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The first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the
magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code,
which is distinguished by fourth-order finite-volume discretization combined with mapped multi-
block grid technology to handle the strong anisotropy of plasma transport and the complex X-point
divertor geometry with high accuracy. The calculations take into account the effects of fully nonlin-
ear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics
discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxa-
tion in the presence of anomalous radial transport. © 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4943106]

I. INTRODUCTION

As magnetic fusion devices operate at higher power, it is
increasingly important to achieve an improved theoretical
understanding of edge plasma transport in order to control
core energy confinement and to maintain the necessary limit
on plasma heat flux to surrounding material components. The
problem provides substantial challenges for analytical or nu-
merical analysis due to (a) complex magnetic geometry
including both open and closed magnetic field lines B, (b)
steep radial gradients comparable to ion drift-orbit excursions,
and (c) a variation in the collision mean-free path along B
from long to short compared to the magnetic connection
length. A kinetic equation that includes a detailed collision op-
erator must be solved to capture these key features.
Furthermore, because it is important to simulate both short
timescale turbulence and long timescale transport, this is also
a multiscale temporal problem. Motivated in part by the suc-
cess of continuum kinetic codes for core physics' and in part
by their potential for high accuracy, we have been developing
such a code, called COGENT, for the edge. One central fea-
ture of such a model that poses a challenge is the presence of
the magnetic separatrix within the simulation domain. In more
detail, strong anisotropy of plasma transport, which is much
faster along the field lines than in the perpendicular direction,
motivates the use of the flux-aligned coordinate surfaces for
continuum methods that discretize a kinetic equation for the
particle distribution function, f, on a phase-space grid.
However, such coordinate surfaces have diverging metric
coefficients at the X-point of the magnetic separatrix, thereby
introducing a challenge for high-order accurate discretization
methods. In contrast to the continuum approach, particle-in-
cell (PIC) methods use macroparticles to integrate along the
characteristic of a kinetic equation, and therefore are much
less sensitive to the presence of the X-point, where a particle’s
gyro-center velocity is well defined. Such PIC models have
been extensively used in the last decade for modeling the

Note: Paper GI2 2, Bull. Am. Phys. Soc. 60, 109 (2015).
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tokamak edge.”® On the other hand, PIC codes may require a
very large number of particles to reduce numerical noise in
edge-plasma simulations to a tolerable level, where deviations
from the background distribution are large and the full-f
approach is required. Therefore, it is of great practical impor-
tance to develop a high-order gyrokinetic continuum code that
can handle the complexity of tokamak divertor geometry with
high accuracy. As we move forward, such continuum models
should be compared with codes based on PIC methods.

The present work reports on the development and appli-
cation of the first 4th-order finite-volume (continuum) gyroki-
netic code COGENT that simulates plasma transport in a
divertor geometry. Such progress in edge plasma modeling
was facilitated by the recent advances in computational meth-
ods associated with the development of a high-order mapped-
multiblock finite-volume discretization schemes.”™ These nu-
merical algorithms employ multiple grid blocks (grid patches)
to represent the magnetic geometry structure of a diverted
tokamak. The coordinate surfaces of each block are aligned to
magnetic flux surface everywhere except near the X-point,
and a high-order interpolation is used to provide data commu-
nication in the region where the grid blocks overlap.

The present version of the COGENT code models a non-
linear axisymmetric 4D (R, v, u) gyrokinetic equation
coupled to the long-wavelength limit of the gyro-Poisson
equation. Here, R is the particle gyro-center coordinate in
the poloidal plane, and v|| and u are the gyro-center velocity
parallel to the magnetic field and the magnetic moment,
respectively. The code has a number of collision models,
ranging from the simple Krook operator to the fully nonlin-
ear Fokker-Plank (FP) operator.'®!'" Previously, COGENT
models and algorithms have been extensively verified with
the annular-geometry version of the code in simulations of
neoclassical transport and collisionless relaxation of geo-
desic acoustic modes.'*'? Here, we report on the first results
of cross-separatrix transport simulations obtained with the
divertor-version of the code, which includes both the pedes-
tal and the scrape-off-layer (SOL) regions. In particular, we
apply COGENT to the problem of ion orbit loss and the

© 2016 AIP Publishing LLC
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associated toroidal rotation driven by this mechanism. The
“intrinsic” toroidal rotation (i.e., that occurs in the absence
of any auxiliary injected torque) has been routinely observed
in a tokamak edge in the direction of the plasma current,
Ip,14 and the ion orbit losses are considered as one of the
plausible underlying mechanisms for this phenomenon.'>'®
Another topic presented concerns relaxation of the edge
plasma in the presence of anomalous radial transport. We
note that some aspects of the cross-separatrix plasma trans-
port have been previously investigated with COGENT’s
predecessor—the TEMPEST code.'” While providing im-
portant insights, the earlier analysis did not take into account
the effects of electric fields and fully nonlinear Fokker-
Planck collisions. Also, the simulations employed computa-
tional grids flux-aligned in the entire simulation domain
including the X-point region, which led to a degraded accu-
racy (i.e., lower order) of the discretization schemes.

This paper is organized as follows: The simulation
model is summarized in Sec. II. In Sec. III, the code is veri-
fied against an analytical calculation of the collisionless ion
orbit loss. The orbit-loss-driven toroidal rotation and the
effects of fully nonlinear Fokker-Plank collisions and elec-
trostatic potential variations are investigated in Secs. IV and
V, respectively. Finally, in Sec. VI we present an illustrative
simulation of edge plasma relaxation taking into account the
effects of anomalous radial transport, ion-ion FP collisions,
and the self-consistent evolution of a radial electric field.

Il. SIMULATION MODEL

The present version of the COGENT code solves an axi-
symmetric 4D gyrokinetic equation for a gyro-center distri-
bution function f, (R, v||, i, ) given by'®

T k- (R, \la«fm)*g”(vll ofx) = Ca[Bjufa].
ey
Here, o denotes the particle species, R is the gyro-center

coordinate in the poloidal plane, Vg is the gradient with
respect to R, and the gyro-center velocity R is given by

. 1 1

R,=— |v|Bl +—b x (Z,eVO + uVB)|. 2
x B, v “+Zae X (Z,eV® + uVB) (2)

The evolution of the gyro-center parallel velocity is specified

by

v =— B. - (Z,eV® + uVB), 3)

*

maBHd

where m, and Z, are the species mass and charge state,
respectively, e is the fundamental charge, B(R) = Bb is the
magnetic field with b denoting the unit vector along the field,
B;(R,v|) =B+ (m,v|/Z,e)V x b, i«(R,v) =B b,
and the long wavelength (drift-kinetic) limit, £, p, < 1, is
presently assumed to describe electrostatic potential varia-
tions, ®(R,?), and collision models, C,[f,]. Here, p, =
Vr,5 /€y is the particle thermal gyroradius, Vr, = /2T, /m,
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is the thermal velocity, Q, = Z,eB/(m,c) is the cyclotron fre-
quency, and kj_l represents the characteristic length-scale for
variations in the electrostatic potential and distribution function
perturbations. The implementation and testing of the corre-
sponding long-wavelength 2D gyro-Poisson equation coupled
to the Boltzmann model for electrons is described in our previ-
ous works'>"? that focused on modeling the closed field line
pedestal region. While recognizing the importance of poloidal
potential variations in edge plasmas, here we restrict our initial
studies of cross-separatrix transport to include only the effects
of a radial electric field, E,. The corresponding simplified flux-
surface average model for E; is described in detail in Sec. V.
The collisional models available in the COGENT code include
a simple drag-diffusion operator in parallel velocity,'® Krook
collisions, Lorentz collisions, linearized model Fokker-Planck
collision operator conserving momentum and energy,'* and
the full nonlinear Fokker-Plank operator."' Finally, model
terms describing the effects of anomalous radial transport can
be added in Eq. (1) as discussed in detail in Sec. VL.

The COGENT code has various options for the magnetic
field geometry. In particular, the Miller model'® is available
in the closed flux surface version of the code to describe the
core region, and the divertor version of code supports a
single-null geometry with closed and open magnetic field
lines. For simplicity and for the purposes of code verifica-
tion, here we adopt the following model single-null magnetic
geometry (Fig. 1) that is roughly consistent with the parame-
ters characteristic of the DIII-D tokamak. The normalized
poloidal flux function is specified by

Yn(R,Z) = cos[ci(R — Ry) /Ly | + c2sin[(Z — Zy) /L]
—3(Z—2o) /Ly, 4)

for Z > Z,, and it is symmetric around the plane Z = Z,, i.e.,
Un(R, Z) = Yy(R, 2Z, — Z). Here, R and Z are the radial

(b)

Y/

1.2 1.6 2.0
R (m)

FIG. 1. Schematic of the COGENT spatial grid and coordinate system. The
frames show (a) the multiblock grid structure, where blocks are distin-
guished by color; (b) the coordinate system and directions of the plasma cur-
rent, I,, and the toroidal magnetic field, By; and (c¢) zoom-in on the grid
structure near the X-point.
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and vertical coordinates, respectively, Z. =12y
—Ly arccos(c3/c2) corresponds to the vertical position of the
X-point, ¢y = 1.2, ¢, = 0.9, and ¢3 = 0.7 are the constant
shape factors, Ly = 1 m is a normalizing spatial scale, Ry =
1.6 m is the major radius coordinate corresponding to the loca-
tion of the magnetic axis, and Zy = 0.4m + Ly arccos(c3/c7)
is a constant vertical shift adopted for visualization purposes.
For the simulations reported, the radial width of the open and
closed field line regions is taken to be Ag = 6.7 cm as meas-
ured at the top of the tokamak. The poloidal (Bg, Bz) and to-
roidal (By) components of the magnetic field are determined
from

__ 1oy
R — R8Z7 VA

1oy

where the poloidal flux is given by

Y= leEHRmP <\/[8‘//N/8R]2 + [8%,/82]2) _ - (6)

Rup s Zmp

Here, By = 0.17 T is the magnitude of the poloidal magnetic
field at the intersection of the separatrix and the outboard mid-
plane corresponding to R,, =2.107m and Z,, =2
+Ly arccos(c3/c2) = 1.76 m, and the directions of the coordi-
nate system unit vectors are given by [ez x e,| = e [see Fig.
1(b)]. To describe the toroidal magnetic field, we take
I =3.5T: m, except for the simulations reported in Sec. V
[in Figs. 8 and 9], where I = 0.5 T - m is used. Finally, for all
simulations reported, a single deuterium ion species is consid-
ered, i.e., Z; = 1 and m; = 2m,,, where m,, denotes the proton
mass.

As mentioned earlier, continuum methods solve a ki-
netic equation [e.g., Eq. (1)] by discretizing it on a computa-
tional phase-space grid. Due to strong anisotropy of plasma
transport, it is highly advantageous to use a computational
grid that is aligned with the magnetic flux surfaces.
However, for the case of a divertor geometry, such a coordi-
nate system has diverging metric coefficients at the X-point
(as evidenced by the kink in the poloidal magnetic field),
which can significantly degrade the convergence properties
of a numerical scheme. In order to take advantage of highly
efficient high-order (here, 4th-order) finite-volume algo-
rithms,” the COGENT code adopts the mapped multiblock
approach,” in which the spatial simulation domain is divided
into logical blocks [Fig. 1(a)]. The computational grid of
each block is flux-aligned everywhere excluding a small vi-
cinity of the X-point, where the grid is smoothly extended
[Fig. 1(c)]. Note that arbitrary geometry of the radial grid
lines, O(R,Z) = const, is allowed and that local grid ortho-
gonality is not assumed. The kinetic equation is solved in
each block (with the use of its own computational grid) sub-
ject to high-accuracy coupling across the block boundaries.
A detailed description of the method and its application to
the case of X-point geometry is discussed in detail in Ref. 9.
It is important to note that poloidal/radial transport anisot-
ropy becomes less pronounced near the X-point, where the
de-alignment from the magnetic flux surfaces takes place.
Indeed, the poloidal projection of the ion parallel streaming
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velocity, Vy ~ Vri(By/B), and the vertical component of the
magnetic drift velocity, Vypz ~ V7,/(Q:R), become compara-
ble as the poloidal magnetic field goes to zero at the X-point.
Therefore, the loss of flux-alignment in a small vicinity of
the X-point that occurs in the adopted multiblock approach
should not, in principle, degrade the code performance.

lll. PROMPT ION ORBIT LOSSES: VERIFICATION TEST

The analysis is begun with a simple test case of colli-
sionless ion dynamics in the absence of electric fields. While
overly simplified, the model describes prompt orbit losses
and can elucidate the effect of intrinsic toroidal rotation due
to this mechanism. Furthermore, this model allows for ana-
lytical calculation of the loss-cone boundaries, which is used
here for verification purposes. For the present test case, the
initial Maxwellian distribution with spatially uniform den-
sity, ny = 10 m~3, and temperature, Ty = 900eV, profiles,
and a zero parallel flow velocity is subject to collisionless
relaxation until the orbit-loss regions are depleted. The
boundary condition at the inner radial boundary (of the core
region) is taken to be the initial Maxwellian distribution, and
all other boundaries, i.e., the divertor plates and outer radial
boundaries, are assumed to absorb particles. Figure 2(a)
shows the velocity phase space obtained at the outboard mid-
plane, 3.2 cm inside the last closed flux surface (LCFES), i.e.,
the magnetic separatrix. The evident loss-cone is associated
with the prompt ion orbit losses. Integrated over the velocity
space, such a distribution yields a non-trivial toroidal flow
velocity in the direction of the plasma current (co-I).

2Bo/T (a) Z(m) (b)

2.5

3.040 20

0.5

0.0
-2.0

1.0 1.2 1.4 16 1.8 2.0 2.2

R (m)

-1.0 0.0 1.0 2.0
V||/VT0

FIG. 2. Collisionless relaxation of an ion Maxwellian distribution with uni-
form density, np = 10" m~3, and temperature, Top = 900 eV, profiles, in the
absence of electric fields. Frame (a) shows the velocity phase-space slice of
the ion distribution (in arbitrary units) obtained at R =2.075m and
Z = 1.76 m, which corresponds to the point on the outer midplane, 3.2 cm
inside the magnetic separatrix. Bold curves show the analytical solution for
the loss-cone boundaries [Eq. (8)]. The spatial grid resolution corresponds to
[Ny =32, Ng = 128], [Ny, =32, Ny =170], and [N, =32, Ny =42| in
the CORE, SOL, and PF regions, respectively. The velocity grid is
[Ny =96, N, = 66], and the maximum values of |v|| and u correspond to
Vﬂla'Y/VTO = 20, Bolumax/To = 23, where BO = 1OT, VT() =/ 2T0/m,’, and
m; = 2. The initial Maxwellian distribution is used to specify the inflow
fluxes at the inner radial boundary, and all other boundaries are assumed to
absorb particles. Frame (b) shows the ion “separatrix” trajectory obtained
for to v /Vro = 0.68, 2Bou/Ty = 1.78, which corresponds to the “high-y”
boundary of the loss-cone region.
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The COGENT simulations show excellent agreement
with the analytical calculation of the loss cone boundaries
[Fig. 2(a)], which is obtained as follows: For a given value
of the parallel velocity, the value of magnetic moment at the
“high-4” boundary of the loss-cone region, 1), (v|) [see Fig.
2(a)], corresponds to the “separatrix” particle trajectory
shown in Fig. 2(b). Particles launched from the outboard
midplane with the same value of the parallel velocity, v,
have confined orbits for p > ,uﬁ’lfd , and are lost to the divertor
plates for pu?" < p < p?. The “low-y” boundary of the
loss-cone region, f42,(v), corresponds to the usual
“trapped—passing” boundary that separates banana and pass-
ing orbits, where particles launched with p < pf™ have|

Bd)(RanO)

T, (R Z) = mR()VHO (R Zo)

[l//(Ro, %) -

The “high-x” boundary, % ,(v|), can now be found by mak-
ing use of the singularity condition at the X-point of the sep-
aratrix particle trajectory shown in Fig. 2(b), i.e.,

0T,(R,Z)

_0
8R R

Z 7 oz R

xp

=0, T,(Ry,.Zs,) =0,

Xp
Z

Xp y Xp vExp

®)

where R, and Z,, are the radial and vertical coordinates of
the X-point, respectively. The solution to system (8) yields
the “high-y” boundary of the loss-cone for the configuration
point R =Ry, Z=7Zy. The “low-u” boundary (here, the
trapped-passing boundary) can be found from

% = Oa Tp(Rthmp) = 07 ©)]
RipZup
where the first equation in system (9) corresponds to the con-
dition that the vertical component of the particle velocity
vanishes at the inboard midplane, ie., Z=2,,, and R,
denotes the radial particle coordinate at this turning point.
Finally, the minimal energy point (f,,,, T"“”) can be deter-
mined by requiring that Egs. (8) and (9) are simultaneously
satisfied for py = p,,;, and v) o = vﬁ“l"
IV. TOROIDAL ROTATION AND THE EFFECTS
OF COLLISIONS

Ion dynamics and generation of plasma toroidal rotation
are now discussed in more detail, including the effects of the
fully nonlinear ion-ion Fokker-Plank collision model. As an
illustrative example, we consider relaxation of an initial
Maxwellian distribution with spatially uniform density,
ny = 10 m3, and temperature, Ty = 300eV, and a zero
parallel flow velocity. These values of the plasma density and
temperature are consistent with the near-separatrix parameters
characteristic of the DIII-D tokamak (e.g., see Ref. 14). The
same Maxwellian distribution is used to specify inflow fluxes
at the inner radial core boundary, and all other boundaries

V(R Z)|xm
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confined (passing) orbits. The “low-u” and “high-x” bounda-
ries intersect at u,,;, and V""”" Wthh determines the minimal
particle energy E,, = m;(v ""”") /2 + i B corresponding
to a lost orbit. Also note that, for higher particle energies,
the “low-u” boundary rolls over toward the vj-axis (see
Refs. 4 and 15 for details). The analysis of that part of the
loss-cone boundary is outside the scope of the present verifi-
cation test.

Using the conservation of particle energy, E = m,-vﬁ /2
+ uB, magnetic moment, pu, and angular momentum,
pg = miRv By /B + (e/c)y, the (R,Z) trajectory of a parti-
cle launched from the location R =Ry, Z =7, with
V|| = V|0, & = Hy, is specified by the following equation:

Bs(R,Z) ([, 2 1/2
iR———= — uy[B(Ro,Zo) — B(R,Z =0. (7
e (ot 2 wlb(Ro.20) ~ BIR.2) )
[
(i.e., the divertor plates and outer radial boundaries) are

assumed to absorb particles. The spatial grid resolution is
given by [N, =32, Ng=72], [Ny, =32, Ng=96|, and
[Ny =32, Nyg = 24] in the core, SOL, and private flux (PF)
regions, respectively. The velocity grid is [NVH =172,
N, =48], and the total number of cells corresponds to
21 x 10°. Here, N,/,,g‘VH_’ « correspond to the number of cells in
the directions of the radial coordinate, poloidal coordinate,
parallel velocity, and magnetic moment, respectively. The
same grid resolution is used for all simulations that follow,
expect for those discussed in Sec. VI. The code performance
scales well with the number of processors, and it takes
approximately 2000 CPU hours [e.g., 4 h x 400 processors] to
simulate 1 ms of ion dynamics on the Edison cluster of the
NERSC computing system.>”

We begin with analysis of the collisionless case [see Figs.
3(a) and 3(c)]. Figure 3(a) shows the ion-species density after
2.5 ms, which corresponds to 83 transit time periods of a ther-
mal ion defined as, t,, = (By/Bg)(a/Vro) = 30 us. Here, the
minor radius, @ = R,,, — Ry, and the magnetic field compo-
nents correspond to the intersection of the outboard midplane
and the separatrix, and Vg = \/2Ty/m;. It is readily seen that
the ion density is significantly depleted on open field lines
except for the regions (at the outboard mid-plane and at the
inboard side of Z = Z, plane), where the magnetic-well effect
provides confinement of ions with a sufficiently large ratio
|v./v)|. Figure 3(c) illustrates the formation of the loss-cone
region in the ion velocity phase-space at the outboard mid-
plane. Note that although the grid resolution used for the sim-
ulations in this section is coarser than that of the verification
test in Sec. III, there is still good agreement with the analytic
calculation of the loss-cone boundaries [Fig. 3(c)]. Associated
with the presence of prompt ion orbit loss is the development
of the parallel ion flow velocity (Figs. 4 and 5). Note that
By /B¢, ~ 0.1, so here the parallel and toroidal flow velocities
are nearly the same. The time evolution of the ion parallel
flow velocity is shown in Fig. 4, and its radial profile obtained
along the outboard and inboard midplanes at 2.5ms is
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illustrated in Fig. 5. By analyzing Figure 5, we note the rapid
decay of the parallel flow velocity toward the core of a toka-
mak, which corresponds to the shift of the velocity loss-cone
toward a high-energy (exponentially decaying) tail of the ion
distribution. Also, consistent with the arguments in Ref. 14,
the parallel flows developed at the inboard midplane deep
in the pedestal region are in the counter-I,, direction and much
smaller than the co-I, outboard flows. However, note that
near the separatrix, the inboard parallel flows become
more pronounced and can be larger than their outboard
counterpart.

The collisionless results in Figs. 3(c) show that the
prompt ion orbit loss can provide significant deviation from a
Maxwellian distribution, and therefore the fully nonlinear FP
collision operator may be needed in order to provide accurate
description of collisional effects. The FP collision model has
been implemented and tested in the COGENT code,'! and it
is applied here to investigate the effects of ion-ion collisions
on the dynamics of ion species in a tokamak edge. For the pa-
rameters of the present illustrative example, the characteristic

ion-ion collision time t;; = 3/m; T3 /(4+/7ngliie*) ~ 1 ms is
much larger than the ion transit time period, t;; ~ 337t,,, corre-
sponding to a weakly collisional regime. Here, 1; =
23 — In{Z} (T [eV])*/?(2no[cm~3])"/?} is the Coulomb loga-
rithm for ion-ion collisions.” The results for the ion density
and velocity phase-space are shown in Figs. 3(b) and 3(d),

respectively. It is readily seen that the ion density inside the
magnetic wells in the SOL region is significantly depleted due

Z(m) (a)
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to collisional scattering across the trapped-passing boundaries.
Also, significant collisional repopulation of the loss cone is
observed. Collisional scattering of ions into the loss-cone
regions followed by their loss to the divertor plates provides a
continuous loss of the angular momentum from closed field
line region, as seen in Fig. 4.

A deviation of the ion distribution function from a
Maxwellian function is determined by the competition
between ion orbit loss, which depletes the loss-cone regions
of the velocity phase-space, and the collisions, which provide
the loss-cone repopulation and tend to restore a Maxwellian
distribution. Figure 6 shows the normalized deviation from
the local Maxwellian distribution, Jf;/max(Fy) computed at
the same location as that used in Figs. 3(c) and 3(d). Here,
ofi = (f; — Fy) and F) is the equivalent local Maxwellian
distribution, which has the same density, temperature, and
parallel flow velocity as the original distribution, f;, and
max(Fy) denotes its maximum value. As expected, a pro-
nounced deviation is observed within the loss-cone region [cf.
Fig. 3(c)], where the corresponding locally normalized quan-
tity, (f; — Fum)/Fu, reaches near-unity values. It is instructive
to consider the applicability of a linearized collision operator,
CL[fi] = Crp[dfi, Fu] + Crp[Fum, 0fi], which neglects the non-
linear correction Crp[df;, df;] for edge plasma modeling. That
is, the linearized model assumes the scattering background to
be a Maxwellian distribution, F);, and to quantify this approx-
imation error, one needs to compute the difference in the
Rosenbluth potentials due to Jf;. While such detailed analysis
is outside the scope of the present work the results in Fig. 6

(b) 2Bow/T, (c)

-2. .0 0.0 1.0 2.0
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112 1.|6 2.‘0 112 116 Z.IO 9%0 -1.0 0.0 1.0 2.0
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FIG. 3. Relaxation of a Maxwellian distribution with uniform density, ny = 10" m~3, and temperature, Tp = 300 eV, profiles in the absence of electric fields.
The results correspond to the time instant # = 2.5 ms. Frames (a), (b) and (c), (d) show the normalized ion density, n/ng, and velocity phase-space (in arbitrary
units) obtained for the Fokker-Planck collision model [(b) and (d)] and for the collisionless case [(a) and (c)], respectively. The plots in frames (c) and (d) are
obtained at R = 2.09 m and Z = 1.76 m, which corresponds to the point on the outer midplane, 1.7 cm inside the separatrix. The bold curves in frame (c) show
the analytical solution for the loss-cone boundaries [Eq. (8)]. The spatial grid resolution corresponds to [Ny, = 32, Ny = 72|, [Ny, =32, Ny = 96], and [N, =
32, Ny = 24] in the CORE, SOL, and PF regions, respectively. The velocity grid is [Ny = 72, N,, = 48], and the maximum values of |v| and x correspond to
VW“'“/VTO = 3.0, Boltpar/To = 3.5, where By = 1.0T, Vyog = /2Ty /m;, and m; = 2. The initial Maxwellian distribution is used to specify the inflow fluxes at
the inner radial boundary, and all other boundaries are assumed to absorb particles.
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FIG. 4. Time evolution of the normalized ion parallel momentum obtained
at R =2.09m, Z = 1.76m for the collisionless (solid red line) and colli-
sional (dashed blue line) cases. The parameters of the simulation are the
same as in Fig. 3.

suggest that nonlinear contributions to the collision operator
can be of a non-negligible level.

V. EFFECTS OF THE RADIAL ELECTRIC FIELD

The radial electric field, E,, can have a substantial effect
on ion orbit losses and the associated development of parallel
flows. We note that pronounced poloidal variations in the
electrostatic potential can occur in the edge of a tokamak,
especially under the H-mode conditions, where the edge gra-
dients are large and substantial deviations from a local
Maxwellian distribution can develop for ion species. The
effects of poloidal electric fields will be a subject of our
future studies, and here we assume that the electrostatic
potential is constant on flux surfaces, i.e., ®(R,Z) = O(y).

V, (km/s)
120 i
80 - i
|
40 - : Inboard
] midplane
0 |
[}
40 - | Outboard
; midplane
-80 T T II_C|:FS T

0 2 4 6 8 10
CORE  Radial distance (cm)  SOL

FIG. 5. Radial profiles of the parallel flow velocity computed along the
inboard (red squares) and outboard (blue diamonds) midplane versus the ra-
dial distance from the inner core boundary. The outboard flows are in the
co-I,, direction, and the inboard flows are in the counter-I, direction. The
results are obtained for the collisionless case and correspond to the time
instant # = 2.5 ms. The vertical dashed line shows the location of the separa-
trix. The parameters of the simulation are the same as in Fig. 3.
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FIG. 6. Deviation of the ion distribution function from the “equivalent”
Maxwellian distribution, F)s, which has the same density, parallel velocity,
and temperature. Plotted is the normalized deviation dfy;=(fi—Fum)
/max(Fy), obtained at R=2.09m, Z=1.76m for the collisional case at
2.5ms. The parameters of the simulation are the same as in Fig. 3.

This simplified model still captures important physical phe-
nomena and is also of particular importance for code
verification.

First consider a simple test case that includes a fixed (i.e.,
not evolving in time) electric field and the ion-ion (FP) colli-
sions. The simulations are initialized with a uniform tempera-
ture distribution, Ty = 300eV, the poloidally independent
density function, no(R,Z) = no(y) illustrated in Fig. 7(a), and
a zero parallel flow velocity. The electrostatic potential distri-
bution is chosen to be consistent with the Boltzmann equilib-
rium, i.e., Z;enyg (0D /W) = —To(Ono /W) [Fig. 7(a)]. Also,
for comparison purposes, we consider the case with a zero
electric field, i.e., ®g = 0. The relaxation of the system is
simulated for 2.5 ms, and the results are shown in Fig. 7. For
the case of a zero potential, the system develops large flows
across the entire core region to balance the pressure gradient
force. While the pressure gradient decreases toward the sepa-
ratrix, the ion orbit losses become more pronounced and
enhance the parallel flow in the edge region [Fig. 7(b)]. In
contrast, for the case of the initial Boltzmann equilibrium,
deep in the core region the steady-state is maintained and no
flows are developed. However, the presence of ion orbit loss
drives the system away from the initial state toward equilib-
rium, which has parallel flows near the separatrix [Fig. 7(b)].
Also note that the near-separatrix parallel flows are less than
those developed for the zero-E, case. The possible explana-
tions include the combination of (a) mitigation of the ion orbit
loss due the presence of the radial electric field and (b)
enhanced radial transport of the angular momentum in the
regions where the distribution function substantially deviates
from a local Maxwellian distribution.

We now extend the analysis to include the effects of a
self-consistent radial electric field. It can be shown for the
case where poloidal variations in an electrostatic potential
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are neglected that the evolution of a radial electric field on

closed flux surfaces is determined by>*
conim;
(Sl ) = (V0 T, 0
where
1y = | (2n/m)Bjav dutes (an

denotes the neoclassical radial ion particle flux. The flux-
surface average operator introduced in Eq. (10) is given by

(@)

n, (5x10"° m-3)

E, (20 x kV/m)

0 2 4 6 8 10

Radial distance (cm)

V, (kmis) (b)
0

-120 T T T T T
0 2 4 6 8 10

Radial distance (cm)

FIG. 7. Collisional relaxation of a Maxwellian distribution with non-
uniform density [blue diamonds in frame (a)] and uniform temperature
Ty =300eV, profiles in the presence of a fixed radial electric field. The par-
allel flow velocity [frame (b)] is shown for the cases of a zero electric field
(blue diamonds) and the Boltzmann equilibrium model (red squares), where
the corresponding radial electric field is illustrated by the red squares in
frame (a). The results in frames (a) and (b) are obtained along the outboard
midplane at r = 2.5 ms and plotted against the radial distance from the inner
core boundary. The vertical dashed lines show the location of the separatrix.
The spatial grid resolution corresponds to [Ny =32, Ny =72|, [Ny =
32, Ny = 96|, and [Ny = 32, Ny = 24| in the CORE, SOL, and PF regions,
respectively. The velocity grid is [Nv” =T72,N, = 48], and the maximum
values of |v)| and u correspond to Vi /Vro = 3.0, Bo . /To = 3.5, where

=1.0T, Vyo = \/2To/m;, and m; = 2. The initial Maxwellian distribu-
tion is used to specify the inflow fluxes at the inner radial boundary, and all
other boundaries are assumed to absorb particles.
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(1) = jgxlvwl“dA / Jﬂwrld& (12)

where dA is the surface element of a magnetic flux surface.
Equation (10) describes the balance between the polarization
and neoclassical ion currents assuming much smaller elec-
tron contributions. It is important to note that in contrast to
modeling the dynamics of E, in the core region, where the
intrinsic ambipolarity of plasma transport requires higher ac-
curacy of the gyro-kinetic equation than that of Eq. (1),> the
presence of processes that are not intrinsically ambipolar,
such as orbit loss and collisions with neutrals, can justify the
use of Eq. (1) and (10)—(11) in the edge region of a toka-
mak.?* The self-consistent model for the radial electric field
specified by Eq. (10) has been implemented in the COGENT
code for the closed field line region. The present implemen-
tation, however, computes the right-hand side of Eq. (10)
neglecting the difference between the COGENT grid surfa-

Ve, and magnetic flux surfaces, , which deviate
slightly from each other near the X-point. The accuracy of
such an approximation can be checked systematically by
making use of less-deviated computational grids, although
higher resolution may be needed to resolve rapidly varying
metric coefficients near the X-point. For additional verifica-
tion, a lower-order (2nd-order) version of the code has been
developed for the case of the model geometry considered
here (see Fig. 1). This COGENT version makes use of the
analytical representation of the metric coefficients and
employs a flux-aligned coordinate system for the entire sim-
ulation domain. For the simulations presented in this section,
it has been verified that the difference in the flux-surface av-
erage radial particle flux [in Eq. (10)] corresponding to slight
deviations of the computational grid from the magnetic flux
surfaces near the X-point produces a small effect.

It follows from Eq. (10) that the ion orbit losses, which
generate the outward radial particle flux, will produce a build
up of the inward radial electric field. The corresponding
potential barrier will act, in turn, to mitigate the losses. On
open field lines, i.e., in the SOL and PF regions, the radial
variations in the electrostatic potential are primarily deter-
mined by the sheath physics effects at the divertor plates,
and can be roughly estimated as @) ~ Te(¥, Opiare)/ e,
where T, (), OI,IM) is the electron temperature at the plates. 3
As the electron temperature typically increases toward the
strike points, the radial electric field in the SOL region is typ-
ically directed inward, and therefore a jump in the electric
field can be expected across the separatrix. Details of the
potential distribution in the open field line regions are out-
side the scope of the present studies, and in what follows we
either set the electric field to zero in the SOL and PF regions,
or adopt an ad-hoc extrapolation model in order to avoid
strong discontinuities in numerical solutions.

The effects of a self-consistent radial electric field have
been tested for collisionless relaxation of a uniform
Maxwellian distribution. It is observed for the parameters char-
acteristic of the DIII-D tokamak (i.e., those used in Sec. IV)
that the radial width of the pedestal structure becomes very
narrow (plausibly due to the orbit squeezing effect), so that
resolving the ion gyro-radius scale, p;, becomes necessary.
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Note that for the zero-E,. case discussed in Sec. IV, it was suffi-
cient to resolve a much larger banana orbit width, Ag ~ 6p;,
to obtain a converged solution. In addition to a significant
increase in the number of radial cells, having such a small ra-
dial cell size substantially decreases the time step needed for
stability of the explicit time integration scheme employed in
COGENT. In short, a stable time step for the considered colli-
sionless advection problem is determined by the Courant con-
straint, i.e., Ar < min(Ag/vg,Ay/vy), where Ay and Ay are
the cell sizes, and vy ~ (Bg/B4)Vr and vy ~ (p;/Ro)Vr
are the particle streaming velocities in the poloidal and radial
directions, respectively. Assuming, for simplicity, Ay ~Ly /N,
Ag~2na/N, we obtain At<N~'(Ry/Vro)min(2rgq,Ly/p;).
Here, §=(B,/By)(a/Ro)~3 is the local magnetic safety fac-
tor at the intersection of the outboard midplane and magnetic
separatrix, Ly is the characteristic radial scale that needs to be
resolved, and N denotes the number of cells in each spatial
direction. For the case of conventional neoclassical studies of a
tokamak core [e.g., as in Ref. 12], the radial gradients are
weak, Ly >>Ag, and the time step is restricted by the parallel
streaming. In contrast, for the case of edge plasma modeling
discussed here, the time step is restricted by the radial advec-
tion across steep radial gradients, and therefore, its value
decreases by the factor of Ag/p;~6 when the effects of self-
consistent radial electric field are included. The severe require-
ments for the grid resolution and stable time step for the
parameters characteristic of the DIII-D tokamak make the cor-
responding simulations of the idealized test case very time-
consuming.

Therefore, for illustrative purposes, results are given for
simulations performed for the following model parameters:
By =0.17T,I = 0.5T -m, and T, = 1000 eV. These relaxed
parameters correspond to a significantly larger value of the
ion gyro-radius, p; ~ 2cm. Moreover, the similar values of
the poloidal and toroidal magnetic field components opti-
mize the number of time steps required to simulate the char-
acteristic relaxation time corresponding to the ion transient
time period, t, = (By/Bg)(a/Vro) = 2.3 us. Note that the
standard gyrokinetic model'® used in COGENT fails to accu-
rately describe magnetized plasmas for the case where sub-
stantial electrostatic potential variations, ~T,/e, occur on
the gyro-radius length scale. However, the present simula-
tions still illustrate the interplay between the ion orbit loss
and the self-consistent generation of the radial electric field,
and can also be of particular importance for code verification
purposes. Figure 8 represents collisionless relaxation of the
initial uniform Maxwellian distribution with ng = 10 m=3,
To = 1000eV, and a zero parallel flow velocity after
tim ~ 50 x 1, ~ 0.12ms. The simulation assumes a zero
electric field on the open field lines. The outer midplane ra-
dial profiles of the electric field and parallel flow velocity are
shown in Figs. 8(a) and 8(b), and the velocity phase space
obtained at the outboard midplane is shown in Fig. 9(b). For
comparison purposes, Figs. 8(b) and 9(a) show the parallel
flow velocity profile and velocity phase-space obtained in
the absence of electric fields, respectively. It is readily seen
that the radial electric field mitigates both the orbit losses
and development of the parallel ion flow. Also, consistent
with the theoretical predictions in Ref. 26, the presence of a
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strong radial electric field provides a shift of the trapped-
passing boundary along the v -axis toward the high-energy
tail as seen in Fig. 9(b).

We now address the effects of a non-zero radial electric
field on open field lines, for which ad-hoc models are
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FIG. 8. Collisionless relaxation of a Maxwellian distribution with uniform den-
sity and temperature, 7o = 1 keV, profiles in the presence of a self-consistent ra-
dial electric field [Eq. (10)] obtained for By = 0.17 T, I = 0.5 T m. Shown are
the radial electric field [frame (a)] and the parallel flow velocity [frame (b)] for
the cases of the zero (blue diamonds) and extrapolated (red squares) E-field mod-
els in the SOL region. Frame (b) also shows the parallel flow velocity obtained
for the case of the extrapolated E-field in the SOL region at # = 0.06 ms (green
circles), and for the case of a zero electric field in the entire simulation domain
(brown triangles). Results are evaluated along the outboard midplane and plotted
against the radial distance from the inner core boundary. The vertical dashed
lines show the location of the separatrix. Except for the data shown by the green
circles, all other results are obtained at r = 0.12ms. The spatial grid resolution
corresponds  to [Ny =32, Ny =72], [N, =32, Ng =96], and [N}, =
32, Ny = 24] in the CORE, SOL, and PF regions, respectively. The velocity
grid is [Ny = 72, N,, = 48], and the maximum values of |v|| and u correspond
to VW“'\‘/VT[) = 30, Bo/lm,”/To :200, where Bo =10 T, VT() =/ 2T0/m;,
and m; = 2. The initial Maxwellian distribution is used to specify the inflow
fluxes at the inner radial boundary, and all other boundaries are assumed to
absorb particles.
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sometimes used in numerical simulations of edge plasmas
(e.g., see Ref. 4). This study will help elucidate the disconti-
nuity in the numerical solution for the parallel flow velocity
observed at the separatrix for the case of a zero electric field
on open field lines [see the blue curve in Fig. 8(b)]. It is
hypothesized that the discontinuous feature is related to the
instantaneous drop of the electric field to zero across the sep-
aratrix, and that the numerical solution should become
smoother if continuous extrapolation of E, into the SOL
region is adopted. Note that a radial electric field contributes
only to the poloidal and toroidal components of a particle’s
velocity [see Eq. (2)], and therefore it does not introduce
explicit discontinuities in the radial component of the advec-
tion velocity. However, a discontinuity in the poloidal veloc-
ity can possibly lead to the non-smooth feature observed at
the separatrix. We repeat the simulation discussed above by
adopting the following model for the radial electric field, E,,
on open field lines: in the SOL region, E, is linearly extrapo-
lated from its value on the magnetic separatrix to zero at the
outer radial boundary; in the PF region E, is symmetric to
its closed-field-line counterpart. Results of the simulations
for the radial electric field and ion parallel flow velocity are
shown in Fig. 8. It is readily seen that the field magnitude
decreases for the case of extrapolated E, [in Fig. 8(a)], which
corresponds to improved confinement of ion orbits. Also, we
note that the numerical solution for the parallel flow becomes
much smoother at the separatrix. It is interesting that the
presence of a strong inward radial E-field on open field lines
changes the direction of the parallel flow from co-I;, to coun-
ter-I,. A plausible description of this effect is as follows:
Absorbing boundary conditions on the divertor plates lead to
the generation of large transient counter-I,, flows in the SOL
region. As the transport of the angular momentum becomes
significant near the separatrix and can be strongly influenced
by a radial electric field, these flows can be transported
across the separatrix, thereby changing the flows on closed
field lines. To support this argument, the ion parallel flow ve-
locity is shown at the earlier time, t = 0.06 ms, which eluci-
dates the change in the parallel flow direction inside the
separatrix.

In conclusion, the results shown in Fig. 9 do not corre-
spond to the final quasi-stationary state, and relaxation con-
tinues beyond the simulation time of ty, = 0.12ms. The
present studies show that achieving the final relaxed state,
which include only particles on confined orbits, can be chal-
lenging for continuum codes, e.g., COGENT. We observe
that there is a small, but finite level of a residual outward ra-
dial particle flux even in the absence of any electric fields.
Detailed investigations show that the residual level decreases
with an increase in the velocity grid resolution. These find-
ings suggest that there may be finite “numerical diffusion”
across the steep loss-cone boundaries (i.e., scattering of
confined-orbit ions into the loss-cone), which acts as a con-
tinuous source of particle losses. However, we note that the
edge of a tokamak is distinguished by pronounced collisions,
and therefore, the effects of spurious numerical diffusion are
typically negligible compared to collisional re-population of
loss-cones even for moderate velocity-space resolution.
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FIG. 9. Collisionless velocity phase-space (in arbitrary units) obtained for the
cases of (a) no electric fields and (b) the self-consistent radial electric field
given by Eq. (10). The velocity phase-space is computed at the time instant
t = 0.12ms at the location R = 2.08 m, Z = 1.76 m, which corresponds to the
point on the outboard midplane, 2.7 cm inside the separatrix. The bold curves
in frame (a) and dashed curves in frame (b) show the same analytical solution
for the loss-cone boundaries obtained in the absence of electric field [Eq. (8)].
The parameters of the simulation are the same as in Fig. 8.

VI. EFFECTS OF THE ANOMALOUS RADIAL
TRANSPORT

As mentioned earlier (see Sec. V), the idealized axisym-
metric model that only includes the effects of magnetic drifts
and self-consistent radial electric fields predicts steep spatial
gradients in the edge region on the order of the inverse ion
gyro-radius, Lp’1 ~ p;! (e.g., as analyzed for the parameters
of the DIII-D tokamak). This result is inconsistent with abun-
dant experimental data demonstrating much larger length
scales for plasma profile variations, ranging from the minor
radius, L, ~ a, under the L-mode conditions to the poloidal
ion gyro-radius, L, ~ p, ~ (Bg/Bg)p;, for the H-mode con-
ditions.?” The idealized axisymmetric model, however, omits
large contributions to the radial plasma transport produced
by microturbulence. While self-consistent description of
microturbulence will be addressed with the 5D version of the
COGENT code (presently under development), a variety of
increasingly detailed model terms have been implemented in
the present axisymmetric 4D version to mimic the effects of
anomalous radial transport.”® The presence of strong anoma-
lous diffusion reduces both the plasma spatial gradients and
relaxation time, thereby significantly decreasing the compu-
tation intensity of edge plasma modeling (cf. Sec. V). For il-
lustrative purposes, results are presented for numerical
simulations performed with the parameters characteristic of
the DIII-D edge plasma by extending kinetic equation (1) to
include a simplified anomalous radial transport model term

OB R R
At Ve (RiBif) + gy (1B1)
1o |J OB f;
= GBif] 555 @D(lp) a:/jf (13)

Here, J is the Jacobian of the coordinate transformation
(R,Z,¢) < (Y, 0, ¢), the radial metric coefficient is given

by hy = \/(8Z/Blp)2 + (OR/W)?, and the last term on the
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right-hand-side of Eq. (13) represents the “radial” part of the
diffusion operator written in a locally orthogonal flux-aligned
coordinates (1, 0) with the diffusion coefficient D. Note that
the radial derivatives are computed in Eq. (13) at fixed
(VH, w), and therefore, the radial transport model term does
not annihilate a uniform Maxwellian distribution, which typi-
cally would be a desired property. The related perturbations,
however, are smaller than those driven by the plasma density
and temperature gradients by the large factor of Ro/L, > 1.
By integrating Eq. (13) over the velocity phase-space
and applying the flux-surface average operator, we obtain

onm) 1 9(Vy-T)V') VY g O
o 'V o V< hy DY) 3lﬁ>]
(14)

_Waw

Here, V = 21 fo dzpj dOJ (Y, 0) is the volume inside a flux
surface , V' = 2n§Jd0 = §|Vy|~ 'dA, and dA is the sur-
face element of the magnetic flux surface. Note that the
anomalous transport term yields an additional radial ion par-
ticle flux. However, we assume that micro-turbulence proc-
esses generating anomalous radial transport (e.g., ExB
velocity fluctuations) are ambipolar, i.e., they produce the
same particle fluxes for both ion and electron species.
Therefore, we maintain Eq. (10), which includes only the
neoclassical particle fluxes, to describe the self-consistent
evolution of a radial electric field. Even with the assumption
of “ambipolar microturbulence,” the presence of anomalous
radial transport can indirectly affect the dynamics of a radial
electric field. To illustrate this point, consider a conservation
equation for the flux-surface averaged angular momentum in
the closed field line region

0 1 oV/(IT) _ Zie
&<L> ty ay *TWWFJ
110 J 0 (B
(15)
Here, L = I /B f dVHd,u 27‘EB*VH}C is the t0r01dal momentum

density, = (I/B) fded,u 27IBHVWf Vi -R;) represents
the stress-tensor term, and the terms on the right-hand-side
of Eq. (15) corresponds to the Vi x B Lorentz force and the
anomalous transport of the angular momentum, respectively.
First, consider the case where the anomalous transport is not
included. Deep in the core region, where deviations from a
local Maxwellian distribution are the order of Ag/L, < 1,
both the stress-tensor and the radial particle flux terms are
very small, which is the consequence of the so-called intrin-
sic ambipolarity (see, for instance, Ref. 24). As a result, the
angular momentum evolves on a long time scale,
~ii(Ag/L,)?, and so does the radial electric field related to
the angular momentum via the radial force balance. On the
other hand, the presence of the anomalous transport, i.e., the
last term on the right-hand-side of Eq. (15), can substantially
enhance the relaxation for both the angular momentum and
the radial electric field.
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Numerical simulations for the parameters characteristic
of the DIII-D tokamak are carried out in order to illustrate the
effects of anomalous radial transport [see Eq. (13)]. The simu-
lations also include the effects of a self-consistent radial elec-
tric field [in Eq. (10)] and the full nonlinear FP ion-ion
collisions. Performing computations with the high-order (4-th
order) accurate version of COGENT, it was observed that the
deviation of the computational grid from the magnetic flux
surfaces near the X-point could not be neglected in the imple-
mentation of the anomalous transport term in Eq. (13). While
this technical detail will be addressed in our future studies, for
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FIG. 10. Relaxation of the edge plasma in the presence of anomalous radial
transport, ion-ion collisions, and a self-consistent radial electric filed. Shown are
the initial [frame (a)] and final, obtained at = 2.6 ms [frame (b)], profiles of the
ion density (blue diamonds) and radial electric field (red squares). The solid green
curve in frame (b) illustrates the diffusion coefficient function, D(1r). Results are
obtained along the outboard midplane and plotted against the radial distance from
the inner core boundary. The vertical dashed lines show the location of the sepa-
ratrix. The spatial grid resolution corresponds to [Ny, = 48, Ny = 64|, [Ny, =
48, Ny = 80], and [Ny, = 48, Ny = 16] in the CORE, SOL, and PF regions,
respectively. The velocity grid is [Ny = 48, N,, = 32], and the maximum values
of |vy| and p correspond to v’"‘”/V,o =3.0, Bty /To = 3.5, where
By =1.0T, Vyo = /2Ty /m;, and m; = 2. The Maxwellian distributions with
e =5x10"m=3, Ty=300€V and rhe =0.5x 10 m =3, Ty =300eV are
used to specify the inflow fluxes at the inner radial boundary and the divertor

plates, respectively. The outer SOL and PF radial boundaries are assumed to
absorb particles.
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the present purposes we circumvent the problem by making
use of the lower-order (2nd-order) version of the COGENT
code, which employs a locally orthogonal flux-aligned coordi-
nate system in the entire computational domain. The simula-
tions are initialized with the ion distribution function
corresponding to a Maxwellian distribution with uniform tem-
perature, 7o = 300eV, zero parallel flow velocity, and the
radially varying density profile shown in Fig. 10(a). The same
Maxwellian distribution is used to specify inflow fluxes at the
inner (CORE) radial boundary. The outer SOL and PF radial
boundaries are assumed to absorb particles. To mimic the
effect of particle recycling, we specify the inflow fluxes at the
divertor plates corresponding to a Maxwellian distribution
with npc = 0.5 x 10" m~3 and Tgc = 300eV. The initial ra-
dial electric field corresponds to the Boltzmann equilibrium
i.e., Zieny(0®g /) = —To(Ony/OYr). The subsequent evolu-
tion of the electric field is given by Eq. (10) on closed field
lines, and on open field lines the electric field perturbation
(from the initial distribution) is linearly extrapolated from its
value on the separatix to zero at the outer radial boundary.
Due to the presence of strong anomalous transport D ~
1 m?/s [see Fig. 10(a) for details of the D() function], the
system relaxes to the final state illustrated in Fig. 10 within a
characteristic time period of 7,.,; =~ 2.6 ms. Note that the ped-
estal structure and a radial length scale for variations in
plasma parameters, L,~ 1cm, are roughly consistent with
those of the DIII-D pedestal under the H-mode conditions
(e.g., see Refs. 15 and 27).

VIl. CONCLUSIONS

In this paper, we present the first 4D (axisymmetric)
high-order continuum drift-kinetic transport simulations that
span the magnetic separatrix of a tokamak. The calculations
include fully nonlinear Fokker-Plank collisions, self-
consistent electrostatic potential variations, and the model
effects of anomalous radial transport. The code, COGENT, is
distinguished by a fourth-order finite-volume discretization
combined with mapped multiblock grid technology to handle
the strong anisotropy of plasma transport and the complex
magnetic X-point divertor geometry with high accuracy.

The code is successfully verified against analytical calcu-
lations for the case of collisionless relaxation of an ion species
in the tokamak edge region in the absence of electric fields.
The appearance of loss-cone regions and the associated co-I,
toroidal rotation at the outboard midplane are observed. The
collisional repopulation of the loss-cone regions is then ana-
lyzed for the parameters characteristic of the DIII-D tokamak.
It is found that deviations from a local Maxwellian distribu-
tion can be significant, especially in the loss cone regions, and
the full nonlinear Fokker-Planck collision model may be
required for accurate edge plasma modeling. The effects of
self-consistent potential variations are presently included via a
simplified flux-surface average balance equation for the ion
polarization and neoclassical currents. This electric field
model neglects poloidal variations in the electrostatic poten-
tial and adopts ad-hoc specifications of the radial electric field
in the open field line regions. Generation of a strong radial
electric field, along with mitigation of the ion orbit loss and
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parallel flows, is observed. Finally, the effects of anomalous
transport are addressed by including a simple radial diffusion
term into the gyro-kinetic equation, and an illustrative steady-
state solution is obtained for the parameters characteristic of
the DIII-D tokamak.

The present work discusses the initial proof-of-principle
simulations of axisymmetric cross-separatrix kinetic plasma
transport. Although providing important insights into the dy-
namics of edge plasmas, the present modeling omits several
important physical phenomena. These include, for instance,
the effects of poloidal variations in the electrostatic potential,
near-boundary (sheath) physics at the divertor plates, kinetic
electrons, neutrals, and impurities. Our future work will
extend the analysis to incorporate these effects.
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