sub-

stantial electrostatic potential variations, 	Te=e, occur on

the gyro-radius length scale. However, the present simula-

tions still illustrate the interplay between the ion orbit loss

and the self-consistent generation of the radial electric field,

and can also be of particular importance for code verification

purposes. Figure 8 represents collisionless relaxation of the

initial uniform Maxwellian distribution with n0 ¼ 1019 m�3,

T0 ¼ 1000 eV, and a zero parallel flow velocity after

tsim 	 50� str 	 0:12 ms. The simulation assumes a zero

electric field on the open field lines. The outer midplane ra-

dial profiles of the electric field and parallel flow velocity are

shown in Figs. 8(a) and 8(b), and the velocity phase space

obtained at the outboard midplane is shown in Fig. 9(b). For

comparison purposes, Figs. 8(b) and 9(a) show the parallel

flow velocity profile and velocity phase-space obtained in

the absence of electric fields, respectively. It is readily seen

that the radial electric field mitigates both the orbit losses

and development of the parallel ion flow. Also, consistent

with the theoretical predictions in Ref. 26, the presence of a

strong radial electric field provides a shift of the trapped-

passing boundary along the vjj-axis toward the high-energy

tail as seen in Fig. 9(b).

We now address the effects of a non-zero radial electric

field on open field lines, for which ad-hoc models are

FIG. 8. Collisionless relaxation of a Maxwellian distribution with uniform den-

sity and temperature, T0 ¼ 1 keV, profiles in the presence of a self-consistent ra-

dial electric field [Eq. (10)] obtained for �Bh ¼ 0:17 T, I ¼ 0:5 T m. Shown are

the radial electric field [frame (a)] and the parallel flow velocity [frame (b)] for

the cases of the zero (blue diamonds) and extrapolated (red squares) E-field mod-

els in the SOL region. Frame (b) also shows the parallel flow velocity obtained

for the case of the extrapolated E-field in the SOL region at t ¼ 0:06 ms (green

circles), and for the case of a zero electric field in the entire simulation domain

(brown triangles). Results are evaluated along the outboard midplane and plotted

against the radial distance from the inner core boundary. The vertical dashed

lines show the location of the separatrix. Except for the data shown by the green

circles, all other results are obtained at t ¼ 0:12 ms. The spatial grid resolution

corresponds to ½Nw ¼ 32; Nh ¼ 72�; ½Nw ¼ 32; Nh ¼ 96�; and ½Nw ¼
32; Nh ¼ 24� in the CORE, SOL, and PF regions, respectively. The velocity

grid is ½Nvk ¼ 72; Nl ¼ 48�, and the maximum values of jvkj and l correspond

to vmax
k =VT0 ¼ 3.0, B0lmax=T0 ¼20.0, where B0 ¼ 1:0 T, VT0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0=mi

p
,

and mi ¼ 2. The initial Maxwellian distribution is used to specify the inflow

fluxes at the inner radial boundary, and all other boundaries are assumed to

absorb particles.
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sometimes used in numerical simulations of edge plasmas

(e.g., see Ref. 4). This study will help elucidate the disconti-

nuity in the numerical solution for the parallel flow velocity

observed at the separatrix for the case of a zero electric field

on open field lines [see the blue curve in Fig. 8(b)]. It is

hypothesized that the discontinuous feature is related to the

instantaneous drop of the electric field to zero across the sep-

aratrix, and that the numerical solution should become

smoother if continuous extrapolation of Er into the SOL

region is adopted. Note that a radial electric field contributes

only to the poloidal and toroidal components of a particle’s

velocity [see Eq. (2)], and therefore it does not introduce

explicit discontinuities in the radial component of the advec-

tion velocity. However, a discontinuity in the poloidal veloc-

ity can possibly lead to the non-smooth feature observed at

the separatrix. We repeat the simulation discussed above by

adopting the following model for the radial electric field, Er,

on open field lines: in the SOL region, Er is linearly extrapo-

lated from its value on the magnetic separatrix to zero at the

outer radial boundary; in the PF region Er is symmetric to

its closed-field-line counterpart. Results of the simulations

for the radial electric field and ion parallel flow velocity are

shown in Fig. 8. It is readily seen that the field magnitude

decreases for the case of extrapolated Er [in Fig. 8(a)], which

corresponds to improved confinement of ion orbits. Also, we

note that the numerical solution for the parallel flow becomes

much smoother at the separatrix. It is interesting that the

presence of a strong inward radial E-field on open field lines

changes the direction of the parallel flow from co-Ip to coun-

ter-Ip. A plausible description of this effect is as follows:

Absorbing boundary conditions on the divertor plates lead to

the generation of large transient counter-Ip flows in the SOL

region. As the transport of the angular momentum becomes

significant near the separatrix and can be strongly influenced

by a radial electric field, these flows can be transported

across the separatrix, thereby changing the flows on closed

field lines. To support this argument, the ion parallel flow ve-

locity is shown at the earlier time, t ¼ 0:06 ms, which eluci-

dates the change in the parallel flow direction inside the

separatrix.

In conclusion, the results shown in Fig. 9 do not corre-

spond to the final quasi-stationary state, and relaxation con-

tinues beyond the simulation time of tsim ¼ 0:12 ms: The

present studies show that achieving the final relaxed state,

which include only particles on confined orbits, can be chal-

lenging for continuum codes, e.g., COGENT. We observe

that there is a small, but finite level of a residual outward ra-

dial particle flux even in the absence of any electric fields.

Detailed investigations show that the residual level decreases

with an increase in the velocity grid resolution. These find-

ings suggest that there may be finite “numerical diffusion”

across the steep loss-cone boundaries (i.e., scattering of

confined-orbit ions into the loss-cone), which acts as a con-

tinuous source of particle losses. However, we note that the

edge of a tokamak is distinguished by pronounced collisions,

and therefore, the effects of spurious numerical diffusion are

typically negligible compared to collisional re-population of

loss-cones even for moderate velocity-space resolution.

VI. EFFECTS OF THE ANOMALOUS RADIAL
TRANSPORT

As mentioned earlier (see Sec. V), the idealized axisym-

metric model that only includes the effects of magnetic drifts

and self-consistent radial electric fields predicts steep spatial

gradients in the edge region on the order of the inverse ion

gyro-radius, L�1
p 	 q�1

i (e.g., as analyzed for the parameters

of the DIII-D tokamak). This result is inconsistent with abun-

dant experimental data demonstrating much larger length

scales for plasma profile variations, ranging from the minor

radius, Lp 	 a, under the L-mode conditions to the poloidal

ion gyro-radius, Lp 	 qh 	 ðBh=B/Þqi, for the H-mode con-

ditions.27 The idealized axisymmetric model, however, omits

large contributions to the radial plasma transport produced

by microturbulence. While self-consistent description of

microturbulence will be addressed with the 5D version of the

COGENT code (presently under development), a variety of

increasingly detailed model terms have been implemented in

the present axisymmetric 4D version to mimic the effects of

anomalous radial transport.28 The presence of strong anoma-

lous diffusion reduces both the plasma spatial gradients and

relaxation time, thereby significantly decreasing the compu-

tation intensity of edge plasma modeling (cf. Sec. V). For il-

lustrative purposes, results are presented for numerical

simulations performed with the parameters characteristic of

the DIII-D edge plasma by extending kinetic equation (1) to

include a simplified anomalous radial transport model term

@B�kifi

@t
þrR � _RiB

�
kifi

� �
þ @

@vk
_vkB

�
kifi

� �

¼ Ci B�kifi
� �þ 1

J

@

@w
J

h2
w

D wð Þ
@B�kifi

@w

" #
: (13)

Here, J is the Jacobian of the coordinate transformation

ðR; Z;/Þ $ ðw; h;/Þ, the radial metric coefficient is given

by hw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@Z=@wÞ2 þ ð@R=@wÞ2

q
, and the last term on the

FIG. 9. Collisionless velocity phase-space (in arbitrary units) obtained for the

cases of (a) no electric fields and (b) the self-consistent radial electric field

given by Eq. (10). The velocity phase-space is computed at the time instant

t ¼ 0:12 ms at the location R ¼ 2:08 m, Z ¼ 1:76 m, which corresponds to the

point on the outboard midplane, 2:7 cm inside the separatrix. The bold curves

in frame (a) and dashed curves in frame (b) show the same analytical solution

for the loss-cone boundaries obtained in the absence of electric field [Eq. (8)].

The parameters of the simulation are the same as in Fig. 8.
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right-hand-side of Eq. (13) represents the “radial” part of the

diffusion operator written in a locally orthogonal flux-aligned

coordinates ðw; hÞ with the diffusion coefficient D. Note that

the radial derivatives are computed in Eq. (13) at fixed

ðvk; lÞ, and therefore, the radial transport model term does

not annihilate a uniform Maxwellian distribution, which typi-

cally would be a desired property. The related perturbations,

however, are smaller than those driven by the plasma density

and temperature gradients by the large factor of R0=Lp � 1.

By integrating Eq. (13) over the velocity phase-space

and applying the flux-surface average operator, we obtain

@hnii
@t
þ 1

V0
@ hrw � CiiV0ð Þ

@w
¼ 1

V0
@

@w
V0
jrwj

hw
D wð Þ @ni

@w

� �" #
:

(14)

Here, V ¼ 2p
Ð w

0
dw
Ð 2p

0
dhJðw; hÞ is the volume inside a flux

surface w, V0 ¼ 2p
Þ

Jdh ¼ �jrwj�1dA, and dA is the sur-

face element of the magnetic flux surface. Note that the

anomalous transport term yields an additional radial ion par-

ticle flux. However, we assume that micro-turbulence proc-

esses generating anomalous radial transport (e.g., E�B

velocity fluctuations) are ambipolar, i.e., they produce the

same particle fluxes for both ion and electron species.

Therefore, we maintain Eq. (10), which includes only the

neoclassical particle fluxes, to describe the self-consistent

evolution of a radial electric field. Even with the assumption

of “ambipolar microturbulence,” the presence of anomalous

radial transport can indirectly affect the dynamics of a radial

electric field. To illustrate this point, consider a conservation

equation for the flux-surface averaged angular momentum in

the closed field line region

@
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(15)

Here, L ¼ ðI=BÞ
Ð

dvkdl 2pB�kvkfi is the toroidal momentum

density, P ¼ ðI=BÞ
Ð

dvkdl 2pB�kvkfið$w � _RiÞ represents

the stress-tensor term, and the terms on the right-hand-side

of Eq. (15) corresponds to the VR � B Lorentz force and the

anomalous transport of the angular momentum, respectively.

First, consider the case where the anomalous transport is not

included. Deep in the core region, where deviations from a

local Maxwellian distribution are the order of KB=Lp � 1,

both the stress-tensor and the radial particle flux terms are

very small, which is the consequence of the so-called intrin-

sic ambipolarity (see, for instance, Ref. 24). As a result, the

angular momentum evolves on a long time scale,

	�iiðKB=LpÞ2, and so does the radial electric field related to

the angular momentum via the radial force balance. On the

other hand, the presence of the anomalous transport, i.e., the

last term on the right-hand-side of Eq. (15), can substantially

enhance the relaxation for both the angular momentum and

the radial electric field.

Numerical simulations for the parameters characteristic

of the DIII-D tokamak are carried out in order to illustrate the

effects of anomalous radial transport [see Eq. (13)]. The simu-

lations also include the effects of a self-consistent radial elec-

tric field [in Eq. (10)] and the full nonlinear FP ion-ion

collisions. Performing computations with the high-order (4-th

order) accurate version of COGENT, it was observed that the

deviation of the computational grid from the magnetic flux

surfaces near the X-point could not be neglected in the imple-

mentation of the anomalous transport term in Eq. (13). While

this technical detail will be addressed in our future studies, for

FIG. 10. Relaxation of the edge plasma in the presence of anomalous radial

transport, ion-ion collisions, and a self-consistent radial electric filed. Shown are

the initial [frame (a)] and final, obtained at t ¼ 2:6 ms [frame (b)], profiles of the

ion density (blue diamonds) and radial electric field (red squares). The solid green

curve in frame (b) illustrates the diffusion coefficient function, DðwÞ. Results are

obtained along the outboard midplane and plotted against the radial distance from

the inner core boundary. The vertical dashed lines show the location of the sepa-

ratrix. The spatial grid resolution corresponds to ½Nw ¼ 48; Nh ¼ 64�; ½Nw ¼
48; Nh ¼ 80�; and ½Nw ¼ 48; Nh ¼ 16� in the CORE, SOL, and PF regions,

respectively. The velocity grid is ½Nvk ¼ 48; Nl ¼ 32�, and the maximum values

of jvkj and l correspond to vmax
k =VT0 ¼ 3.0, B0lmax=T0 ¼ 3.5, where

B0 ¼ 1:0 T, VT0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0=mi

p
, and mi ¼ 2. The Maxwellian distributions with

ncore
BC ¼5�1019 m�3, T0¼300 eV and nplates

BC ¼0:5�1019 m�3, T0¼300eV are

used to specify the inflow fluxes at the inner radial boundary and the divertor

plates, respectively. The outer SOL and PF radial boundaries are assumed to

absorb particles.
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the present purposes we circumvent the problem by making

use of the lower-order (2nd-order) version of the COGENT

code, which employs a locally orthogonal flux-aligned coordi-

nate system in the entire computational domain. The simula-

tions are initialized with the ion distribution function

corresponding to a Maxwellian distribution with uniform tem-

perature, T0 ¼ 300 eV, zero parallel flow velocity, and the

radially varying density profile shown in Fig. 10(a). The same

Maxwellian distribution is used to specify inflow fluxes at the

inner (CORE) radial boundary. The outer SOL and PF radial

boundaries are assumed to absorb particles. To mimic the

effect of particle recycling, we specify the inflow fluxes at the

divertor plates corresponding to a Maxwellian distribution

with nBC ¼ 0:5� 1019 m�3 and TBC ¼ 300 eV: The initial ra-

dial electric field corresponds to the Boltzmann equilibrium

i.e., Zien0ð@U0=@wÞ ¼ �T0ð@n0=@wÞ: The subsequent evolu-

tion of the electric field is given by Eq. (10) on closed field

lines, and on open field lines the electric field perturbation

(from the initial distribution) is linearly extrapolated from its

value on the separatix to zero at the outer radial boundary.

Due to the presence of strong anomalous transport D 	
1 m2=s [see Fig. 10(a) for details of the DðwÞ function], the

system relaxes to the final state illustrated in Fig. 10 within a

characteristic time period of srel 
 2:6 ms. Note that the ped-

estal structure and a radial length scale for variations in

plasma parameters, Lp	 1 cm, are roughly consistent with

those of the DIII-D pedestal under the H-mode conditions

(e.g., see Refs. 15 and 27).

VII. CONCLUSIONS

In this paper, we present the first 4D (axisymmetric)

high-order continuum drift-kinetic transport simulations that

span the magnetic separatrix of a tokamak. The calculations

include fully nonlinear Fokker-Plank collisions, self-

consistent electrostatic potential variations, and the model

effects of anomalous radial transport. The code, COGENT, is

distinguished by a fourth-order finite-volume discretization

combined with mapped multiblock grid technology to handle

the strong anisotropy of plasma transport and the complex

magnetic X-point divertor geometry with high accuracy.

The code is successfully verified against analytical calcu-

lations for the case of collisionless relaxation of an ion species

in the tokamak edge region in the absence of electric fields.

The appearance of loss-cone regions and the associated co-Ip

toroidal rotation at the outboard midplane are observed. The

collisional repopulation of the loss-cone regions is then ana-

lyzed for the parameters characteristic of the DIII-D tokamak.

It is found that deviations from a local Maxwellian distribu-

tion can be significant, especially in the loss cone regions, and

the full nonlinear Fokker-Planck collision model may be

required for accurate edge plasma modeling. The effects of

self-consistent potential variations are presently included via a

simplified flux-surface average balance equation for the ion

polarization and neoclassical currents. This electric field

model neglects poloidal variations in the electrostatic poten-

tial and adopts ad-hoc specifications of the radial electric field

in the open field line regions. Generation of a strong radial

electric field, along with mitigation of the ion orbit loss and

parallel flows, is observed. Finally, the effects of anomalous

transport are addressed by including a simple radial diffusion

term into the gyro-kinetic equation, and an illustrative steady-

state solution is obtained for the parameters characteristic of

the DIII-D tokamak.

The present work discusses the initial proof-of-principle

simulations of axisymmetric cross-separatrix kinetic plasma

transport. Although providing important insights into the dy-

namics of edge plasmas, the present modeling omits several

important physical phenomena. These include, for instance,

the effects of poloidal variations in the electrostatic potential,

near-boundary (sheath) physics at the divertor plates, kinetic

electrons, neutrals, and impurities. Our future work will

extend the analysis to incorporate these effects.
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