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ABSTRACT

The first continuum gyrokinetic calculations of electrostatic ion scale turbulence are presented for the case of a diverted tokamak geometry.
The simulation model solves the long-wavelength limit of the full-F gyrokinetic equation for ion species coupled to the quasi-neutrality
equation for electrostatic potential variations, where a fluid model is used for an electron response. In order to facilitate simulations of
highly-anisotropic microturbulence in the presence of strong magnetic shear and a magnetic X-point, a numerical algorithm utilizing a
locally field-aligned multiblock coordinate system has been developed and implemented in the 5D finite-volume code COGENT. In
this approach, the toroidal direction is divided into blocks, such that within each block, the cells are field-aligned and a non-matching grid
interface is allowed at block boundaries. The toroidal angle corresponds to the “coarse” field-aligned coordinate, whereas the poloidal cross
section, comprised of the radial and poloidal directions, is finely gridded to resolve short-scale perpendicular turbulence structures and to
support accurate re-mapping (interpolation) at block boundaries. The 5D simulations explore cross-separatrix ion scale turbulence in the

presence of a self-consistent radial electric field and address the effects of magnetic-shear stabilization in the X-point region.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0039169

I. INTRODUCTION

The processes at the tokamak plasma edge play a crucial role for
achieving a steady state burning fusion plasma, and it is important to
develop an improved theoretical understanding of edge plasma trans-
port. The problem, however, presents substantial challenges for analyt-
ical or numerical analysis due to (a) complex magnetic geometry,
including both open and closed magnetic field lines B, (b) steep radial
gradients comparable to ion drift-orbit excursions, and (c) a variation
in the collision mean-free path along B from long to short compared
to the magnetic connection length. A gyrokinetic equation that
includes a detailed collision operator must be solved to capture these
key features.

Presently, there are two main approaches to solving a kinetic
(here, gyrokinetic) equation: (i) the particle-in-cell (PIC) method,
which makes use of macroparticles to integrate along the characteris-
tics of the kinetic equation, and (ii) the continuum method, in which
the kinetic equation is discretized on a phase-space grid. The PIC
approach provides an efficient computational tool to solve the high-
dimensional kinetic equation and is well-suited for parallel program-
ing. However, in contrast to a continuum discretization, it suffers from
statistical particle noise and limited phase space density resolution.

Both methods have been successfully utilized to study plasma 4D axi-
symmetric transport and 5D turbulence in a tokamak core. The two
approaches complement each other, provide opportunities for cross-
code verification, and stimulate progress in understanding physical
properties of core plasmas.

Contrary to the beneficial co-existence of about a dozen PIC and
continuum  gyrokinetic codes for core plasmas, ’ the gyrokinetic
modeling of a tokamak edge that includes the magnetic separatrix has
been represented, to date, only by the PIC method. This is despite the
fact that the particle noise issues become even more pronounced in
the edge. Indeed, due to generally small deviations from an a priori
known local Maxwellian background in a core region, a so-called
delta-F approach can be utilized, which mitigates the statistical noise
level in core PIC simulations as N~!, where N is the number of macro-
particles. In contrast, the presence of a steep gradient region in the
edge of a tokamak, for example, under H-mode conditions, can lead to
pronounced deviations of a background ion distribution function
from a local Maxwellian. Therefore, gyrokinetic edge codes should
include modeling of the background quasi-equilibrium dynamics, that
is, a full-F approach is required. In this case, the noise-to-signal ratio
decreases only as VN1, and simulations of low-amplitude turbulence
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subject to adequate representation of the background dynamics can
require a very large number of macroparticles.”

Although PIC simulations of edge plasmas suffer from the
enhanced particle noise problem, extension of underlying numerical
algorithms from the core to the edge region has been substantially
more straightforward for PIC than for continuum methods. One cen-
tral feature of a continuum simulation model that poses a significant
challenge is the presence of the magnetic separatrix within the simula-
tion domain. In order to facilitate simulations of highly anisotropic
plasma transport and turbulence, the spatial grids are typically chosen
to be aligned with the magnetic flux surfaces (for axisymmetric trans-
port studies) or magnetic field lines (for 5D turbulence studies).
However, such coordinate surfaces have diverging metric coefficients
at the X-point of the magnetic separatrix, thereby introducing a chal-
lenge for high-order accurate discretization methods. In contrast to
the continuum approach, PIC methods use macroparticles to integrate
along the characteristic of a kinetic equation, and therefore are much
less sensitive to the presence of the X-point, where a particle’s gyro-
center velocity is well defined.

While the PIC method has been extensively used in the past
decade for gyrokinetic modeling of the tokamak edge,’ significant
advances have been recently made in developing a continuum
approach for modeling fusion plasmas in complex magnetic geome-
tries that can include an X-point.'” The corresponding numerical
methods have been developed and implemented in the finite-volume
Eulerian code COGENT (COntinuum Gyrokinetic Edge New
Technology). A distinguishing feature of the COGENT approach is
the use of a multiblock grid technology,"" in which logically distinct
blocks are smoothly mapped from rectangular computational domains
and a high-order interpolation is used to provide inter-block coupling.
For the case of a single-null magnetic geometry, the blocks describe
different parts of the computational domain, such as core, scrape-oft-
layer (SOL), and private flux (PF) regions. While the present paper
reports on the results of cross-separatrix simulations performed with
the COGENT code, it is worthwhile to note other ongoing efforts in
the continuum gyrokinetic modeling of a tokamak edge that make use
of the Gkeyll'” and GENE" codes. These studies, however, are pres-
ently limited to the open field line region (e.g., SOL).

The COGENT code solves full-F gyrokinetic equations in the
long-wavelength electrostatic limit for an arbitrary number of plasma
species. A succession of increasingly detailed collision models is avail-
able and includes linearized'* and fully nonlinear Fokker-Planck'” col-
lision operators. The code has been previously applied to the analysis
of 4D axisymmetric transport in annular'“'® and single-null'”"*
geometries and to the modeling of the ion temperature gradient (ITG)
instability in a toroidal annulus geometry.'” The present work
extends the range of COGENT applications to the analysis of ion-
scale turbulence in a single-null geometry. Self-consistent variations
of an electrostatic potential are obtained by making use of the
quasi-neutrality equation, V - j = 0, coupled to a simple isothermal
electron fluid response. The results of COGENT simulations eluci-
date the stabilizing role of edge radial electric fields and enhanced
magnetic shear in the X-point region. To our knowledge, these are
the first continuum gyrokinetic simulations of cross-separatrix
plasma turbulence.

In order to facilitate simulations of highly-anisotropic microtur-
bulence in the presence of strong magnetic shear and a magnetic
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X-point, a numerical algorithm utilizing a locally field-aligned multi-
block coordinate system has been developed. In this approach, the
toroidal direction is divided into blocks, such that within each block,
the cells are field-aligned and a non-matching (non-conformal) grid
interface is allowed at block boundaries. The toroidal angle corre-
sponds to the “coarse” field-aligned coordinate, whereas the poloidal
cross section, comprised of the radial and poloidal directions, is finely
gridded to resolve short-scale perpendicular turbulence structures and
to support accurate re-mapping (interpolation) at block boundaries.
We note that such a numerical scheme shares certain features of the
so-called flux coordinate independent (FCI) approach used for
Eulerian fluid modeling in X-point geometries.” In particular, the FCI
method also employs coarse toroidal discretization and computes
large-scale parallel gradients by interpolating data in finely gridded
poloidal planes. However, in contrast to the FCI method, the magnetic
flux surfaces are retained here as coordinate surfaces to minimize
numerical pollution errors; furthermore, the COGENT implementa-
tion makes use of a systematic finite-volume discretization. It is also
instructive to note that field-aligned interpolation techniques, which
allow the minimization of the number of spatial points required to
represent fluctuation quantities, have been also adopted in the semi-
Lagrangian gyrokinetic simulations in core, ie., closed-field-line,
geometries.” >

This paper is organized as follows. The simulation model and its
numerical implementation are described in Secs. II and III, respec-
tively. Section IV presents the results of verification studies performed
in simplified annular and slab geometries. The results of turbulence
simulations in a single-null geometry are discussed in Sec. V. Finally,
the conclusions of the present work are summarized in Sec. V1.

Il. SIMULATION MODEL
A. Gyrokinetic equation

The simulation model adopted in this work solves the long-
wavelength limit of a gyrokinetic equation for a gyrocenter ion distri-
bution function f;(R, v||, i) given by

J(Bjfi) -
Ty (R + (B =l

Here, R is the gyrocenter coordinate, V is the gradient with respect to
R, and the gyrocenter velocity R is given by

. 1 [
R=— B*+—b Z;eVD VB)|. 2
Bl*‘ |:V” +Z,-e X ( e +u ) 2)

The evolution of the gyrocenter parallel velocity is specified by

B" - (ZeV® + uVB), 3)

VI =
=
where m; and Z; are the ion species mass and charge state, respectively,
e is the electron charge, ¢ is the speed of light, B = B - b is the mag-
netic field with b denoting the unit vector along the field, B*(R, v))
=B+ (cm;/Zie)v|V x b, Bj =B"-b, and the long-wavelength
limit, k; p; < 1, is presently adopted for electrostatic potential varia-
tions, ®(R, 1), and collision models, C[B|f;]. Here, p; = Vr;/Q; is the

particle thermal gyroradius, V; = \/T;/m; is the thermal velocity,
Q; = ZieB/(mjc) is the cyclotron frequency, and k' represents the
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characteristic length-scale for variations in the electrostatic potential
and distribution function perturbations.

B. E-field models: Gyrokinetic Poisson model

Two models for self-consistent variations of an electrostatic
potential are used in this work. The first option utilizes the long-
wavelength limit of the gyrokinetic Poisson equation:

szii’li
\ ( B VJ_CI)) =e(n, — Zin;), (4)
coupled to the linearized adiabatic electron response,

ne = Zi(nio) (1 + e®/T, — e{D)/T,). (5)

Here, T, is the electron temperature, which is assumed to be a constant
on flux surfaces, V; =V —b(b-V) is the perpendicular gradient
operator, (Q) is the flux-surface average defined as the volume average
of Q between two neighboring flux surfaces, i and  + dis, and the
ion gyrocenter density is specified by

27 .
n; = EJ'IC‘BHdVHdu (6)

Note that “pressure-term” corrections in the gyroaveraged gyrocenter
ion density, on; ~ V2 (n;V2)/Q7, are neglected in Eq. (4) as they are
small in the long-wavelength limit. Finally, (n;y) corresponds to the
flux surface average of the initial ion gyrocenter density.

The reduced electron adiabatic model in Eq. (5) has been suc-
cessfully used for decades in core plasma gyrokinetic simulations of
slow, ion timescale, processes, o < k”VTe, such as 5D ITG turbu-
lence and 4D neoclassical transport. This model, however, cannot
be straightforwardly extended to simulations that span the mag-
netic separatrix. From the physical point of view, Eq. (5) manifests
a constant-in-time flux surface average of the electron density,
d{(n,) /0t = 0, which, on closed flux surfaces, is equivalent to the
zero-flux surface average of the electron radial particle flux. While
the condition, d(n,)/dt =0, is approximately valid in a core
region, such constraint is not applicable to the SOL plasmas due to
the presence of large electron parallel losses to divertor plates. From
the mathematical point of view, one can also note that the flux sur-
face average operator acting on the potential perturbations (®) [in
Eq. (5)] is discontinuous across the separatrix.

C. E-field models: Vorticity model

In order to make use of reduced electron models in simulations
that span the magnetic separatrix, a second option for self-consistent
potential perturbations has been developed in COGENT based upon
the quasi-neutrality (V -j = 0) equation, written for the vorticity
variable

cnim;
’(U:VL( BZ VL(D) (7)

Taking the partial time derivative of Eq. (4) and making use of Eq. (1),
we obtain
0w

—=V.j V-j. 8
5 iet Vi ®)
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Here, the ion gyrocenter current density is given by
i, = (2nZie/m;) J"RﬁB‘*‘dVHdu, and the electron current density,
j. = —eV.n,, is obtained as follows. Assuming an isotropic electron
fluid model, the perpendicular electron current density is given to the
lowest order in the ratio of the electron gyroradius to the length scale
of background plasma variations, p, /L, by

jL,e = 7§VLpe x b + eng%VL(D X b7 (9)

where p, = n,T, is the electron pressure. Furthermore, adopting the
collisional electron response in the parallel direction and neglecting
small electron inertia, it follows that

1 0.71
=9 (g ViPe = V)@ +—=V) Te)v (10)
(4

where jjj = en.(V|; — V|.) = eZin;V|; + @V|; — en, V| is the par-
allel current density,

o) = 1.96n,6 (1)
M
is the parallel electron conductivity, and 7, is the basic electron colli-
sional term given by Braginskii”* Considering the lowest-order
approximation for the ion parallel macroscopic velocity, n;V); =
(2n/m;) | vw‘,-Bﬁ dv)dp and combining Egs. (8)-(10), we obtain

Ow -V, ®xb
E”'(“T

o) +V-(bV,.0)

j 2nZ;
:BVH%-i-V'(?:ne

: JVTﬁBﬂdVHdﬂ — %VLpe X b). (12)
Here, v = R (® = 0) is the magnetic drift velocity corresponding
to the perpendicular component of the guiding center velocity in Eq.
(2) for the case of a zero potential. We also note that in deriving the
Reynolds stress term [the second term on the LHS of Eq. (12)], we
neglected a small difference between B and Bj.

The quasi-neutrality model in Eq. (12) appears similar to vortic-
ity models adopted in drift-reduced fluid simulations (see, for instance,
Ref. 25); however, it employs the ion gyrokinetic equation to evaluate
the perpendicular ion current, and therefore retains important kinetic
ion effects such as prompt X-point losses. We also note that the
expression for vorticity in Eq. (7) omits the pressure term (often
retained in fluid models) as a result of our assumptions underlying the
long-wavelength limit of the gyrokinetic Poisson equation [Eq. (4)].
The long-wavelength limit may be of limited validity for describing
edge plasma turbulence. Furthermore, we refer the reader to the
analysis in Refs. 26-28 that address general applicability of the stan-
dard quasi-neutrality approach (as adopted in the gyrokinetic
Poisson and vorticity models) for evaluating a long-wavelength
radial electric field. While improving the electric field model will be
the subject of our future studies, the primary purpose of this work
is to analyze the performance of the underlying numerical algo-
rithms with a simplified model that, however, captures edge-
relevant instabilities such as ITG and resistive drift and ballooning
modes. In the same manner, we further arbitrarily simplify the vor-
ticity model in Eq. (12) by neglecting the parallel advection term
and by replacing n, with Z;n; (i.e., neglecting the polarization den-
sity corrections) as follows:
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Ow -V, ®xb
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:V-< m JviﬁBHdVHd,u)JrV-{T(VXbJr 5 )]
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B —_— | (5 eTe - (D Tf ‘ 1
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We note that retaining polarization density corrections in the electron
pressure on the last line of Eq. (13) was found to be important for the
stabilization of high-kp; perturbations. Also, in deriving Eq. (13), we
made use of the following identity:

Vipe xb) o [Pe b x VB
V.(—i)fv.{B(beJr 5 )} (14)

B

Equation (13) represents the COGENT vorticity model for self-
consistent variations of electrostatic potential that needs to be coupled
with a model for an electron temperature. The present work adopts a
simple isothermal electron model with T, = const.

Finally, we note that both the gyrokinetic Poisson model in Egs.
(4) and (5) and the vorticity model in Eq. (13) should provide similar
results in the ITG simulations for the case of a closed-flux-surface
geometry and a hot (therefore, highly conductive) plasma. However,
in contrast to the gyrokinetic Poisson model coupled to the adiabatic
electron response, the vorticity model coupled to the fluid electron
response can also adequately describe potential variations across the
separatrix including the cooler (i.e., less conductive) open-field-lines
outer-edge region and the corresponding effects of resistive drift and
ballooning modes. These conclusions are confirmed in COGENT sim-
ulations presented in Sec. I'V.

D. Boundary conditions

The phase-space advection operator in the ion gyrokinetic equa-
tion [Eq. (1)] requires specification of “inflow” fluxes at the phase-
space boundaries. In the present studies, these fluxes are computed
from the initial ion distribution. For instance, for the case of a local
Maxwellian initialization, the boundary condition corresponds to the
presence of a Maxwellian “bath” that maintains the initial boundary
values of the density, parallel momentum, and temperature through-
out the simulation.

Available radial boundary conditions for a potential include the
standard Dirichlet and Neumann conditions as well as the following
consistent condition that can be applied on the radial closed-flux-
surface boundaries:

Czﬂ,'m,' 2 6<D_ ! .
(Spwor ) 55 = [ e, (15)

The condition in Eq. (15) makes use of the quasi-neutrality equation
[Eq. (8)], where a small contribution from the flux surface average of
the radial electron current is neglected, and the potential, @, is
assumed to be nearly constant on the boundary flux surface. Such a
condition allows for consistent development of the long-wavelength
background radial electric field at the radial boundaries, while plausi-
bly mitigating near-boundary turbulence by suppressing short-
wavelength poloidal variations in ®. The use of the boundary condi-
tion in Eq. (15) can accommodate large plasma gradients at the radial
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boundaries as demonstrated in Sec. I'V. This alleviates the need for
radial buffer regions, which are typically included in continuum full-F
gyrokinetic simulations that employ the standard, ie., Dirichlet or
Neumann, conditions and use the buffer zones to diffuse the profile
gradients and damp the turbulence.”*”*

The cross-separatrix simulations presented in this work adopt a
simple zero Dirichlet boundary condition for a potential at the divertor
plates, fbﬁlgte = 0. It is, however, instructive to note that the vorticity
model in Eq. (13) can be supplemented by the commonly used logical
sheath boundary condition for the potential on the plasma side of the
sheath (see, for instance, Ref. 31), CD%Z?E =—T,/eln [Zﬁ(i”
—en,V|;)/(en.Vr,)] + ®,, which will be described in a future publi-
cation. Here, the divertor plate is assumed to be conducting, and at a
potential @,, the effects of the perpendicular drift velocity are
neglected, for simplicity.

1. NUMERICAL IMPLEMENTATION
A. Spatial discretization

COGENT employs high-order finite-volume methods to solve
hyperbolic [Eq. (1)] and elliptic [Eq. (4)] equations on arbitrary spatial
grids represented by logically distinct blocks that are smoothly mapped
from rectangular computational domains.'’ Short-wavelength turbu-
lence that determines transport properties of a tokamak plasma is dis-
tinguished by highly anisotropic perturbations, which are aligned with
the magnetic field, and therefore motivate the use of a field-aligned
coordinate system. However, the presence of the X-point and a strong
magnetic shear in the edge of a diverted tokamak generate significant
distortion of the control volumes if a globally field-aligned coordinate
system is used. To deal with this issue, the following discretization con-
cept has been adopted'” (see Fig. 1).

The toroidal direction is divided into a number of blocks
(wedges) such that a local coordinate system is field-aligned within a
block. Furthermore, each toroidal block can consist of a number of
sub-blocks employed to represent a single-null poloidal cross section
as it is done in the 4D (axisymmetric) version of the code.'”'”'* The
grid is constructed by, first, creating a 2D (/, 0) mesh on a reference
poloidal plane located in the middle of a toroidal block, and then by
mapping it along the magnetic field lines. Here, { and 0 denote the
radial (e.g., flux-surface) and poloidal coordinates, respectively [see
Fig. 1]. Assuming axisymmetric equilibrium magnetic geometry, the
cell volumes can be constructed within each block in the same way.
Due to the twist and shear of magnetic field lines, the grids in different
blocks will not, in general, match at toroidal block interfaces.
However, by increasing the number of toroidal blocks (thereby
decreasing their size), the level of mismatch can be minimized even for
large values of magnetic shear. In order to provide communication
between the blocks, the grid in each block is smoothly extended along
the field lines into the neighboring blocks, and such formed ghost-cells
are filled by interpolating the corresponding valid-cell data. Due to the
locally field-aligned nature of the discretization scheme, the number of
degrees of freedom to describe short-wavelength turbulence remains
optimal. That is, while a 2D grid in the poloidal cross section has to
resolve fine-scale structures, e.g., 4 ~ p;, the toroidal direction, which
corresponds to a field-aligned coordinate, can remain coarse as it only
needs to resolve large-scale parallel structures.

The cross-separatrix simulations presented in this work adopt a
magnetic flux surface coordinate, i, that spans the entire simulation
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FIG. 1. Schematic of a locally field-aligned multiblock discretization scheme. The left panel shows a two-block structure with four toroidal valid cells in each block. Each toroidal
block consists of eight poloidal sub-blocks that represent the global mapping in the poloidal (v, ) plane. The poloidal plane block decomposition is not illustrated here and
can be found elsewhere.'” The right panel shows a zoom-in on the toroidal block interface. In order to compute fluxes on the cell face between the highlighted yellow cell and
the corresponding ghost cell (shown with the yellow-dashed lines), data in the ghost cell have to be computed. The ghost cells are obtained by extending the field-aligned map-
ping into the ghost region, and since both toroidal blocks share the same flux-surface coordinate only 1D interpolation in the 0-direction is required. The three dark blue cells of

the left block are used here for the quadratic interpolation.

domain including the X-point. Multiple sub-blocks are still used to
discretize the poloidal plane as described in detail in Refs. 10, 17, 18;
however, in contrast to the toroidal direction, the 2D (y, 0) grids in
different poloidal sub-blocks are conformal and no interpolation is
required to fill the corresponding poloidal and radial ghost cells. While
such global use of the flux-surface coordinate reduces the order of con-
vergence in the X-point region, it minimizes numerical pollution due
to the presence of high electron parallel conductivity in the vorticity
model. This pollution effect was reported in our earlier axisymmetric
transport studies'® and is discussed again in Secs. 111 C and IV D. For
the cases where an electrostatic potential is fixed and the pollution
effect is absent, global high-order convergence of the gyrokinetic equa-
tion was demonstrated with 4D COGENT simulations in a single-null
geometry using controlled grid de-alignment in the X-point region."’

Due to the nonconformity of the toroidal cell faces at the shared
block boundaries, special treatment of the inter-block interpolation
and the evaluation of normal fluxes at the toroidal block boundaries
are required to achieve conservative discretization. While the develop-
ment of a high-order conservative 5D locally field-aligned COGENT
is in progress, here we make use of a non-conservative second-order
version, which can, nevertheless, test critical aspects of the numerical
algorithms and provide insights into the physical properties of edge
plasmas. This version utilizes a third-order upwind discretization of
the gyrokinetic advection operator combined with a third-order [the
truncation error of O(/})] interpolation scheme for the inter-block
communication. Here, hy is the cell size in the 0-direction, in which
1D interpolation is performed.

It is instructive to note that our numerical scheme adopts the
toroidal angle, ¢, as a field-aligned coordinate (as employed here), in
contrast to the poloidal angle, which is often adopted for the modeling
of core' and edge™ turbulence. The choice of the poloidal angle as a
field-aligned coordinate can be more efficient for modeling of the pro-
cesses characterized by a high toroidal mode number, where it is suffi-
cient to simulate only a small part (wedge) of a full torus. On the other

hand, the use of the toroidal angle as a field-aligned coordinate is
more natural for near the X-point where it yields minimal twist of
control volumes. It is further important to note the difference between
the two approaches in the development of boundary conditions on
axisymmetric divertor plates. For the case of a poloidal field-aligned
coordinate, the divertor plates coincide with the poloidal boundary of
the computational domain, which facilitates the implementation of
the corresponding boundary conditions. However, for the case of the
toroidal field-aligned coordinate, the plates are no longer conformal to
the poloidal domain boundary, which has a “saw-tooth” shape in the
plane yy = const as illustrated in Fig. 2. The divertor plates boundaries
are presently handled by exploiting the long-wavelength nature of par-
allel variations in the potential and distribution function and by per-
forming zero-order extrapolation of physical boundary conditions
from the divertor plate onto the computational domain boundaries
along magnetic field lines (see Fig. 2). For instance, a boundary

block n  block n+1 Y = const

Divertor
plate

Domain
boundary

o BC

FIG. 2. Schematic of the divertor plate region (y = const plane is shown). The
physical boundary conditions on the straight-line divertor plate (green) are trans-
lated to the saw-tooth computational domain boundary (red).
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condition, (D%lgtg = 0, corresponding to conducting plates is applied to

the computational domain boundary instead of the actual physical
boundary. Improving such a low-order approach by making use of
embedded boundary methods™ is left to future work.

B. Gyrokinetic Poisson model implementation

In addition to the spatial discretization described above, develop-
ing an efficient approach to solving Eq. (4) is necessary. Although a vari-
ety of methods are available in COGENT to handle sparsely coupled
elliptic equations, the presence of the flux-surface average potential in
the RHS of Eq. (4), which governs the evolution of the axisymmetric
(zonal-flow) component, introduces dense (long range, non-local) cou-
pling. This problem is addressed in COGENT by performing “sub-
space” iterations, where we interchangeably solve for flux-surface aver-
aged (zonal) and non-zonal components of @ (which belong to orthog-
onal functional sub-spaces) until the combined solution satisfies the
original gyrokinetic Poisson equation. In more detail, introducing ®
= (@) and ® = ® — D, we iterate the following system of equations:

sz‘ﬂ‘ = % e(i)*
VL'< ;IVLq)n+l)—Zi<ni0>7n+l
eB .
sz,‘ﬂ,‘ —
= Zi(nio) — Zin; — V1 - < B VL(Dn)7 (16)

2.1, -
= Zi(nio) — Zi{ni) — <VL : (C el VLq)nJrl) >7 (17)

eB?

where @, =@ e (@, +1)- During each iteration, the elliptic
problem in Eq. (16) is solved by the generalized minimal residual
(GMRES) method. Note that Eq. (16) for the non-zonal part of ®
does not involve nonlocal coupling, and therefore the GMRES Krylov
method can be efficiently preconditioned by constructing a sparse
diagonally dominated matrix corresponding to a lower-order (here,
second-order) discretization of Eq. (16). The preconditioner problem
is solved in COGENT by making use of parallel algebraic multi-grid
(AMG) solvers implemented in the Hypre library.”* For the applica-
tions considered in the present work, we adopt a second-order finite-
volume discretization of the gyrokinetic Poisson model, and therefore
the preconditioner is fully consistent with the GMRES problem.
However, such low-order preconditioners are also found to be effec-
tive in high-order simulations, where a fourth-order discretization of
the elliptic equations is used. The remaining zonal-flow equation [Eq.
(17)] is a second-order one-dimensional ordinary differential equa-
tion that is straightforwardly solved by the direct inversion of the cor-
responding tri-diagonal matrices.

C. Vorticity model implementation
1. Stiff electron time scales

The vorticity model in Eq. (13) describes an electron response that
is more detailed than the simple adiabatic relation [in Eq. (5)] used for
the gyrokinetic Poisson equation. As a result, fast electron timescale pro-
cesses With Teong ~ (k2 p?)7e (K| Vi1.7.)”* appear in the vorticity model.
Here, p; is the ion gyroradius corresponding to the sound speed,

scitation.org/journal/php

Vi ~ \/T./mj, and k, and k| are the wave-vectors for the perpendicu-
lar and parallel variations in the electrostatic potential, respectively.
Considering moderately collisional electrons with t, ~ Ry/Vy,, we
obtain T, ~ (p,/La 1)’ (Ro/Vr.)(Ro/ hH)72 for the fastest timescale
supported by the simulation grid. Here, R, is the tokamak major radius,
hy is the cell size in the parallel direction, and L, is the perpendicular
size of the simulation domain. These rapid processes associated with a
strong parallel plasma conductivity are much faster than the ion time
scales of interest such as the parallel transit time 7, ~ Ry/(qVr) and
the drift-wave period 4 ~ (k) p,-)flL 1/ Vi, and therefore have to be
treated with implicit time integration techniques. Here, L, is the length
scale for perpendicular variations in plasma profiles, and q is the mag-
netic safety factor. In the present work, the following simple first-order
backward Euler scheme is used to advance the vorticity model in Eq.
(13) subject to the isothermal electron response

szﬂ’li
\ (Tvl(q)l“ - CD’))
At
27IZ,‘€ P
=V. ( - Jvif,-BHdedu)

i

cZin;T, b x VB
V.- |——|Vxb
" { B ( TR )}

o T. o't 141
I ze | — v,
B (en,-v” <n, + Zie Vi

Here, At is a size of the time step, f; = At - | corresponds to a discrete
time variable, and the quantities in Eq. (18) that appear without a super-
script are evaluated at the [ time step. Note that a small time derivative
of the jon density is neglected in Eq. (18). The vorticity model in Eq. (13)
can also be advanced in time by making use of additive Runge-Kutta
(ARK) methods that are available in the COGENT code.””*® The ARK
approach provides consistent time integration for up to a fourth order in
At, while treating the stiff terms implicitly. It also retains the ion density
time derivative in the vorticity model. No pronounced difference is
observed between the temporal discretization in Eq. (18) and the ARK
method for the applications considered in this work. The former
approach is, however, found to provide better computational perfor-
mance and is, therefore, used for the production runs presented here.

Equation (18) is discretized with a second-order finite-volume
method and is solved with the GMRES method. The GMRES solver is
preconditioned by an elliptic problem derived from Eq. (18) by
neglecting the polarization density corrections, @™ /(Z;e), from the
last line of Eq. (18). The preconditioner operator represents a strongly
anisotropic elliptic problem, which is solved by making use of the
AMG methods from the Hypre library.

V., P
iy (CWT“wz)

+BVY| : (18)

2. Numerical pollution

The presence of the strongly anisotropic conductivity in Eq. (13)
can lead to numerical pollution issues. Due to the large value of the
parallel electron conductivity, the term, V - (bjj), dominates the RHS
of Eq. (13) and enforces a nearly adiabatic electron response.
However, on closed flux surfaces, where (V - (bjj)) = 0, the radial
electric field is set by the “perpendicular-physics” terms, e.g., (V -j .),
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whose local values are small compared to V - (bj ). If a numerical discre-
tization scheme does not enforce a zero-flux surface average of the parallel
current divergence, the corresponding truncation errors, e.g., due to grid
misalignment with magnetic flux surfaces, can be comparable to (or
larger) than (V - j, ;). The previous 4D COGENT studies'” established a
severe constraint on the level of grid misalignment in the X-point region
required to maintain a tolerable truncation error in (V - (bj)). Those
findings motivated the use of a globally flux-aligned grid for 4D simula-
tions with self-consistent electric fields despite degraded convergence
properties at the X-point. For the same reasons, our present 5D divertor
version makes use of grid surfaces that are flux-aligned in the entire
domain. However, while such grid construction was sufficient to maintain
(V- (bjj)) = 0 discretization on closed flux surfaces for the axisymmet-
ric (4D) case, the lack of flux conservation at the block interfaces (see Sec.
[ITA) can still result in sufficiently large truncation errors that can be
comparable (or larger) than the physical terms (e.g., the Reynolds stress
term or neoclassical guiding-center current), which govern the evolution
of a radial electric field inside the separatrix. In more detail, the truncation
error in the discrete evaluation of the parallel current flux-surface average
can be estimated as

eonVy, VreTe
~

kohg)". 19
R qRo(o 0) (19)

Here, ky is the poloidal wave-vector for density perturbation dn, hy is the
poloidal cell size, and 7 is the order of the interpolation scheme used at block
interfaces. We now compare this truncation error with the size of the
Reynolds stress term, (RS)= (V) - (c[V 6® x B] B~ 2dw])) ~
3 n,'m,»B_3k4L5(D2. Adopting the standard ordering, k| p; ~ kgp; ~ 1 and
on/n~ ed®/T, ~ p;/L,, where L, is the length scale for variations in
background quasi-equilibrium, the condition required for accurate model-
ing,ie, Err{(V - (bj|))} < (RS), corresponds to

ho\" Ry gRy (T.\* Vr
(- rEE e

Te VTe Lp Ti VTe '

Considering parameters characteristic of DIII-D edge plasmas,
ne~10°m=3 g~3 Ry~ 1.6m, T; ~300eV, T, ~ 50eV, B
~ 1.6T, By/B ~ 0.2, we obtain a strenuous constraint on the poloidal
size of computational cells, (hg/p;)" < 107 x gRy /Ly, which is more
severe than the basic constraint on adequate representation of the tur-
bulence perturbations, hy/p; < 1. To avoid the use of such overly con-
strained cell size, the present implementation of the RHS of Eq. (18)
includes the pollution correction term, —(V - (bjy)),,,,» which corre-
sponds to a numerical evaluation of the flux-surface averaged parallel
current. This correction is only introduced inside the magnetic separa-
trix, and as a result, the flux surface average of Eq. (18) does not contain
any contributions from the parallel current on closed field lines.

In Sec. IV C, we illustrate the numerical pollution issues with a
practical ITG simulation. While no pronounced effects of the numeri-
cal pollution are observed during the linear stage, which is primarily
governed by the adiabatic electron response, spurious numerical
results are observed during the nonlinear stage of the ITG instability if
the condition (V - (bjj)) = 0 is not discretely enforced on closed flux
surfaces. Finally, it is worthwhile to mention that the numerical pollu-
tion in the vorticity model discussed here can also be of importance to
drift-reduced fluid numerical simulations that either do not use field-
aligned coordinates” or use interpolation to obtain boundary condi-
tion for the field-aligned coordinate.”

scitation.org/journal/php

D. Temporal discretization

In the present work, a fourth-order Runge-Kutta method is used
to advance the gyrokinetic equation [Eq. (1)] in time. We also note
that an implicit-explicit (ImEx) time integration algorithm is available
in COGENT.”™ It is based on semi-implicit additive Runge-Kutta
(ARK) methods and can provide consistent high-order time integra-
tion, including implicit treatment of selected stiff terms. The ImEx
algorithm employs the Newton-Krylov approach to handle nonlinear-
ities, and it utilizes preconditioning to improve convergence proper-
ties. A successful application of the ImEx approach to simulations of
strongly collisional plasmas with nonlinear Fokker-Planck collision
model is reported in Ref. 36. In that work, the collisional term is inte-
grated implicitly in time, while the advective term is treated explicitly,
thus allowing time step sizes that are comparable to the advective time
scales. Our current efforts are focused on developing implicit capabili-
ties to handle stiff kinetic electron response. As a first step, the ARK
method is applied to implicit time integration of the 5D gyrokinetic
Vlasov advection operator for the case of a fixed electrostatic potential
and a single-null geometry. The convergence properties of the Krylov
(here, GMRES) solver are improved by utilizing a preconditioner cor-
responding to a lower-order (e.g., first-order upwind) discretization of
the advection operator, which is, in turn, inverted by making use of
the pAIR AMG methods from the Hypre library.” While additional
developments are needed to efficiently handle the stiff electrostatic
Alfvén timescale®® once kinetic electrons are included, the present
implicit capabilities are demonstrated to provide a substantial speed-
up the gyrokinetic simulations with a reduced electron model by relax-
ing the Courant constraint for the gyrokinetic Vlasov advection. The
corresponding results will be reported in our future publications.

IV. VERIFICATION STUDIES

This section presents the results of verification studies in toroidal
annulus and slab geometries. Section I'V A reports on ITG simulations
performed with the gyrokinetic Poisson model in Eq. (4). Verification
of the vorticity model in Eq. (18) is presented in Secs. IV B and IV C
by considering test problems involving the ITG and resistive drift
instabilities, respectively. Finally, Sec. IV D demonstrates the numeri-
cal pollution issue [see Sec. I1I C 2] with a practical ITG simulation.

With the exception of Sec. IV C, the simulations are performed
in a circular concentric tokamak configuration specified by

p-l(_T 1
,ﬁ(megﬂ-e(p), )

where (7, ¢, and 0) represent the toroidal coordinate system, R is the
major radius coordinate, R is the radial distance between the tokamak
axis and the core center, and I = RBy = const. Following the analysis
in Refs. 4 and 39, we define the magnetic safety factor profile as

.
q(r) = qo + q exp (qz log ;>, (22)

where a denotes the minor radius constant. The locally aligned coordi-
nate system is introduced within each block as follows: the radial coor-
dinate &, = r labels a flux surface, the field-aligned coordinate &; = ¢
designates the position along a field-line as measured by the toroidal
angle, and finally, the “poloidal” coordinate ¢, that labels a field line is
defined by
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£, = 2arctan (%tan (@ _ Vi 2_ r qqur()p") ) . (23)

Here 7 = r/Ry, ® = arctan( 1 tan g), and ¢,, designates the ref-
erence poloidal plane in block 7 (here taken as the toroidal center of a
block), where &, = 0.

The constant parameters in Egs. (21)-(23) are specified as
Ry =1.68m, a=0.6m, I = RBy =3.5Tm, g =10, q =278,
and ¢, = 2.8, and the radial simulation domain spans 0.19m
< r <0.41m, such that at the middle of the radial domain, 7,4
= 61/27 q = q(rmid) =14 and s(rm,-d) = (rmid/q)q’(rm,»d) =10.8.
Finally, a singly charged, Z; = 1, deuterium, m;=2m,, ion species,
with 1, denoting the proton mass, is considered in all simulations pre-
sented in this paper.

A. ITG simulations with the gyrokinetic Poisson model

The simulation model in Eq. (1) and Egs. (4)-(5) is used here
for simulations of the ITG turbulence and the associated plasma
transport. The COGENT implementation of the gyrokinetic Poisson
model has been previously verified'” against the well-known linear
Cyclone base case (CBC) test,’ and the present studies are focused
on the analysis of nonlinear plasma transport involving profile relax-
ation. While the gyrokinetic Vlasov-Poisson model is customarily
used in full-F core codes,” its physical limitations have recently
been pointed out in Refs. 26-28. In this work, this model is primar-
ily used as a testbed for COGENT numerical algorithms and their
efficiency.

Following the verification studies in Ref. 41, we take the ini-
tial plasma distribution as a local Maxwellian distribution with
density and temperature profiles specified by the following func-
tional form:

cosh[( =Yg + 04)/Aa]\
_ — Vmid A A
A(l//) - AO <COSh[(l// _ l//mid _ 5A)/AA]> I (24)

here,  =(r) is the magnetic flux function that satisfies '

=dy/dr = RBy subject to a Y(0)=0 boundary condition,
Via = W (rmia), and
/ 5A !
Ka = {lﬂ (7mia) Latanh (E)} , (25)

where Ly = A/A'(r,4) is the inverse logarithmic derivative measured
at the middle of the radial domain, and A’ = dA/dr. The constant
parameters in Egs. (24) and (25) are given for the initial plasma ion
density (A=N) and temperature (A = T) profiles by Ty = 1.75keV,
Ny = 1014cm’3, Ro/LN =2.2, RO/LT =12, oN =0r =2.7
x1072Tm?, and Ay = Ay = 4.54 x 1073Tm?>. The electron temper-
ature in Eq. (5) is taken to be uniform, T, = T. Note that a local
Maxwellian distribution does not correspond to an equilibrium for the
full-F gyrokinetic model, and therefore, initial long-wavelength transi-
ents are expected. We further perturb the initial distribution by intro-
ducing density perturbations with an amplitude of 0.3% and toroidal

scitation.org/journal/php

A simple linearized collision model describing ion-ion collisions
with a fixed Maxwellian background is included in the simulations

OB} o
¢

0
o¢

C[Bjofi] = %VD(X) (1-&)

119 . OB of;
+E$E{V3{”S(")Bu5ﬁ+VH(x)V 8“V ” (26)

Here, Jf; is a deviation of the ion distribution function from the initial
Maxwellian distribution, & = vy /v, v = (vj + 2uB/m)'?, x=v/

\/2Ty/m;, and the standard definitions for the relaxation rates, vp, v,
and v are used.”” Implementation of this collision model in
COGENT along with more comprehensive collision options is
described in detail in Ref. 14. The simplified collision model in Eq.
(26) does not conserve parallel momentum or energy, which limits its
validity. However, for the plasma parameters considered here, the
effect of collisions measured by gR/(7;Vy;) & 0.007 is weak, and no
pronounced difference in the simulation results was observed for the
corresponding collisionless case. Indeed, the collisional neoclassical
heat flux estimated in a weakly collisional regime as*”

2
Tmida  No T()

— 27)
Ro m,-Q?O‘L',-LT

gne ~ 1.35

is about 20 times smaller than the turbulence-driven heat flux dis-
cussed below. Here, 7; is the basic ion collisional time given by
Braginskii”* and Qg = Z;eBy/mic.

The results of the numerical simulations are shown in Figs. 3-5.
Figures 3 and 4 illustrate simulations in a toroidal wedge of A¢ = /2,
where periodicity is imposed at the toroidal boundaries and a single
computational block is used in the toroidal direction. Numerical con-
vergence in the radial, #, and poloidal, 0, directions is studied by per-
forming simulations with (N,, Ny) = (48,256), (N,, Ny) = (96,512),
and (N,,Np) = (192,1024). Here, N, denotes the number of grid
points in the phase-space direction o. The grid resolution in the other
directions is given by Ny = 4, Ny, = 48, and N, = 32. The velocity
domain extent corresponds to —4.9Vyy <v| <49Vy and

0 < u <10.4TyRy/I, where Vg = /Ty/m;. The consistent bound-
ary condition in Eq. (15) is used for electrostatic potential variations at
the radial boundaries. This alleviates the need for radial buffer regions,
which have been previously used in analogous full-F continuum gyroki-
netic modeling (see, for instance, Refs. 4, 29, and 30).

The radial lineouts at the outer midplane for the instantaneous val-
ues of the potential and ion temperature show good convergence proper-
ties [see Figs. 4(a) and 4(b)]. The mapped-space volume average,

Q = (Qy),,p» of the characteristic wedge-weighted radial transport power
2, . A
shows excellent convergence during initial transient perturbations,

while a moderate difference appears later on as the short-scale turbu-
lence develops [see Fig. 4(c)]. Here, the mapped-space volume average

and poloidal harmonic numbers of # =20 and m = 28, respectively. 1
Such perturbation corresponds to kpp; = ngp;/rmia = 0.27 and a (vt = mz Lijk (29)
nearly maximal growth rate in the ITG spectrum.”’ r ijok
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FIG. 3. Full-F simulations of the ITG turbulence with the local Maxwellian initializa-
tion. Shown are the electrostatic potential variations, e®/T, [frame (a)], and its
non-zonal component, e(® — (®))/T, [frame (b)] at the time instance correspond-
ing to t = 35.7Ry/Vro. A periodic toroidal wedge of A¢p = =/2 is considered, and
the gyrokinetic Poisson model in Egs. (4) and (5) is used for self-consistent poten-

tial variations.

@ 1 (ke
2.6 TS

o

3 22

&

8 1.8

g1

g

c 14

5 .
1 1 1 L 1

—
(=)
-~

Electrostatic potential

0.19 0.24 0.29

r (m)

0.34

o
N

o

N

o

N

©
(9]

o

ARTICLE scitation.org/journal/php

corresponds to a sum over the spatial indices divided by the total num-
ber of spatial cells and S;,iq = 4.0 7% rmiaRo is the characteristic mag-
netic flux surface area. More detailed analysis of the numerical
convergence properties during the turbulence regime should involve
additional statistical averaging (e.g., time integration) and will be a
subject of future work.

Figure 5 illustrates the results of full-torus simulations, A¢ = 27.
Numerical convergence in the toroidal (i.e., field-aligned) coordinate,
¢, is studied by dividing the toroidal domain into two, four, and eight
toroidal blocks, while maintaining 4 toroidal cells per block. Rapid
convergence can be observed in Fig. 5(d), illustrating the mapped-
space volume-averaged value of the effective energy of the non-zonal
potential component. Moreover, the mode structure is well-captured
even at the most coarse resolution level [compare Figs. 5(a)-5(c)].
Note that the intermediate grid resolution of 16 toroidal cells for the
full-torus simulations corresponds to the toroidal resolution of four
cells used in the wedge simulations with A¢ = 7/2 shown in Fig. 4.
The results of the simulations in Fig. 5 demonstrate the efficiency of
the locally field-aligned coordinate system. Indeed, the strongly aniso-
tropic ITG turbulence [see Figs. 3-5] is characterized by k| ~ 1 /qRo
and k, ~ 1/p;, or, equivalently, by the toroidal mode number of
Hgy ~ Tmia/(qp;). For the parameters of the simulations presented
here, we obtain ny, &~ 74, and therefore, the standard toroidal coordi-
nates grid system would require 74 times more toroidal points (assum-
ing the use of 16 grid points per a single harmonic) for the equivalent
simulation.

B. ITG simulations with the vorticity model

The vorticity model in Eq. (18) is verified here by performing
ITG simulations and comparing the results against the analogous sim-
ulations using the gyrokinetic Poisson model. To minimize the effects
of initial axisymmetric transients and large-amplitude radial electric
fields [see Fig. 4(a)], we neglect collisions and initialize the simulations
with an equilibrium solution to the full-F gyrokinetic equation for the
case of a zero electrostatic potential. The guiding-center equilibrium
distribution corresponding to a zero electric field should depend only
on the invariants of motion: energy (E = miv‘2 /2 + puB), magnetic
moment (u), and the canonical angular momentum (Py = Zieys/c
+m;v|RBy/B). It is evident that a locally Maxwellian distribution
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FIG. 4. Full-F simulations of the ITG turbulence with the local Maxwellian initialization. Numerical convergence in the radial and poloidal directions is studied for (a) ion temper-
ature radial profile, (b) electrostatic potential radial profile, and (c) the wedge-weighted transport power by performing simulations with (N,, Ny) = (48,256) (gray curve),
(Nr, Ng) = (96,512) (orange curve), and (N;, Np) = (192, 1024) (blue curve). The time instance for the results in frames (a) and (b) corresponds to t = 35.7Ry/Vro. The
initial ion temperature profile is shown in frame (a) with the dashed black cure. Periodic toroidal wedge of A¢p = 7/2 is considered, and the gyrokinetic Poisson model in Egs.

(4)-(5) is used for self-consistent potential variations.
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FIG. 5. Full-F simulations of the ITG turbulence with the local Maxwellian initialization. Numerical convergence in the toroidal (i.e., field-aligned) coordinate is studied for the
non-zonal component of an electrostatic potential by performing simulations with (a) Ny = 8, (b) Ny = 16, and (c) N, = 32 toroidal cells, while maintaining 4 toroidal cells
per block. The plots in Frames (a)-(c) correspond to the time instance of ¢t = 10.5R,/Vro. Frame (d) shows the time history for the mapped-space volume-average of the
effective non-zonal component energy for Ny = 8 (gray curve), Ny = 16 (orange curve), and Ny = 32 (blue curve). Full-torus simulations, A¢ = 2, are considered, and
the gyrokinetic Poisson model in Egs. (4) and (5) is used for self-consistent potential variations.

fanction Fry = 22T () /mi] />N () )exp[—mv} /2T ()~ uB/ T ()]
can be turned into an equivalent canomcal Maxwe an FCM equilibrium
function by replacing i with

l//irw = (30)
such that in the limit p;/Ly 1 < 1, we recover N(y) ~ N(i,,,) and
T(Y) = T(Y,,, ). This approach is used here to initialize the ion distri-
bution. The initial plasma profiles are specified by

A(l//inv) = AO exp l:fKAAAtanh (w>:| 5 (31)
Ay

where 14 = 1/[La{/ (*,nig)]. The functional form in Eq. (31), which is
also used in Ref. 39, is adopted here instead of that used in Eq. (24), as
it is observed to generate less perturbation in plasma profiles when
is replaced with V/;,,,. The initial density and temperature profiles are
set by using Ny = 10"em™>, T, = 7keV, Ry/Ly = 5.14, Ry/Lr
=16, and Ay = Ay = 1.8 x 1072Tm?, and the initial value of the
electrostatic potential is set to zero.

For this test simulation, we consider a periodic wedge of
A¢ = 0.2m and use a single toroidal block. The fundamental mode
n = 2n/A¢ = 10 and the associated kpp; = nqp;/rmia = 0.27 corre-
spond to a nearly maximal growth rate in the ITG spectrum. For sim-
plicity, a zero Dirichlet boundary condition is used for the electrostatic
potential at both radial boundaries. As in Sec. IV A, we perturb the
initial distribution by introducing density perturbations with an ampli-
tude of 0.3% and toroidal and poloidal harmonic numbers of n= 10
and m =14, respectively. The grid resolution is taken to be
[Ny = 96, Ny = 4,Np = 512, Ny = 48,N,, = 32], and the velocity
domain extent is —4.9Vyo < v < 4.9V and 0 < p < 10.4ToRo /1,
where Vg = +/To/m;.

For both, the gyrokinetic Poisson model in Egs. (4) and (5) and
the vorticity model in Eq. (18), a uniform electron temperature,
T, = T, is considered. Furthermore, the vorticity model adopts a uni-
form parallel conductivity given by

T
0| = 1.96N0€2 —e,

me

(32)

where the T, parameter is chosen such that T.w . = 10. Here, @y,
= /T./m./(qRy) is the electron transit frequency. Note that

Braginskii’s formulation of the parallel conductivity in Eq. (11) is only
valid in the collisional regime, 7, < 1, and an increase in the col-
lision time 7, is limited by the inverse electron transit frequency w,,
in a hot collisionless plasma. Here, we choose an artificially high value
of 7, to improve consistency between the vorticity model and the adia-
batic electron response in Eq. (5).

The results of these numerical simulations demonstrate good
agreement between the gyrokinetic Poisson and vorticity models (see
Fig. 6). For better consistency with the first-order backward Euler time
integration of the vorticity model [see Eq. (18)], the electric potential
in Eq. (4) is only updated once per a time step. This, however, results
in minimal differences as compared to the consistent fourth-order
time integration of the gyrokinetic Poisson model. Figures 6(a) and
6(b) show variations of the electrostatic potential in the poloidal plane.
In contrast to the ITG simulations performed in Sec. IV A for the case
of a local Maxwellian initialization [see Figs. 3(a) and 3(b)], the use of
canonical Maxwellian initialization mitigates the development of
strong axisymmetric radial electric fields. Note that a pronounced ini-
tial value of the ((e®/T,)),,; quantity illustrated in Fig. 6(c) is due to
the fact that the initial canonical Maxwellian distribution with the
plasma profiles in Eq. (31) yields axisymmetric poloidal variations of
the order O(p;/Ly,r) in a local ion density. Such density perturbations
generate the corresponding potential variations [as can be readily seen
from Egs. (4) and (5)], and therefore, the initial distribution function
that corresponds to a full-F equilibrium solution to Eq. (1) in the
absence of electric fields can only serve as an approximate equilibrium
once the self-consistent potential variations are included.

C. Resistive drift mode simulations with the vorticity
model

In Sec. IV B, the vorticity model is shown to agree well with the
gyrokinetic Poisson model in the simulations of the ITG instability for
the case of hot core plasmas characterized by an adiabatic electron
response [see Eq. (5)]. However, in contrast to the gyrokinetic Poisson
model with adiabatic electrons, the vorticity model also supports resis-
tive drift modes that play an important role in a cold tokamak edge.
For the purpose of COGENT verification, the following simplified test
problem is considered here.

A uniform magnetic field is considered, B = Be,, and a
Cartesian coordinate system with the basis triad (ey,e,,e;) is used.
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FIG. 6. Full-F simulations of the ITG instability with the canonical Maxwellian initialization. Shown is a comparison between the gyrokinetic-Poisson and vorticity models for the
potential variations in the poloidal plane at t = 14.7Ry/ Vo [frames (a) and (b)], and the time history of the mapped-space volume-averaged effective electrostatic energy
[frame (c)]. An artificially enhanced value of the uniform plasma conductivity corresponding to 7ewy e = 10 is considered.

Following analogous verification studies reported elsewhere,”” we
neglect the parallel acceleration and the ion collision effects in Eq. (1),
as well as the effects of the perpendicular currents in Eq. (13). The cor-
responding simulation model is given by

of; -VOxB _\

§+V~ (ch,) =0, (33)
Ow T,
E = V” |:O'H (TZ,‘H,‘ V”ne — V”(D>:| 5 (34)

where we retain the difference between the electron and guiding-
center ion densities, i.e., n, = Z;in; + e 'w in the vorticity equation.
Adopting Z; = 1 and allowing variations in the }l)lasma density with
the characteristic length scale, Ly = n;(dn;/dx)”" < 0, the model in
Egs. (33) and (34) yields the following local dispersion relation for
short-scale perturbations, proportional to exp (iwt + ik,y + ik.z),

with |kyLN| >1
2 O—*
<3) il (ﬂ - 1) —0. (35)
w* w* \w*

Y
o 93 w
)
e
< 02t
3
(o]
L .
O 01 * COGENT
— Theory
0 1 1 1 J
0.01 0.1 1 10 100

o /w*

Real Frequency

Here, o= 1.967, (k. /k,)* Q. (1 + kp3), o =1+ k}%pf)fl

ckyTe/(eBLy), py=/Te/m.Q,", andQ, = eB/mc,
assumed that k, >> k..

The analytical solution to the dispersion relation in Eq. (35) is
recovered in the COGENT simulations (see Fig. 7) that adopt a local
Maxwellian distribution with a uniform temperature, T; = T,, and a
density profile given by n; = Ny exp (—x/|Ly/|), where p,/|Ly| = 3.8
%1073, kyp, = 1.2, and k,p; = 1.4 x 10~*. The simulations consider
conducting (grounded) boundaries in the x-direction and periodic
boundary conditions in the y and z directions. The spatial domain
extent is given by Ly = 66p,, L, = 2n/k,, and L, = 2n/k,, and all
harmonics other than the fundamental one are filtered out from the
electrostatic potential distribution in the periodic directions y and z
after each solve of Eq. (34). The velocity domain extent is given by
—3.54/2T;/m; < v <3.5y/2T;/m; and 0 < u < 5T;/B. The grid
resolution is given by (N, Ny, Nz, Ny, N,,) = (36,16, 16, 32,24), and
the time step corresponds to Atw* = 0.043. Figure 7 shows the results
of the COGENT simulations for different values of a uniform normal-
ized parallel conductivity parameter spanning the range of
0.1 <gj/o" <10.

and we

12 r o
w*
0.8
0.4 * COGENT
— Theory
0 1 1 1 J
0.01 0.1 1 10 100
o /w*

FIG. 7. Resistive drift mode simulations with the vorticity model. The results of the COGENT simulations (red dots) are compared with an analytical solution to the dispersion

relation in Eq. (35) (blue curves).
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D. Numerical pollution in the vorticity model

Here, we provide a practical illustration of the numerical pollu-
tion issue (see Sec. 111 A) related to the mismatch in the field-aligned
grids at the toroidal block interfaces and the presence of a strongly
anisotropic conductivity in the vorticity model [see Eq. (13)]. Clearly,
the numerical pollution can be arbitrary exaggerated by increasing the
value of the parallel conductivity, and the purpose of this analysis is to
demonstrate the issue for practical simulation parameters. For that
reason, we consider the same simulation parameters as those used in
Sec. IV B; however, the value of the effective electron collision time is
decreased tenfold to T,y = 1, such that the corresponding value of
the parallel conductivity in Eq. (32) can be used as a “flux-limited”
approximation for a hot (weakly collisional) core plasma regime. In
addition, the simulations presented in this section employ the self-
consistent boundary condition [see Eq. (15)] at the inner radial
boundary and make use of the fourth-order centered-difference discre-
tization of the Vlasov equation with WENO-like limiter modifica-
tions"* as a demonstration of a higher-order capability.

To illustrate the numerical pollution issue, the results of
COGENT simulations including (as described in Sec. II[ A) or omit-
ting the pollution error corrections are presented in Fig. 8. Recall that
the pollution is related to truncation errors from 1D poloidal re-
mapping of field-aligned grids. Therefore, two cases of the poloidal
grid resolution, i.e., “high” Ny = 512 and “low” Ny = 256, are consid-
ered here. Other grid resolution parameters are given by
(N;, Ny, Ny, ,N,) = (48,8,32,24). No pronounced difference is
observed during the linear stage [see Fig. 8(a)], whether the numerical
correction is included or not. This result can be explained by the fact
that the linear stage of the ITG instability is primarily determined by
the “parallel” quasi-adiabatic response, which is set by the dominant

(@) Linear stage
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term in Eq. (18), ie, V - (bjj) ~ 0. However, substantially degraded
numerical convergence in the absence of the pollution error correc-
tions is evident already during an early nonlinear stage, where the sub-
dominant “radial” terms play an important role [see Fig. 8(b)]. More
detailed analysis of the convergence properties is presented in Fig. 9,
illustrating the outer midplane radial line-out of the potential during
the nonlinear stage. The small quantitative difference between the
high- and low-resolution cases observed in the presence of the pollu-
tion error corrections can be attributed to exponential separation of
close phase-space trajectories for the case of a physically unstable sys-
tem. Indeed, changing the diagnostic time instance used for the low-
resolution case by only 5% brings the results much closer to the high-
resolution case. In contrast, if the pollution error corrections are not
included, the low-resolution case yields a qualitatively spurious result.

V. ION TURBULENCE SIMULATIONS IN A SINGLE-NULL
GEOMETRY

The full-F gyrokinetic equation [Eq. (1)] coupled to the hybrid
gyrokinetic ion-fluid electron vorticity model for electrostatic potential
variations [Eq. (18)] is used here to perform ion-scale turbulence sim-
ulations in a single-null geometry. For simplification purposes,
ion-jon collisions are neglected, and a model single-null magnetic
geometry is considered. The axisymmetric single-null geometry used
in this work corresponds to the following model flux function:

W(R,Z) = Ycore(R, Z) — Weore(Ro, 0) + P (R, Z) — ¥ (Ry, 0).
(36)

Here, R and Z are the cylindrical coordinates, ¥ core(R, Z) is the flux
function corresponding to a toroidal annulus geometry with concen-
tric flux surfaces

Nonlinear stage
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0.14 040 Z(M
||

(b)
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FIG. 8. lllustration of the numerical pollution issue for the full-F simulations of the ITG instability with the canonical Maxwellian initialization and a uniform parallel conductivity
corresponding to 7wy = 1. The simulations with the pollution-error corrections included (designated by the “fix-ON”" label) and not included (designated by the “fix-OFF”
label) are performed for the cases of Ny = 256 and Ny = 512. Shown are the potential variations, e®/Te, at the linear stage corresponding to t = 11.34Ry / V7o [frame (a)],
and at the early nonlinear stage corresponding to t = 18.9Ry/ Vo [frame (b)]. Notice the spurious numerical solution obtained in the simulations where the pollution error cor-
rections are not included and Ny = 256 [lower right panel in frame (b)].
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FIG. 9. Radial lineout of the electrostatic potential variations at the early nonlinear
stage (t = 18.9Ry/ Vo) corresponding to Ny = 512 with “fix-ON” (blue triangles),
Ny = 256 with “fix-ON” (green diamonds), Ny = 512 with “fix-OFF” (red circles),
and Ny = 256 with “fix-OFF” (black squares). In addition, the radial potential profile
for the case of Ny = 512 with “fix-ON” is shown at the slightly earlier time instance
corresponding to t = 17.95R, / V7o (solid purple curve).

272

Ia”"L _
Yeore(R, Z) = 2q1R(()) log [qoaz +q <R2 + ZZ/L(Z,)}, (37)

and W (R, Z) is an ad hoc correction to generate a magnetic separatrix
near the minor radius flux surface, r = a, given by

=272
¥(R,Z2) :%log (0.5\/R2+22+a1> (8)
Xexp [7(1722 +ZZ)/E§].

Here, R = (R — R())/L()7 Z = (Z + Zshift)/L07 R() = 161’117
Zanifp = 2.0m, Ly = 1.0m, I = RBy = —3.5Tm, a=0.6, go = 1.0,
@1 =2.78,a:=02,a, =0.1, and a3 = 1.1. The corresponding
local value of the magnetic safety factor at the outer midplane mea-
sured by gioc = (By/Bo)((R — Ro)/R) exhibits nearly linear growth
from 3.4 to 4.6 across the radial extent of the simulation domain
2.17m < R < 2.34m, and the characteristic shear value is given by
s~ 1.2. Details of the grid-generation in a reference poloidal plane
will be reported in our future publications, while, here, we only men-
tion that the mesh is locally orthogonal everywhere excluding regions
near the block boundaries (see Fig. 10). This construction avoids
extremely small poloidal cell size, which occurs near the block bound-
aries containing the X-point if a fully locally orthogonal grid is
used.”***® For an explicit time integration scheme, such small cells
can significantly restrict a stable time step determined by the Courant
constraint.

The results of COGENT simulations for the case of a singly
charged, Z; = 1, deuterium, m; = 2my, ion species are demonstrated in
Figs. 11-14. The simulation model supports both the ITG and resistive
(drift and ballooning) modes, and the present illustrative studies adopt
the uniform parallel conductivity [Eq. (32)] corresponding to
Ty, = 0.37. Here, wy . = +/Te/m./(qRy) and we take g = 4.
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FIG. 10. A coarse version of the flux-aligned mesh in the reference poloidal plane.

To elucidate the structure of the ion scale turbulence in the presence of
the X-point, we first consider the canonical Maxwellian initialization
in Egs. (30) and (31), which mitigates the development of large axi-
symmetric variations in the electrostatic potential. The corresponding
initial density and temperature profiles are presented in Fig. 11, and
the initial value of the electrostatic potential is set to zero. To facilitate
the development of instabilities, we introduce density perturbation

16
ﬁ 14
=
o
Q 1.2
g Tcan
% 1 L M oy
ey Ncan
g Nloc
= 08 r _
E Tloc
0.6 I 1 1 I
-12 -8 -4 0 4

R-Rsep (cm)

FIG. 11. Radial lineout of the initial plasma profiles at the outer midplane. Shown
are the radial profiles for density (red diamonds) and temperature (blue circles)
used for the simulations with the canonical Maxwellian initialization, and the radial
profiles for density (gray triangles) and temperature (green squares) used for the
simulations with the local Maxwellian initialization.
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FIG. 12. Electrostatic potential variations, e®/T,, obtained in full-F simulations of
the ion turbulence with the canonical Maxwellian initialization corresponding to
To = 7 keV. A periodic toroidal wedge of A¢ = 27/16 is considered, and the uni-
form value of the parallel electron conductivity corresponds to Tewy e = 0.37. The
time instance for the data shown is given by t = 89Ry / Vro.

with an amplitude of 0.3% and toroidal and poloidal harmonic num-
bers of n=16 and m = 64, respectively. The electron temperature is
taken to be consistent with the characteristic value of the ion tempera-
ture, T, = Ty = 7keV. Zero radial derivatives of the electrostatic
potential are adopted as boundary conditions at the inner (core) and
outer (SOL) radial boundaries. A periodic toroidal wedge with A¢ =
27/16 is considered and a single toroidal block is used. The grid reso-
lution in the poloidal plane is specified by [Ny = 36, Ny = 512],
[Ny =16, Ny = 544], and [Ny = 16, Ny = 32], in the core, SOL,
and private-flux regions, respectively. The number of cells in the other
phase-space directions is [Ny =4,N, =32, N, =24], and the
velocity space extent is given by —4.9Vr < v <4.9Vye and

ARTICLE scitation.org/journal/php

by the Courant constraint for the advection operator in Eq. (1) and
corresponds to At = 0.01Ry/Vro. The simulation uses 1344 Haswell
cores of the NERSC Cori cluster’” and takes 3s of wall clock time per
step.

The electrostatic potential variations during the nonlinear stage
are shown in Fig. 12. Although most of the large-amplitude axisym-
metric perturbations are suppressed due to the canonical Maxwellian
initialization, a noticeable level of long-wavelength poloidal variations,
nevertheless, remains (as seen at the inboard plane) due to poloidal
variations in the initial ion density profile (see Sec. IV B for details).
The short-wavelength perturbations are, however, concentrated at the
outboard plane consistent with the ballooning character of the ion
turbulence. Furthermore, a pronounced stabilization of the electro-
static perturbation is observed in the X-point region due to the
presence of enhanced magnetic shear.

The effects of self-consistent axisymmetric electric fields charac-
teristic of a tokamak edge are addressed in the simulations illustrated
in Figs. 13 and 14 for the case where a local Maxwellian initialization
is used (see I'ig. 11 for the corresponding plasma profiles). More realis-
tic values of the ion and electron temperatures are considered,
Ty = T, = 1.75keV, and the effective electron collisional time in
Eq. (32) is maintained at the same value of 7, . = 0.37. The consis-
tent boundary condition in Eq. (15) is adopted at the inner (core)
radial boundary, while the outer (SOL) radial boundary assumes a
zero Neumann condition for the potential. A periodic toroidal wedge
of A¢p = 27/8 is considered, and other simulation parameters includ-
ing the grid resolution, velocity domain extent, and the initial density
perturbation are the same as those used in the simulations with the
canonical Maxwellian initialization. Figure 13 shows large-amplitude
axisymmetric transient oscillations in the electrostatic potential, fol-
lowed by the formation of a quasi-stationary equilibrium state with a
large radial electric field. The frequency of the oscillations is found to
be in a good agreement with the corresponding theoretical estimate
for the geodesic acoustic mode (GAM) frequency'***

7 2T; 46 + 32y + 8%*
2 ~ i (
o= (7) 2 1+

; (39)

0 < u < 10.9TyRy /I, where Vo = \/To/m;. The time step is limited (7 +47)° ¢
e®/T (a) ed/T, (b) (c)
4 8 0 26 - T;(keV) ed/T,, 0.4
0.4 22 | 0
0.4
0.8 18 |
0.8
1.2 L 14 | 12
Tcam
_1.6 L 1 1 1 1 _1.6
0 20 40 60 12 8 4 0 4

Time (Ry/Vro) R — Ryep(cm)

FIG. 13. Full-F simulations of the ion turbulence with the local Maxwellian initialization corresponding to To = 1.75keV. A periodic toroidal wedge of A¢p = 27/8 is consid-
ered, and the uniform value of the parallel electron conductivity corresponds to 74y = 0.37. Shown are (a) the electrostatic potential variations, e®/ T, at t = 133Ry/Vro;
(b) the time history of the electrostatic potential measured at the outboard midplane at R.., — R = 6.2cm; and (c) the outboard midplane radial profiles of the ion temperature
(solid black curve) and electrostatic potential (solid blue curve) at t = 133Ry/Vro. Additionally, frame (b) illustrates the period of the GAM oscillations, Tgam = 27t/ wGam,
where wgay is given in Eq. (39), and frame (c) shows the initial radial ion temperature profile (dashed black curve).

Phys. Plasmas 28, 032508 (2021); doi: 10.1063/5.0039169
Published under license by AIP Publishing

28, 032508-14


https://scitation.org/journal/php

Physics of Plasmas

ARTICLE scitation.org/journal/php

(a) Self-consistent (®) is retained

(@ —(®))/eT,

0.05 .0.5

0.00
0.0
aos i

-0.5

0.8..10..12. 14..16..18.20. 22

0.8..1.0..142..14...16..18..2.0..2.2..2.4

4

zm)

.0.5

0.00 I
0.0
ol

-0.5

0.04

0.8..1.0..4.2..14..1.6..18..2.0 2 0.8..10..12..14..16..18..2.0..2.2..2.4

R (m) R (m)

R (m) R (m)

(b) Self-consistent (@) is suppressed

(@ —(®))/eT,

Z(m)

Mos

0.01 .
0.
ol

0.08

0.8...1.0..4

14..16..18.2.0..22..24

0.8..10.12. 14 16..18.2.0..22

4

-0.00 I
© oo
il

R (m) R(m)

Z(m)

0.09 .0.5

-0.5

0820042 44 16..18..2.0..2.2..2
R (m)

08..10..12..14..16..18.20..2 2.4.
R (m)

FIG. 14. Effects of the self-consistent zonal component of the electrostatic potential on the ion turbulence in a single-null geometry. The non-zonal component of the electro-
static potential, e® /T, = e(® — (®))/Te, is shown for the cases corresponding to (a) the standard simulation model in Egs. (1) and (18), and (b) the simulations, where the
flux-surface averaged component, (®), is artificially suppressed by subtracting it from the potential distribution, @, after each time step. The time instances illustrated in the fig-
ure are measured in the units of Ry/Vro. The simulation parameters correspond to those used in Fig. 13.

where y = Z;T,/T;. Taking q=q=4,T; =Ty, and y = 1, we
obtain wgay = 2.4Vro/Ry. Intermittent behavior of the ion turbu-
lence, where the effective energy of the non-zonal component of the
potential perturbation e® /T, = e(® — (®))/T, appears to oscillate
in time, is observed in the quasi-stationary state [see Fig. 14(a)]. Such a
trend is qualitatively similar to a well-known limit-cycle oscillation
phenomenon; however, a more detailed analysis is required to relate
the present simulation results to the existing theories’”*’ and experi-
mental observations,”’ and will be included in later work. Here, the
role of self-consistent axisymmetric potential variations is elucidated
by comparing the simulations illustrated in Fig. 14(a) with those where
the flux-surface averaged (zonal) component, (®), is artificially sup-
pressed by subtracting it from the potential distribution, @, after each
time step. In the absence of a large background radial electric field
(and the corresponding E x B flow shear), stronger and steady turbu-
lence is observed [see Fig. 14(b)], thereby confirming the important
role of the self-consistent axisymmetric electric fields in the regulation
of edge plasma transport.

VI. CONCLUSIONS

The locally field-aligned 5D full-F finite-volume code COGENT
is developed for simulations of edge plasmas in divertor geometries.

The geometrical complexity related to the presence of strong magnetic
shear and a magnetic X-point is handled by making use of a multi-
block decomposition, in which logically distinct blocks are mapped
from rectangular computational domains and are aligned with mag-
netic field lines to accommodate strong anisotropy induced by the
magnetic field. A non-matching grid interface is allowed at toroidal
block boundaries, and a high-order interpolation is used to provide
inter-block coupling. The multiblock approach together with the use
of a toroidal angle as a field-aligned coordinate can minimize the twist
and shear of control volumes and is demonstrated to facilitate numeri-
cal simulations of plasma microturbulence in a divertor (single-null)
geometry.

The COGENT code is applied to the modeling of ion-scale
microturbulence in a single-null geometry. The simulation model sol-
ves the long-wavelength limit of the full-F gyrokinetic equation for ion
species coupled to the quasi-neutrality (vorticity) equation for electro-
static potential variations, where an isothermal fluid approximation is
adopted for an electron response. The use of the reduced vorticity
model eliminates fast time scales associated with a kinetic electron
response (e.g., electrostatic Alfvén wave) and provides a self-consistent
description of electrostatic potential perturbations in a simulation
domain that spans both open and closed field lines. Note that the stan-
dard gyrokinetic Poisson model with an adiabatic electron response
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that is often used for the core plasma modeling cannot be straightfor-
wardly extended across the separatrix. Moreover, the vorticity formula-
tion for electrostatic potential perturbations used in COGENT explicitly
includes the Reynolds stress term, which can, therefore, be turned on or
off in order to assess its influence on the L-H transition process (e.g., as
done in Ref. 25). This is in contrast to the gyrokinetic Vlasov—Poisson
model where the effect of Reynolds stress forces is implicit, i.e., it mani-
fests itself via the evolution of plasma species densities.

The vorticity model is verified in this work by (a) recovering the
results of ITG simulations performed with the gyrokinetic-Poisson
model in a toroidal annular geometry, and (b) recovering the analytical
dispersion relation for the resistive drift instability in a slab geometry.
A general discretization of the vorticity model is found to be prone to
enhanced numerical pollution related to a highly anisotropic plasma
conductivity. The pollution issue is found to strongly affect the nonlin-
ear stage of ITG simulations, and a method to minimize the pollution
effect is developed and demonstrated to work in COGENT simula-
tions. The numerical issue is not related to the kinetic response of the
ion species and is, therefore, of importance to a number of the stan-
dard computation fluid models that employ the vorticity equation.
Following the aforementioned verification studies, the vorticity model
is applied to cross-separatrix simulations. Magnetic-shear stabilization
is observed in the X-point region, and the role of self-consistent axi-
symmetric potential variations is addressed. In particular, an intermit-
tent turbulent behavior, resembling the limit-cycle oscillation
phenomenon, is observed in the presence of the self-consistent axi-
symmetric potential variation, whereas steady and stronger turbulence
appears for the case where the flux-surface average potential compo-
nent is artificially suppressed in the simulations.
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