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ABSTRACT

We present implicit-explicit (IMEX) kinetic simulations of weakly collisional parallel plasma transport in magnetic mirror configurations
using the continuum code COGENT. The numerical scheme employs a Jacobian-free Newton–Krylov method with algebraic multigrid pre-
conditioning to overcome the severe time step limitations imposed by strong mirror forces in fully explicit schemes. Applied to parameters
relevant to the Wisconsin HTS Axisymmetric Mirror experiment, the IMEX approach enables time steps up to 2:5� 104 times larger than
those permitted by explicit methods, resulting in a 2500� speedup in 1D–2V simulations of parallel transport with kinetic ions and
Boltzmann electrons. Additionally, a reduced bounce-averaged model for a square mirror is implemented to support the computationally
intensive fully kinetic simulations. The bounce-averaged formulation is used to evaluate the numerical convergence of the velocity-space dis-
cretization algorithms and to assess the role of the collision model by comparing simulations employing the nonlinear Fokker–Planck and
the simplified Lenard–Bernstein–Dougherty collision operators.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0293154

I. INTRODUCTION

In the past several decades, magnetic fusion research has been
heavily focused on large-scale toroidal confinement devices like toka-
maks1 and stellarators.2 However, recent technological advances
including the development of high-temperature superconducting
(HTS) magnets appropriate for fusion applications,3 together with
improvements in the theoretical understanding of magnetized plasma
stability and transport, have enabled researchers to explore and experi-
ment with reemerging alternative fusion concepts such as magnetic
mirrors.4–7 Being more compact and thereby less expensive, magnetic
mirrors attract particular attention from academia and private invest-
ors. A notable example of a modern mirror experiment is the
Wisconsin HTS Axisymmetric Mirror4 (WHAM), which explores the
benefits of strong magnetic fields with high mirror ratio for the classi-
cal weakly collisional confinement approach.

The success of alternative magnetized fusion concepts, such as
magnetic mirrors, relies heavily on advanced modeling capabilities
that can provide scientific insights and assess scalability to reactor
parameters. This motivates the adaptation of advanced gyrokinetic
computational tools, which have been extensively developed over the

past several decades for the mainstream tokamak approach, to mirror
applications. Although modeling certain mirror-specific high-fre-
quency processes, e.g., the drift-cyclotron loss-cone instability, requires
resolving cyclotron ion motion,8 the analysis of lower-frequency pro-
cesses with x � xci, such as collisional transport and gradient-driven
drift modes, can be facilitated by employing the gyro-averaging for-
malism. Here, xci denotes the ion cyclotron frequency. A recent study
by Francisquez et al.9 outlines the challenges faced by continuum gyro-
kinetic codes in modeling HTS mirrors and demonstrates the applica-
tion of the gyrokinetic code Gkeyll to simulate 1D-2V parallel
transport in mirror geometry for parameters characteristic of the
WHAM experiment.4 We also note 2D–2V gyrokinetic simulations,10

performed with the particle-in-cell GTC-X code, that investigate the
penetration of divertor electrostatic biasing in the scrape-off layer of a
field-reversed configuration, which shares linear-geometry features
with magnetic mirrors.

Although the presence of an open-field line region in a tokamak
edge implies a certain level of geometrical similarity with a magnetic
mirror, the physics parameters can, nevertheless, be quite different.
Classical mirror plasmas are significantly less collisional than the edge
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of a tokamak. For instance, for the parameters characteristic of a mid-
size tokamak (e.g., DIII-D) edge,11 ni � 1019 m�3, Ti � 100 eV,
Lk � 6m, mi ¼ 2mp, the Knudson number, measuring the ratio of
the ion–ion mean free path, kii, to a length scale in variation of back-
ground plasma profiles along the magnetic field, Lk, is given by
KDIII�D � 3. Here, ni is the ion density, Ti is the ion temperature, and
mi and mp denote the ion and proton mass, respectively. In contrast,
the WHAM mirror parameters, ni � 3� 1019 m�3, Ti � 8 keV,
Lk � 2m, mi ¼ 2mp, correspond to KWHAM � 1:5� 104. This means
that the ion transit time is four orders of magnitude shorter than the
ion–ion collision time, thereby making the problem of collisional mir-
ror transport intrinsically multiscale in time integration. It is also
important to note that the presence of loss-cone regions and high-
energy beams in the velocity phase space requires the use of full-F
computational methods that include background plasma evolution.

The temporally multiscale nature of a weakly collisional mir-
ror transport can be effectively handled by making use of the
bounce-average formulation that averages over the fast ion transit
time.4,5,12 Although this approach can significantly facilitate
numerical simulations of plasma dynamics inside the mirror, it
lacks the ability to efficiently describe the region outside the trap
and the coupling of the confined mirror region to plasma-facing
components. Moreover, the standard bounce-averaged formulation
assumes a single trapped region—an assumption that is violated in
tandem magnetic mirrors13,14 and even in simple mirrors with
sloshing ion distributions,15 where electrons can become trapped
in local potential peaks near ion beam turning points. Therefore,
first-principles gyrokinetic simulations are required for high-
fidelity, integrated modeling.

It is interesting to note that the ion transit time, sk;i � 50, and
the electron transit time, sk;e � 1, at the tokamak edge are both much
shorter than the characteristic time of the anomalous radial plasma
transport, stransp � 1ms. Furthermore, full-F simulations are required
to describe substantial deviations of a plasma distribution function
from a local Maxwellian. Nevertheless, modern HPC gyrokinetic codes
are capable of performing millisecond full-F simulations of 2D-2V and
even 3D-2V plasma transport using straightforward explicit time inte-
gration schemes.16 In contrast to tokamaks, mirrors are distinguished
by the presence of a strong mirror force, FrB ¼ �lrB, which can
impose a stringent CFL limit on the size of a stable time step for
explicit time integration: DtCFLrB < miDvk=ðlrBÞ. Here, Dvk is the cell
size in the parallel velocity direction, l ¼ miv2?=ð2BÞ is the magnetic
moment, and for a typical WHAM simulation, DtrB � 0:1 ns. As a
result, explicit time integration of a weakly collisional mirror plasma
on the ion–ion collisional timescale (tens of milliseconds) becomes
prohibitively expensive. Recent explicit numerical simulations of 1D-
2V collisional transport performed with the Gkeyll code required
approximately 74 h of wall time on 288 cores to simulate 72ls of
plasma dynamics involving kinetic ions and Boltzmann electrons.9

Simulations with kinetic electrons, which are also considered in that
work, are significantly more expensive due to stiff electron time scales.
Although a substantial, 20�, speedup was demonstrated by introduc-
ing ad hoc softening of the rB force, explicit simulations spanning
tens of milliseconds remain prohibitively costly for explicit methods.

Here, the feasibility of multiscale collisional mirror transport
simulations is explored by making use of the implicit-explicit (IMEX)
time integration framework implemented in the continuum

gyrokinetic code COGENT, originally developed for tokamak edge
modeling.17 The IMEX time integration algorithm used in
COGENT18 is based on semi-implicit additive Runge–Kutta (ARK)
methods19 and can provide consistent high-order time integration,
including implicit treatment of selected stiff terms. It employs the
Jacobian-free Newton-Krylov (JFNK) approach20 to handle nonli-
nearities and utilizes preconditioning to improve convergence proper-
ties. Declaring the gyrokinetic Vlasov term as implicit enables stable
time integration with stepping over the stiff time scales including
advection, i.e., acceleration, in the parallel velocity direction due to
strong mirror force and the parallel streaming. On the other hand,
efficient preconditioning of the Vlasov operator (even in a simple
case with a fixed advection velocity) requires solving a linear system
in the full phase space dimension with a nonsymmetric and indefinite
coefficient matrix. COGENT solves this linear system using the
Approximate Ideal Restriction (AIR) option in the BoomerAMG
algebraic multigrid solver contained in the Hypre linear solver
library.21 The use of multigrid methods to solve nonsymmetric indefi-
nite systems has historically been highly problematic, but the recent
development of the AIR approach,22,23 including several variants,
provides a way to extend the benefits of multigrid algorithms beyond
the symmetric, positive-definite systems for which they are more
commonly used. To further enhance the efficiency of the implicit
Vlasov solver, COGENT allows the preconditioner to be defined
using a lower-order discretization (first-order upwind, UW1) than
that used for the Vlasov operator itself (fifth-order upwind, UW5).
The low-order preconditioner yields a sparser matrix, for which
robust AMG solver performance is observed, while also providing
good efficiency even for relatively large time steps.

The IMEX COGENT time integration scheme is applied to 1D-
2V simulations of parallel collisional transport using parameters
characteristic of the WHAM experiment. The simulations employ
the kinetic Vlasov equation for the ion species coupled with the non-
linear ion–ion Fokker-Planck collisions and a high-energy beam
source. A Boltzmann electron model is used to describe self-
consistent electrostatic potential variations. The implicit simulations
enable time steps up to 2:5� 104 larger than the CFL-limited time
step and demonstrate speedups of about 2500� and 1800� com-
pared to the corresponding explicit COGENT simulations and previ-
ously reported explicit Gkeyll simulations with Boltzmann electrons,9

respectively. Additionally, a fully implicit, simplified bounce-averaged
(0D-2V) model for a square mirror (the BASM model) is imple-
mented in COGENT to provide insights into the more computation-
ally expensive 1D-2V simulations. The BASM model is verified by
reproducing analytic results for the Pastukhov problem24,25 and is
used to examine the numerical convergence of the velocity-space dis-
cretization algorithms, which are challenged by the presence of steep
gradients at the loss-cone boundary for a weakly collisional mirror.
The BASM model is also used to assess the role of the ion–ion colli-
sion model by comparing simulations using the Fokker-Planck oper-
ator26 with those using the Lenard–Bernstein–Dougherty (LBD)
model,27–29 which is often employed in full-F gyrokinetic modeling
due to its simplicity.

This paper is organized as follows: the results of numerical simu-
lations obtained using the simplified bounce-averaged model and the
fully kinetic model are presented in Secs. II and III, respectively, and
Sec. IV provides the conclusions.
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II. BOUNCE-AVERAGED (0D-2V) SIMULATIONS
A. Simulation model

The bounce-averaged square-mirror (BASM) model describes a
weakly collisional plasma confined in a square magnetic mirror. Under
these assumptions, the kinetic distribution function for a plasma spe-
cies can be considered uniform along the magnetic field, f ¼ f ðvk; lÞ,
and the governing kinetic equation takes the following form:

@f
@t

¼ C f½ � þ Csrc f½ � � Csink f½ �: (1)

Here, C[f] is the collision operator, Csrc represents a source term, e.g.,
high-energy beams, and

Csink f½ � ¼ ðvk=LkÞf ; (2)

describes prompt parallel losses from the loss-cone region, e.g., due to
collisional scattering. Here, m, vk, and l ¼ mv2?=ð2BÞ denote the par-
ticle mass, parallel velocity, and magnetic moment, respectively; Lk is
the trap length, and the weakly collisional assumption implies that
k � Lk, where k is the collisional mean free path. The sink term in Eq.
(2) is applied to the velocity-space region outside the loss-cone bound-
ary given by

mv2k=2 � lB0 Rm � 1ð Þ þ qUm: (3)

Here, q is the particle charge, B0 is the magnetic field at the mirror cen-
ter, Rm is the mirror ratio, defined as the ratio of the maximum mag-
netic field (at the mirror throat) to the minimum field (at the mirror
center), and Um is the confining electrostatic potential. The boundary
in Eq. (3) cuts through the cells of the ðvk; lÞ velocity grid (see Fig. 1),
and the following numerical implementation of the sink term is
adopted:

Csink
i;j ¼ vk;i

Lk
� fi;j �

dSlossi;j

dvkdl
; (4)

where dSlossi;j denotes the area of a phase-space cell in the loss-cone
region. For the case where the loss-cone boundary intersects a cell

ði; jÞ, a second-order accurate approximation is used to compute dSlossi;j
[see Fig. 1(a)]. For all other cells, dSlossi;j ¼ dvkdl.

The collision models considered in this work for like-species colli-
sions include the nonlinear Fokker-Planck (FP) model described else-
where26 and the reduced Lenard–Bernstein–Dougherty (LBD)
model,29 which is often employed in full-F gyrokinetic modeling due
to its simplicity,

CLBD f½ � ¼ �
@

@vk
vk � Ukð Þf þ T

m
@f
@vk

" #

þ �
@

@l
2lf þ 2

T
B
l
@f
@l

� �
: (5)

Here, the particle number density (n), parallel flow velocity (Uk), and
the temperature (T) moments are defined as

n ¼ 2p
m

ð
fBdvkdl; (6)

Uk ¼ 2p
nm

ð
vkfBdvkdl; (7)

T ¼ 2p
3n

ð
vk � Ukð Þ2 þ 2lB

m

� �
fBdvkdl: (8)

The collision frequency in Eq. (5) is given by

� ¼ 4p1=2nZ4e4

3m1=2T3=2
lnK; (9)

such that the LBD collision model matches the temperature relaxation
rate of the Boltzmann operator.28 Here, Z is the species charge state
and e is the elementary charge. The Coulomb logarithm used for the
LBD and FP models is defined in the present work as

lnK ¼ 23� ln 21=2Z3n1=20 T�3=2
0

� �
; (10)

where n0ðcm�3Þ and T0ðeVÞ are the density and temperature normali-
zation factors used in the simulations, respectively.

FIG. 1. Bounce-averaged (0D-2V) simulations. (a) Schematic of the bounce-averaged square-mirror (BASM) model. The blue curve illustrates the loss-cone boundary for
Um ¼ 0. For the case where the loss-cone boundary intersects a cell ði; jÞ, the shaded area, dSlossi;j , is used in Eq. (4). (b) Collisional losses of the electrostatically confined
electron species for Rm ¼ 32, n ¼ 1019 m�3, and Te ¼ 940 eV. The simulation results for the electron confinement time, sc;e ¼ nejdne=dtj�1, obtained using the FP (blue)
and LBD (orange) e-e collision models are compared with the analytical prediction in Eq. (11). (c) Time history of the electron confinement time obtained using the full nonlinear
FP model and the fixed-background FP model for eUm=Te ¼ 6.
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COGENT employs an implicit-explicit (IMEX) time integration
algorithm18 based on semi-implicit additive Runge–Kutta (ARK)
methods,19 which enables consistent high-order time integration and
allows for the implicit treatment of selected stiff terms. Nonlinearities
are addressed using the Jacobian-free Newton-Krylov (JFNK)
approach,20 with preconditioning applied to enhance convergence
properties. The preconditioning of the stiff collision terms is devel-
oped, assuming that the Rosenbluth potentials for the FP operator and
the distribution function moments (i.e., n, Uk, T) in the LBD model
[see Eq. (5)] remain fixed during a time step update. Under these
assumptions, the collisional operator reduces to a linear advection-
diffusion operator, for which a sparse matrix is assembled, and the
Gauss-Seidel method is used to solve the resulting linear system. To
improve consistency between the preconditioner and the full collision
operator, thereby enhancing overall simulation performance, the same
“fixed-moment” assumption is applied when evaluating the actual col-
lision term in Eq. (1). Namely, although a second-order time integra-
tion scheme is employed, the moments of the distribution function are
updated only once at the end of each time step. While such an approx-
imation reduces the formal time integration accuracy, these effects
might be minimal given that the simulations target long transport
timescales. Finally, a second-order discretization in velocity space is
employed for the FP and LBD collision operators.

B. Verification: Collisional mirror losses

The BASM model is verified by analyzing collisional losses of
electrostatically confined species in a square magnetic mirror for a
weakly collisional case (see Fig. 1). Here, an electron species is consid-
ered due to the relative simplicity of electron-ion collisions, which can
be described using the Lorentz collision model. Electron–electron colli-
sions are modeled with the full nonlinear Fokker-Planck operator.
Good agreement [see Fig. 1(b)] is obtained with the approximate ana-
lytic solution in a weakly collisional regime with Rm � 1 and
Um=eTe � 1, originally derived by Pastukhov24 and later corrected by
Cohen,25

dne
dt

¼ � 4ffiffiffi
p

p ne�e
G Rmð Þ

Te

eUm
exp � eUm

Te

� �
I

Te

eUm

� �
; (11)

where IðxÞ is related to the error function

I xð Þ ¼ 1þ 1
2

pxð Þ1=2e1=x 1� erf x�1=2ð Þ½ �; (12)

and where

G Rmð Þ 	 2Rm þ 1
2Rm

ln 4Rm þ 2ð Þ; (13)

for Rm � 1. The electron collision frequency in Eq. (11) is given by

�e ¼
ffiffiffi
2

p
pne4

m1=2
e T3=2

e

lnK: (14)

For comparison, the electron confinement time, sc;e ¼ nejdne=dtj�1, is
also computed using the LBD model for electron–electron collisions,
which is found to substantially increase particle losses. This result is
consistent with the recent work in Ref. 30, where a method to improve
the LBD model for more accurate loss predictions is proposed.

The simulations illustrated in Fig. 1 use plasma and magnetic
mirror parameters inspired by recent numerical studies of the WHAM
experiment4,9 (see Table I). The electron species is initialized with a
Maxwellian distribution characterized by n0 ¼ 1019 m�3 and
Te ¼ 940 eV. The magnetic mirror ratio is Rm ¼ 32, and the length of
the magnetic trap is Lk ¼ 2m, corresponding to a weakly collisional
regime with �eVTe=Lk ¼ 2:6� 10�3. Here, VTe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Te=me

p
is the

electron thermal velocity, and me is the electron mass. Note that for
the 0D-2V BASM model, the trap length parameter enters the simula-
tion only through the sink term in Eq. (2), where it controls the rate of
prompt particle losses from the loss-cone region. No sources are
included in the simulations, Csrc ¼ 0, and the electron distribution
function evolves according to Eq. (1). The velocity grid resolution is
given by Nvk ¼ 1024 and Nl ¼ 1024, and the velocity-domain extent
corresponds to �5VTe 
 vk 
 5VTe and 0 
 l 
 12T0=B0, where B0

is the magnetic field at the trap center. The time step is set to Dt
¼ 3.3ls, which corresponds to a collisional CFL number of 1:5� 103

for the Fokker-Planck operator. Numerical convergence of the simula-
tion results with respect to the grid resolution, domain extent, and
time step is confirmed.

Figure 1(c) shows the time history of the electron confinement
time. Simulation results obtained using the full nonlinear FP operator
for e-e collisions are compared with those from counterpart simula-
tions, where e-e collisions are modeled as scattering off a fixed
Maxwellian background corresponding to the initial electron distribu-
tion. Following initial agreement over a shorter (collisional) timescale,
the full FP model yields an increasing confinement time compared to
the fixed-background model over a longer (transport) timescale. This
behavior can be explained as follows: particles that are scattered in the
loss-cone region and lost from the trap have significantly higher-than-
average energy for eUm=Te � 1. As the energy-conserving collisions
modeled by the full FP operator thermalize the electron distribution,
its temperature decreases. This leads to improved electrostatic confine-
ment, quantified by eUm=Te, and thus to an increase in the confine-
ment time. We also note small changes in the characteristic electron
collision frequency in Eq. (14) due to the decreasing electron density
and temperature. However, these effects are subdominant compared
to the exponential sensitivity of the confinement time to the electro-
static potential. In contrast, when e-e collisions are modeled as colli-
sions with a fixed Maxwellian background, energy is not conserved,
and the electron temperature remains close to that of the background

TABLE I. Reference parameters used in COGENT simulations.

Parameter Description Value

n0 Initial plasma density 1019 m�3

T0 Initial ion temperature 8.361 keV
Te Electron temperature 940 eV
mi Ion mass 2mp

Rm Mirror ratio 32
Lk Trap length 2m
B0 Magnetic field at the mirror center 0.5 T
Eb Ion beam energy 25 keV
hinj Beam injection angle 45�

Cb Ion beam intensity 2:3� 1015 s�1cm�3
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distribution, i.e., the initial Maxwellian. Additionally, the density in Eq.
(14) corresponds to the background Maxwellian and, therefore,
remains fixed. As a result, a steady-state solution for sc;e is observed. It
is instructive to note that the approximate analytical solution in Eq.
(11) assumes collisions with a fixed Maxwellian background. In this
context, Fig. 1(b) presents numerical simulation results obtained using
the fixed-background model for both the FP and LBD e-e collision
operators. In the latter case, the fixed-background model assumes con-
stant density and temperature in Eqs. (5) and (9) corresponding to the
initial Maxwellian.

C. High-energy beam relaxation

The BASM model is used here to provide insight into numerical
simulations of high-energy beam fueling of a magnetic mirror system.
In particular, we use it to examine the numerical convergence of the
velocity-space discretization algorithms, which are challenged by the
presence of steep gradients at the loss-cone boundary for a weakly col-
lisional mirror. For simplicity, only a deuterium background distribu-
tion and beam ions are included in the simulation, and we omit the
effects of ion-electron (cooling) collisions and self-consistent electric
fields. As an illustrative example, we consider physical parameters
inspired by recent numerical studies of the WHAM experiment:4,9

B0 ¼ 0:5 T, Rm ¼ 32, Lk ¼ 2m, n0 ¼ 1019 m�3, T0 ¼ 8:361 keV,
mi ¼ 2mp, Eb ¼ 25 keV, and hinj ¼ 45�. Here, n0 and T0 correspond
to the ion density and temperature of the initial Maxwellian back-
ground distribution, respectively, Eb is the energy of beam ions, and
hinj is the beam injection angle. Beam fueling is described by the source
term on the right-hand side of Eq. (1), where we arbitrarily adopt the
following shape function:

Csrc ¼ C0 exp �
ðvk � Vb;kÞ2 þ

ffiffiffiffiffiffiffiffiffiffi
2lB0

mi

r
� Vb;?

 !2

2Tb=mb

0BB@
1CCA

þ C0 exp �
ðvk þ Vb;kÞ2 þ

ffiffiffiffiffiffiffiffiffiffi
2lB0

mi

r
� Vb;?

 !2

2Tb=mb

0BB@
1CCA
: (15)

Here, Vb;k ¼ Vb;? ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
Eb=mi

p
, Tb ¼ 200 eV, and the normalization

constant C0 is determined such that the beam intensity,
Cb ¼ ð2p=miÞ

Ð
CsrcBdvkdl ¼ 2:3� 1015 s�1cm�3, corresponds to a

plasma density of approximately 3� 1019 m�3 after 10ms consistent
with the analysis in Ref. 4.

Figures 2 and 3 show the results of numerical simulations
obtained using the full nonlinear Fokker-Planck (FP) operator and the
model LBD operator to describe ion–ion collisions. A nearly steady-
state particle density is reached after approximately 1000ms [see
Fig. 3(a)], as beam fueling is balanced by collisional losses, i.e., scatter-
ing into the loss-cone region. A pronounced difference in the phase-
space solution is evident between the collisional models, especially dur-
ing the evolution stage [c.f., Figs. 2(b) and 2(e)], emphasizing the
importance of using a detailed collision operator.

For the simulations illustrated in Figs. 2 and 3, the velocity grid
resolution is given by ðNvk ;NlÞ ¼ ð512; 768Þ, and the velocity-
domain extent corresponds to �5 
 bvk 
 5 and 0 
 bl 
 54, wherebvk ¼ vk=VT0, bl ¼ 4B0l=T0, and VT0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0=mi

p
. Numerical con-

vergence studies with respect to velocity grid resolution are shown in
Fig. 4 for the case of the Fokker-Planck collisional model. Figure 4(a)

FIG. 2. High-energy beam relaxation obtained from 0D–2V BASM model simulations. The numerical results using the Fokker–Planck collision model [frames (a)–(c)] are com-
pared with corresponding simulations using the LBD collision model [frames (d)–(f)]. Plotted is the normalized ion distribution function,bf i ¼ ð2T0=miÞ3=2pfi=n0.
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illustrates a lineout of the normalized distribution function, bf i
¼ ð2T0=miÞ3=2pfi=n0, along the vk-coordinate, obtained from simula-
tions using a coarse velocity grid Nvk ¼ 128 and Nl ¼ 192 and its suc-
cessful refinements by factors of 2, 4, 8, and 16 in both velocity
dimensions. Although convergence of the numerical solution is appar-
ent, the comparison of values at vk ¼ 0 suggests that the convergence
is only first-order, despite the use of second-order discretization in the
numerical implementation of Eq. (1). First-order convergence is sup-
ported by a more rigorous analysis using the Richardson extrapolation
method. Figure 4(b) plots the L2 norm of the difference between the
numerical solution bf i obtained at a given grid spacing, h, and that at
half the spacing, h=2, i.e., Lerr2 ¼ jjbf h � bf h=2jj.

The degraded convergence can be explained as follows. For a
weakly collisional regime, �iiLk=VT � 1, the solution to Eq. (1) is dis-
tinguished by the presence of a narrow-layer region at the loss-cone
boundary that mediates the transition between the confined and loss-
cone regions. Here, VT is the characteristic thermal velocity. The char-
acteristic width of this region, dv, is determined from the balance
between the sink term (prompt losses) and the collisional diffusion,
Cii½ f � � Csink½ f �, and is given by

dv � VT�iiLkð Þ1=2: (16)

If the narrow layer in Eq. (16) is not sufficiently resolved by the com-
putational grid, degradation in numerical convergence properties can
be expected. In the asymptotic limit, a weakly collisional solution can
be obtained by imposing a zero Dirichlet boundary condition directly
at the loss-cone boundary. However, not resolving the transition length
effectively corresponds to imposing a zero boundary condition at the
nearest cell center below the loss-cone boundary, rather than at its
actual location. A cell-size error in the boundary condition specifica-
tion can degrade convergence to first-order accuracy. It is instructive
to note that embedded boundary methods31,32 can provide high-order
accurate solutions for weakly collisional formulations that impose a
zero Dirichlet boundary condition at a loss-cone boundary intersecting
the grid cells.

For the numerical solution in Fig. 2(b), which is used for the con-
vergence studies in Fig. 4, we have T ¼ 21 keV, ni ¼ 12� 1019 m�3,
and dv=VT � 6:3� 10�3, where Eq. (9) is used to estimate the ion–
ion collision frequency in Eq. (16). At the same time, our most refined
grid ðNvk ;NlÞ ¼ ð2048; 3072Þ with Dvk=VT ¼ 3:0� 10�3 and
Dv?=VT 	 5:0� 10�3 does not sufficiently resolve the transition
layer; therefore, degraded convergence may be expected. Here,
VT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2T=mi

p
, and we used Dl ¼ mv?Dv=B0 	 mVTDv=

ffiffiffiffiffiffi
Rm

p
B0

at the loss-cone boundary. To further investigate this issue, we con-
sider additional simulations in which the sink term is arbitrarily
reduced by factors of 10 and 100 [see Fig. 4(b)]. For instance, this can
be achieved by increasing the trap length, which leads to a higher colli-
sionality parameter, �iiLk=VT , and a wider transition layer, dv.
Second-order numerical convergence is readily observed in the case
with the highest collisionality. For the medium-collisionality case, the
convergence improves from first- to second-order as the grid resolu-
tion increases, and the transition layer becomes resolved.

III. FULLY KINETIC (1D-2V) SIMULATIONS

In this section, we investigate the performance of our implicit
numerical algorithms for the modeling of parallel plasma transport in
a weakly collisional magnetic mirror. As an illustrative example, we
consider the problem of high-energy beam fueling of a WHAMmirror
system [see Sec. II C] that now includes a magnetic field profile, ion
parallel streaming, and a self-consistent parallel electric field deter-
mined from the Boltzmann electron model.

A. Simulation model

Assuming the paraxial approximation with Bz � Br and
rk 	 @=@z, the time evolution of the ion distribution function,
fiðz; vk; lÞ, within a magnetic flux tube is governed by

@fi
@t

þ vk
@fi
@z

þ @

@vk

qi
mi

Ez � l
mi

@Bz

@z

� �
fi

� �
¼ Cii fi½ � þ Csrc; (17)

where Ez is the parallel electric field, and qi andmi denote the ion spe-
cies charge and mass, respectively. In deriving Eq. (17), we used the
fact that the Jacobian of the transformation to ðvk; lÞ velocity coordi-
nates, Jv ¼ ð2p=miÞB, cancels the spatially varying part of the Jacobian
associated with a magnetic-flux-surface coordinate, Jx / 1=B. As a
result, their product reduces to a constant factor, JvJx / 2p=mi. The
full nonlinear Fokker-Planck collision model is used for like-species
ion–ion collisions, Cii½ f �. Collisions with electrons are not included in
the present work, for simplicity. The electric field is obtained from the
quasi-neutrality condition coupled to the Boltzmann electron model,

FIG. 4. Numerical convergence of the 0D-2V BASM model solution at 84 ms.
Shown are (a) the vk-lineouts extracted from the normalized ion distribution func-
tion,bf i ¼ ð2T0=miÞ3=2pfi=n0, for bl ¼ 6; and (b) Richardson extrapolation analysis
of the numerical convergence for different values of the trap length, Lk. Grid levels
m ¼ ð2; 3; 4; 5Þ correspond to the successful refinements of the coarse grid
ðNvk ;NlÞ ¼ ð128; 192Þ by factors of 2, 4, 8, and 16 in both velocity dimensions,
respectively.

FIG. 3. Comparison of the Fokker-Planck (solid curves) and LBD (dashed curves)
collisional models in the 0D-2V BASM-model simulations. Shown are (a) time his-
tory of the ion density and (b) the vk-lineouts extracted from the normalized ion dis-
tribution function,bf i ¼ ð2T0=miÞ3=2pfi=n0, for bl ¼ 1 and bl ¼ 6, at 1000 ms.
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Ez ¼ � Te

eni

@ni
@z

; (18)

where ni ¼ ð2p=miÞ
Ð
dvkdlfiB is the ion density and Te is a uniform

electron temperature.
An analytical approximation to the WHAM magnetic geometry

(see Fig. 5) follows the approach in Ref. 9,

BzðzÞ ¼
�B
pc

1þ Z � Zm

c

� �2
" #�1

þ 1þ Z þ Zm

c

� �2
" #�1

8<:
9=;;

(19)

where �B ¼ 6:5 T, c ¼ 0:124, and Zm ¼ 0:98m. The simulation
domain extent is given by �1:5m < z < 1:5m, and a particle-
absorbing boundary condition is imposed in the z-direction. The
source function in Eq. (17) follows our choice in Eq. (15), where a spa-
tially uniform normalization constant, C0, is now replaced with a spa-
tially varying function C0 expð�z2=L2bÞ, where Lb ¼ 0:2m. The
normalization constant C0 is determined from the condition that it
matches the particle production rate used in the BASM simulations in
Sec. IIC, i.e., Cb ¼

Ð
JvJxCsrcdvkdldz=

Ð
Jxdz ¼ 2:3� 1015 s�1cm�3.

Here, the integral along the z-coordinate is evaluated between the mir-
ror throat points. The deuterium ion species, mi ¼ 2mp, is initialized
with a Maxwellian distribution, which has a uniform temperature
T0 ¼ 8:361 keV and a nearly flat-top density profile with a steep
decrease near the magnetic plugs, niðt ¼ 0Þ ¼ �Cn0½tanhððz0 � zÞ=�LÞ
þtanhððz0 þ zÞ=�LÞ�, where n0 ¼ 1019 m�3, z0 ¼ 0:75m, �L ¼ 0:1m,
and the normalization coefficient �C ¼ 0:52 is chosen to match the ini-
tial number of particles in the BASM simulations in Sec. IIC.
Following the simulations in Ref. 9, we set Te ¼ 940 eV.

Due to the substantial computational cost of the numerical simu-
lations, we run them only for 20ms, which roughly corresponds to the
duration of the WHAM beam source. The results from the 0D-2V
BASM model show that the phase-space solution is much more com-
pact in velocity space at t ¼ 20ms compared to the final steady-state
solution [cf. Figs. 2(a) and 2(c)]. Therefore, a smaller velocity-domain
extent is used for the 1D-2V simulations: �2:5 
 bvk 
 2:5 and
0 
 bl 
 18, where bvk ¼ vk=VT0, bl ¼ 4B0l=T0, B0 ¼ 0:5 T, and
VT0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0=mi

p
. The baseline grid resolution is given by

ðNz;Nvk ;NlÞ ¼ ð256; 128; 192Þ.
To illustrate the strong disparity in time scales, we consider the

initial background plasma parameters as a reference, for which the

characteristic ion transit time is given by sk ¼ Ltrap=VT0 ¼ 2.2ls,
while the characteristic ion–ion collision time is sii ¼ 1=�ii ¼ 100ms.
Here, Ltrap is the distance between the mirror throat points, and the
collision frequency �ii is estimated using Eq. (9). A time step for stable
explicit simulations is limited by the CFL constraint, DtCFL
�minðDtCFLk ;DtCFLrB Þ, where Dtk � Dz=vmax

k ¼ 5:2 ns and DtCFLrB

� miDvk=ðlmaxjrBjmaxÞ ¼ 0:1 ns. It is clear that explicit time inte-
gration of a weakly collisional mirror plasma on the ion–ion collisional
timescale becomes prohibitively expensive, and implicit time integra-
tion is required for first-principles kinetic modeling.

Here, the feasibility of multiscale collisional mirror transport sim-
ulations is explored using a second-order implicit–explicit (IMEX)
time integration scheme, which enables implicit treatment of selected
stiff terms. Specifically, the nonlinear Fokker-Planck operator, associ-
ated with the long ion–ion collisional timescale, is treated explicitly,
whereas the Vlasov operator, involving fast advection in both the z
and vk directions, is included as an implicit term. To handle nonlinear-
ities in the Vlasov operator due to the presence of a self-consistent elec-
tric field, the Jacobian-free Newton-Krylov (JFNK) approach is
employed20 with the GMRES method used as a Krylov solver.33

Although this approach alleviates the need to form or store the
Jacobian matrix corresponding to the linearized system, it requires pre-
conditioning for efficiency. In this work, we construct the precondi-
tioner operator by neglecting the @Ez=@fi semi-dense contribution to
the actual Jacobian operator. Physically, this means that our precondi-
tioner operator does not capture collective modes involving the self-
consistent electric field response, such as the plasma sound wave,
x ¼ ½ðcTi þ TeÞ=mi�1=2kk. Here, kk is a parallel wave vector and c is
an ion adiabatic index. We, however, note that for mirror systems, e.g.,
WHAM, where the ion temperature is much greater than the electron
temperature, Ti � Te, corrections to the linear-response Jacobian due
to the self-consistent electric field model in Eq. (18) may be subdomi-
nant to the “fixed-Ez” ion advection contribution.

Neglecting couplings between the ion distribution function and
the electric field in the Jacobian preconditioner yields a 3D (1D-2V)
nonsymmetric and indefinite sparse matrix for the discretized “fixed-
Ez” advection operator. COGENT solves this linear system using the
Approximate Ideal Restriction (AIR) option in the BoomerAMG alge-
braic multigrid solver contained in the Hypre linear solver library.21

The use of multigrid methods to solve nonsymmetric indefinite sys-
tems has historically been highly problematic, but the recent develop-
ment of the AIR approach,22,23 including several variants, provides a
way to extend the benefits of multigrid algorithms beyond the sym-
metric, positive-definite systems for which they are more commonly
used. To further enhance the efficiency of the implicit Vlasov solver,
COGENT allows the preconditioner to be defined using a lower-order
discretization than that used for the Vlasov operator itself. In the
weakly collisional regime, sk � sii, the collisional term in Eq. (17) is
subdominant to the Vlasov term. Therefore, a numerical scheme with
high spatial accuracy must be employed for the discretization of the
Vlasov operator in order to mitigate truncation errors and minimize
numerical pollution. In this work, we use a fifth-order upwind discreti-
zation (UW5) for the Vlasov operator in Eq. (17), whereas the precon-
ditioner operator is constructed using a first-order (UW1) advection
scheme. This lower-order preconditioner yields a sparser matrix, for
which the most robust AMG solver performance is observed, while
also maintains efficiency even for relatively large time steps.

FIG. 5. Magnetic geometry used in 1D-2V fully kinetic simulations.
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B. Zero E-field simulations

Here, simplified 1D-2V simulations are performed in the absence
of electric-field effects. In this case, the preconditioner operator is con-
sistent with the physical operator (modulo the difference in discretiza-
tion order), allowing us to investigate the maximal benefits of our
implicit algorithms. This simplified setup is also used to evaluate the
convergence properties and numerical pollution associated with our
spatial discretization.

The results of numerical simulations using the baseline grid reso-
lution ðNz;Nvk ;NlÞ ¼ ð256; 128; 192Þ are shown in Fig. 6(a) for the
normalized distribution function bf i ¼ ð2T0=miÞ3=2pfi=n0 evaluated at
the trap center. Qualitative agreement with the results of the BASM
model is observed [cf. Figs. 6(a) and 6(c)]; however, the first-principles
kinetic model captures additional features, e.g., the magnetic field pro-
file. In particular, the peaks in the ion density profiles in Fig. 7(a) cor-
respond to the beam turning points.

The numerical convergence studies of the final-state solution at
20ms are illustrated in Fig. 8. Performing a mathematically rigorous
analysis involving multiple levels of grid refinement in all phase-space
dimensions, as done for the 0D-2V BASM model in Sec. II C, is too
computationally expensive. Therefore, here, we consider the following
set of computational grids: a coarse grid (128, 64, 96), a baseline grid
(256, 128, 192), and three semi-fine grids with double the number of
grid points in each individual direction, i.e., (512, 128, 192), (256,
256, 192), and (256, 128, 384). To gain insights into numerical

convergence, we examine two vk-lineouts in the (vk; l) velocity space,
taken at the center of the trap and corresponding to bl ¼ 6 and bl ¼ 1,
which represent the high-energy beam and thermal background
regions, respectively [see Fig. 8(c)]. Notably, in the beam region char-
acterized by narrow peaks, numerical errors are more pronounced
between the baseline and coarse grids compared to the background
region, which exhibits a more diffuse profile. The results from simula-
tions with the semi-fine grids show only a small difference relative to
the baseline resolution in both regions.

As mentioned earlier, it is important to use a high-order (UW5)
spatial discretization of the Vlasov operator to minimize numerical
pollution. To further illustrate this point, we compare the results of our
baseline and coarse grid simulations using the UW5 scheme with those
obtained using a lower-order UW3 discretization (see Fig. 9). It is
readily apparent that the excessive numerical diffusion produced by
the UW3 scheme over long timescales, t � sk, leads to a completely
spurious solution for the coarse grid case [see Fig. 9(a)]. While distinct
beam features begin to emerge with the more resolved baseline grid
[see Fig. 9(b)], the solution remains far from being quantitatively con-
verged. In contrast, the UW5 scheme yields a converged velocity-space
solution at the same (baseline) resolution.

We now discuss the computational efficiency of our IMEX time
integration approach for the 1D-2V kinetic simulations (see Table II).
The stable time step is limited by the CFL constraint associated with
the explicitly treated Fokker-Planck operator. For the baseline grid res-
olution, the time step is initially limited by DtCFLinit 	 20ls and
decreases to DtCFLfin 	 4.7ls by the end of the simulation at
tfin ¼ 20ms, as the collisional time scales shorten due to increasing ion
density. The baseline grid simulation uses 512 cores of the NERSC sys-
tem34 and requires approximately 20 s and 7:5 s per DtCFLinit and DtCFLfin
steps, respectively. The JFNK solver tolerance is set to 10�4, and it
takes about 100 and 55 JFNK iterations for DtCFLinit and DtCFLfin , respec-
tively. For comparison, the stable time step for a fully explicit time inte-
gration scheme is limited by DtCFLrB 	 0:19 ns, and each step requires
approximately 0:9 s. Consequently, the IMEX simulations achieve a
speedup of about 5� 103 in the initial stage and 3� 103 in the final
stage. It is, however, instructive to note that the computational cost of
an explicit simulation is dominated by the evaluation of the Fokker–
Planck operator; disabling it reduces the wall time to about 0:15 s per
step. Thus, explicit simulations can be accelerated by about a factor of
6 if the Rosenbluth potentials are evaluated infrequently.

FIG. 6. Normalized ion distribution function, bf i ¼ ð2T0=miÞ3=2pfi=n0, evaluated at the trap center at 20 ms. The results are shown for (a) fully kinetic 1D-2V simulations in the
absence of E-fields; (b) fully kinetic 1D-2V simulations including a self-consistent E-field specified by the Boltzmann electron model; and (c) 0D-2V BASM-model simulations in
the absence of E-fields. Frame (c) corresponds to a zoom-in of Fig. 2(a).

FIG. 7. Results of the fully kinetic 1D-2V simulations with (solid curves) and without
(dashed curves) E-fields. Shown are (a) the ion density profile evaluated at 3 ms
(orange) and 20ms (blue); (b) the vk-lineouts extracted from the normalized ion dis-
tribution function, bf i , at the center of the trap, shown for bl ¼ 1 and bl ¼ 6, at
20 ms.
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Finally, we note significantly enhanced performance of the IMEX
simulations using the coarse grid resolution. At the end of the run, the
stable IMEX time step is 19ls, the number of JFNK iterations is 65,
and each time step requires approximately 1.8s on 512 cores. The
entire 20ms simulation completes in about 25min. Although the
numerical solution is not fully converged on the coarse grid, these fast,
low-resolution runs are well suited for scoping studies and/or for pro-
viding informed initial conditions when searching for steady-state
solutions.

C. Simulations including a self-consistent E-field

The results of the IMEX baseline-grid simulations including the
effects of a self-consistent electric field [in Eq. (18)] are shown in Figs.
6(b) and 7. Compared to the corresponding results from simulations
without an electric field, we observe a very similar solution in the

high-energy beam region and slightly degraded confinement in the
thermal background region. The latter can be attributed to the pres-
ence of electrostatic forces that repel ions from the trap. At the same
time, the presence of density peaks at the turning points of high-
energy (sloshing) ions leads to the formation of a potential well that
can help confine low-energy ions. To illustrate this point, we compare
the results of simulations with and without beam injection. Figure 10
shows a zoom-in on the low-energy region, revealing enhanced con-
finement of low-energy ions.

For the case without beam injection, we observe the potential
drop between the mirror center and the throat of eDU=Te 	 7:6,
which is somewhat larger than the ambipolar Pastukhov potential
inferred from the balance of electron and ion collisional losses from
the trap, si;c ¼ se;c. Specifically, estimating the ion confinement time
as35,36 sc;i � 2:6 log ðRmÞ�i, with the ion collision frequency �i given
by Eq. (9), and using Eq. (11) for the electron confinement time,
sc;e ¼ nejdne=dtj�1, we obtain a Pastukhov potential of eUm=Te

¼ 6:3. Accurately capturing the ambipolar potential, however, requires
modeling kinetic electron effects, including their reflection from sheath
regions at the device ends and unlike-species collisions. These pro-
cesses are beyond the scope of the present simulations using the
Boltzmann electron model. We further mention substantial limita-
tions37 of the Boltzmann electron model in the expander region,
i.e., outside the magnetic coil, where it predicts a potential drop
eDU � Te lnK , which increases with the expansion ratio, K.
Employing a kinetic electron response that captures cooling and

FIG. 8. Numerical convergence of the fully kinetic 1D-2V simulations without E-fields employing an UW5 discretization scheme for the Vlasov operator. The normalized ion dis-
tribution function is evaluated at the trap center at 20 ms.

FIG. 9. Numerical convergence of the fully kinetic 1D-2V simulations without E-fields employing an UW3 discretization scheme for the Vlasov operator. The normalized ion dis-
tribution function is evaluated at the trap center at 20 ms. Frame (c) compares the vk-lineouts at bl ¼ 6 for the UW3 (orange) and UW5 (blue) discretization schemes.

TABLE II. Performance of COGENT’s IMEX scheme for simulations with the base-
line grid resolution ðNz;Nvk ;NlÞ ¼ ð256; 128; 192Þ using 512 cores.

Parameter E – OFF E – ON

Implicit time step/wall-time per step 4.7ls/7.5 s 4.7 ls/9.5 s
Explicit time step/wall-time per step 0.19 ns/0.9 s 0.19 ns/1.0 s
Number of JFNK iterations
(1.0 � 10�4 tol.)

	55 	70
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temperature anisotropy effects as well as electron reflection from the
boundary sheath region would resolve this issue and yield a potential
solution37 that quickly saturates for large values of K. We also note that
the baseline grid resolution in velocity space is insufficient to ade-
quately resolve the distribution function outside the trap, and the
numerical results in that region are not fully converged. As discussed
in Ref. 9, this issue can be addressed, for instance, by introducing spa-
tially varying normalization of the computational velocity space, which
will be pursued in future work.

Including the self-consistent electric field in Eq. (18) introduces
collective phenomena, such as plasma sound waves, which are not cap-
tured by the “fixed-Ez” preconditioner model used in our simulations.
These additional physical effects degrade the performance of the
IMEX algorithms, with the most pronounced impact occurring at the
beginning of the simulation when transient processes are strongest. To
handle this initial stage, we employ an adaptive time-stepping algo-
rithm from the PETSc library,38 which adjusts the time step dynami-
cally based on the solution behavior. As the simulation progresses and
the system settles into a more quasi-steady state, the impact of the self-
consistent electric field on solver performance diminishes. By the end
of the run, we observe a modest slowdown of approximately 25%
when comparing baseline-grid ð256; 128; 192Þ simulations with and
without electric fields (see Sec. IIIB), with a final stable time step of
DtCFLfin 	 4.7ls. Specifically, about 70 JFNK iterations are required to
reach the same solver tolerance of 10�4, and each step takes approxi-
mately 9.5s per step when run on 512 cores. This mild performance
degradation is plausibly attributed to the condition Te � Ti, as
discussed in Sec. IIIA. The stable time step for fully explicit time
integration remains limited by advection in the vk-direction,
DtCFLrB 	 0:19 ns, with each step requiring approximately 1:0 s similar
to the case without electric fields. Thus, the IMEX approach provides a
speedup of over 2:5� 103 by the end of the run. It is also informative
to compare this performance with recent explicit simulations of the
WHAM system using the GKeyll code.9 For the Boltzmann electron
model and the original (non-smoothed) mirror force, GKeyll simula-
tions employing the LBD collisional model require approximately 74h
on 288 cores to simulate 72ls of physical time using the ðNz ;Nvk ;NlÞ
¼ ð288; 64; 192Þ grid. Normalized by the number of grid cells and
processor cores, this is roughly 1:8� 103 times slower than the

semi-implicit COGENT calculations employing the full nonlinear
Fokker-Planck collision operator.

IV. CONCLUSIONS

In this work, we report on the development and application of
implicit-explicit (IMEX) time integration methods for continuum
kinetic modeling of weakly collisional parallel plasma transport in
magnetic mirror configurations. The IMEX approach, based on high-
order additive Runge-Kutta methods and Jacobian-free Newton-
Krylov solvers with modern algebraic multigrid preconditioning, ena-
bles stable and efficient simulations that overcome the severe time step
restrictions imposed by strong mirror forces in explicit schemes. As an
illustrative example, we consider the problem of high-energy ion beam
fueling of a weakly collisional mirror for parameters relevant to the
WHAM facility. Both a simplified bounce-average model (BASM) for
a square-shaped mirror and a fully kinetic model are employed to pro-
vide insights into ion species dynamics and to assess the performance
of the numerical algorithms.

The fully implicit BASM model is verified by reproducing ana-
lytic results for the Pastukhov problem and is used to examine the
numerical convergence of the velocity-space discretization scheme. In
particular, degraded convergence, limited to first-order accuracy, is
observed when the transition layer between the confined and loss cone
regions is insufficiently resolved. The BASM model also highlights the
importance of an accurate ion–ion collision model by revealing signifi-
cant differences in the numerical solution obtained using the full
Fokker-Planck collision operator vs the simplified Lenard-Bernstein-
Dougherty (LBD) operator often used in gyrokinetic simulations.

The fully kinetic 1D-2V model demonstrates the practical bene-
fits of the IMEX approach, which involves an implicit treatment of the
Vlasov operator. Time steps approximately 2:5� 104 times larger
than the CFL-limited explicit step are achieved, yielding about 2500�
speedup compared to explicit methods while maintaining numerical
stability. The current “fixed-Ez” preconditioner model does not
account for collective oscillation processes such as plasma sound
waves, which can limit its efficiency. Nevertheless, only modest perfor-
mance degradation (� 25% slowdown) is observed when self-
consistent electric field effects – modeled through quasi-neutrality and
a Boltzmann electron response to the potential – are included. This

FIG. 10. Role of the sloshing-ion potential well in low-energy ion confinement. Shown are results from 1D-2V fully kinetic simulations with (a) and without (b) beam injection
evaluated at 7 ms. Frame (c) illustrates the self-consistent electrostatic potential, eU=Te.
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can be plausibly attributed to the relatively low electron temperature
compared to the ion temperature in the parameter regime considered
here, implying that corrections to the linear-response Jacobian from
the self-consistent E-field model may be subdominant to the fixed-
field ion advection terms. In addition, fifth-order upwind discretization
of the Vlasov operator is found to be essential for minimizing numeri-
cal diffusion over long collisional transport timescales, whereas a
third-order upwind scheme produces excessive numerical pollution.

The implicit technologies described in this work have the potential
to enable comprehensive, integrated modeling of magnetic mirror sys-
tems using continuum gyrokinetic simulations. Our future work will
focus on extending these methods to include radial nonuniformities,
kinetic electrons, unlike-species collisions, and more complex magnetic
geometries (e.g., tandem mirrors) relevant to next-generation mirror
reactor designs.
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