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ABSTRACT

Axisymmetric stability properties of sheared flow Z-pinch plasmas are studied by making use of the gyrokinetic approximation in the long-
wavelength limit. Numerical simulations are carried out with the high-order finite-volume code COntinuum Gyrokinetic Edge New
Technology (COGENT) and are analyzed for the parameters characteristic of the FuZE experiment. Reduction of the linear growth rate with
increasing shear is observed, and the results are elucidated by making use of a local dispersion relation analysis. In addition, COGENT simu-
lations are compared with fully kinetic particle-in-cell simulations, and with an ideal magnetohydrodynamics (MHD) model. Good agree-
ment between the gyrokinetic and fully kinetic results for the linear stability is found, with the gyrokinetic model requiring much less
computational time due to its ability to step over particle gyroperiod. The ideal MHD model is found to be consistent with the kinetic models
in the long-wavelength part of the spectra (kqi), while failing to adequately predict short-scale (kqi) stability. Here, k is the axial wavelength
vector and qi is the ion gyroradius.
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I. INTRODUCTION

A plasma column confined by closed azimuthal magnetic fields,
also known as a Z-pinch, has received considerable attention in the
last several decades due to its possible applications in fusion energy,1–4

generation of X-rays and high magnetic fields,5 and general academic
interest.6 However, such plasma configurations are prone to magneto-
hydrodynamics (MHD) instabilities, which develop on fast Alfv�en
time scales, disrupt the current, and destroy the equilibrium. Among
these instabilities, the two notorious ones are the axially symmetric
“sausage” m¼ 0 mode and the “kink” mode with m¼ 1 azimuthal
number. They have been thoroughly studied in the literature and have
been shown to have the highest growth rates.7

The interest in Z-pinches was renewed with the recent experi-
ments on sheared-flow stabilized Z-pinches (FSZPs).8–12 These experi-
ments demonstrated12 pinch stabilization on a time scale of the order
of 5000 r0/Va, where r0 is the characteristic radius of the pinch and Va

is the Alfv�en velocity given by Va ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pmini
p

, with magnetic
field B0 and density ni taken at their peak values. The analytical
analysis13 employing an ideal MHD model can predict stabilization
of the kink mode by a relatively small shear value of the axial veloc-
ity @rvz � 0:1kVa, where k is the wave number of the mode.
However, reported values of the axial velocity variation required to
stabilize the sausage mode vary from sub-Alfv�enic8 to 1–4 Alfv�en
speed range.14–16

Current experimental realization of flow stabilized Z-pinch
(FSZP) systems generates radial variations in the axial flow velocity
on the scale of the pinch radius r0. As such, the sheared flow can
smear out and mitigate long wavelength modes, i.e., kr0 � 1, but
not the short wavelength modes whose spatial scale is much smaller
than r0. In addition to the high-k part of the ideal MHD modes, Z-
pinch plasmas can also suffer from short-scale nonideal drift-type
instabilities.7,17–21 They appear in the (nonideal) hydrodynamic
description of the Z-pinch system if the drift terms of order qi/r0
are retained and the heat transfer moment equations for ions and
electrons are considered (qi is the ion gyroradius). The distinguish-
ing feature of these modes is that the total ion plus electron pressure
remains unperturbed to the leading order for the long-wavelength
case kqi � 1. This means that the total entropy of the system is
perturbed—hence the name “entropy mode.” Note that the ideal
MHD description assumes an adiabatic equation of state and there-
fore constant entropy.20 For kqi � 1, entropy modes have growth
rates18 c � Va=r0, which is on the same scale as the growth rates of
the dominant ideal MHD modes. Although the spatial scale for the
drift-waves can be much smaller than the pinch size, the corre-
sponding microturbulence can significantly increase the radial
transport of the pinch macroquantities. For instance, such
enhanced plasma viscosity can rapidly reduce the flow shear
beyond the values required for the Z-pinch stability.22
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For parameters characteristic of the FSZP experiments,23 the ion
collisional frequency is much smaller than the entropy mode fre-
quency, with the possible exception in the pinch edge where the
plasma temperature can rapidly decrease11 and collisional effects (such
as gyrorelaxation20,21) might need to be included. Therefore, the stan-
dard hydrodynamic (fluid) methods are not applicable to study this
problem. Furthermore, even though the dynamics of the m¼ 0 (flute)
entropy modes occurs only in the perpendicular to magnetic field
directions, the so-called perpendicular closures24 that are used in fluid
descriptions of magnetized plasmas in the limit of kqi � 1 are not
applicable for the most unstable kqi � 1 modes either. We note how-
ever various ways that can be used to qualitatively capture kqi � 1
effects in MHD descriptions. Finite ion Larmor radius effects can be
included in hydrodynamic descriptions via terms such as the Hall
term,16,25 diamagnetic heat flux,7 and the ion-gyroviscous stress ten-
sor.26 One can find more details on the extended MHD model in the
following paper.27

Kinetic simulations are able to capture all necessary physics cor-
rectly, yet they are too computer resource demanding and therefore
cannot be used as a simple tool to analyze the problem. The problem
of entropy-mode-driven microturbulence in the FSZP ongoing and
planned experiments is, however, ideally suited for the gyrokinetic for-
malism. Indeed, the time scale of the entropy mode is much longer
than the ion cyclotron gyration period, and the ion gyroradius is much
smaller than the equilibrium length scales, qi/r0 � 0.1 (note that the
terms neglected in the gyrokinetic approximation are of the order of
q2
i =r

2
0 , and therefore are small). It should be mentioned that because

the magnetic field goes to zero at the pinch axis, the ions are not
“magnetized” and the gyrokinetic formalism breaks down near the
axis. However, it is the magnetized edge that is of interest, as both non-
linear simulations28 and experiments11 show that a shear located at
the edge of the plasma is sufficient to provide stabilization.

In the present work, results are presented from numerical simula-
tions ofm¼ 0 modes in the long-wavelength limit performed with the
electrostatic gyrokinetic 4D code COGENT (COntinuum Gyrokinetic
Edge New Technology). Unlike local gyrokinetic simulations previ-
ously done with the GS2 code,18 the simulations here are global as
radial plasma profile variations are retained, though the near-axis
unmagnetized region is excluded. We find that the most unstable
global mode is localized at approximately the region of the maximum
magnetic field, and therefore it is unaffected by the details of the
boundary conditions at the inner radial boundary. Even such a simpli-
fied model, which presently does not include electromagnetic effects,
and only contains finite Larmor radius (FLR) effects as a polarization
term in the gyrokinetic Poisson equation (GPE), provides adequate
mode behavior and the results are in a good agreement with recent
particle-in-cell (PIC) simulations.29 The reduction of the linear growth
rate with increasing shear is observed and the results are elucidated by
making use of a local linear dispersion relation analysis.

The paper is organized as follows. The main parameters of the
system are defined in Sec. II. This includes the gyrokinetic equations,
pinch equilibrium, simulation setup, and computational domain. In
Sec. III, a local linear dispersion relation for both entropy and ideal
modes is derived from the governing equations. Simulation results are
presented in Sec. IV. Linear growth rates are compared with previously
reported values from MHD and fully kinetic models. The effects of
shear are illustrated. The main results of the paper are summarized in

Sec. V, where the applicability of the gyrokinetic equations as well as
possible future improvements are also discussed.

II. SIMULATION SETUP

Numerical simulations are performed using the continuum gyro-
kinetic code COGENT, which utilizes a high-order finite-volume dis-
cretization of the electrostatic gyrokinetic equation in 2D2V phase-
space. The 2V velocity space dimensions are the parallel velocity and
the magnetic moment. For the simulations here, the 2D configuration
space is cylindrical with radial and axial coordinates. The code solves
the gyrokinetic equation for the distribution function of species a,
where a¼ i for ions and a¼ e for electrons

@ðB�kafaÞ
@t

þrR � _RaB
�
kafa

� �
þ @

@vk
_vkaB

�
kafa

� � ¼ 0: (1)

In Eq. (1), the differential operator rR performs differentiation with
respect to the guiding center coordinates (the subscript R will be omit-
ted later in the paper for simplicity), B�ka is the projection of B�a to the
magnetic field direction b ¼ B=B, and B�a is given by

B�a ¼ Bþ
macvk
qa
r� b: (2)

In the gyrokinetic approach, particles move along the magnetic field B
with parallel velocity vk and parallel acceleration

_vka ¼ 	
B�a � Ga

maB�ka
; (3)

and exhibit perpendicular drifts with a guiding-center velocity _Ra

given by

_Ra ¼
vk
B�ka

B�a þ c
b� Ga

qaB�ka
: (4)

Here, Ga is defined by

Ga ¼ qar/þ larB; (5)

where la ¼
mav2?
2B is the particle magnetic moment, ma and qa are the

particle mass and charge, c is the speed of light, and / is the electro-
static potential. In electrostatic gyrokinetics, Eq. (1) is coupled with the
gyrokinetic Poisson equation30 (GPE), which in the limit of small
Larmor radius reads as

qðni 	 neÞ ¼ 	
r2/
4p
þ
X

a

r? �
q2ana

max2
ca
r?/

 !
: (6)

xca ¼ qaB
mac

is the particle gyrofrequency and ni;e are gyrodensities of
electrons and ions. The last term on the RHS (right-hand side) of Eq.
(6) scales with x2

pi=x
2
ci, where x2

pi ¼ 4pniq2i =mi is the square of the
ion plasma frequency. Thus, for perpendicular dynamics, this term is
larger than the first term on the RHS for x2

pi 
 x2
ci. Considering this

limit, the GPE for the problem of interest in this work reduced to

qðni 	 neÞ ¼
1
r
@

@r
rminic2

B2

@/
@r

� �
þ @

@z
minic2

B2

@/
@z

� �
: (7)

The gyrokinetic formalism is valid in strongly magnetized plasmas,
i.e., when spatial scales of equilibrium parameters, such as density,
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temperature, and magnetic field, are much greater than the largest
gyroradius of all species qa ¼ Vta=xca, where Vta ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ta=ma

p
is the

thermal speed. The characteristic spatial scale is the pinch radius r0
and the ion gyroradius is the largest. Thus, the gyrokinetic formalism
is valid for �L ¼ qi=r0 � 1. The second requirement is that character-
istic frequencies of the processes of interest should be much smaller
than the smallest gyrofrequency, �x ¼ x=xci � 1. The characteristic
frequencies of the problem are that associated with the Alfv�en transit
time across the pinch, x � Va=r0, and thus �L ¼ �x ¼ �.

The aim of the present work is to simulate perturbed mode
behavior in a sheared flow Z-pinch. For a given axial velocity profile
vziðrÞ [and also pressure P(r) and magnetic field B(r) profiles], force
balance for each species can be used to find the corresponding electro-
static field E that is consistent with the desired velocity profile

vi;e
c
¼ E� B

B2
7
rPi;e � B
qnB2

: (8)

Notice that the difference of Eqs. (8) written for electrons and ions
yields to the traditional MHD force balance equation rP ¼ j� B=c.
The electrostatic field E can be found from Eq. (8) using provided
functions vziðrÞ; PiðrÞ ¼ PeðrÞ, and B(r), which can then be used to
determine vze. In order to initialize the code with the self consistent
equilibrium field E, the gyrokinetic Poisson equation (7) is used, where
the gyrodensity difference consistent with the equilibrium electric field
is found as

dn
ni
¼ ni 	 ne

ni
� mic2E

qrB2
: (9)

The last term in Eq. (8) is of the order

rP � B
qnB2

� T
rqB
� mc

qB
V2
t

cr
� qi

r
Vt

c
� �Vt

c
: (10)

If all the terms in Eq. (8) are of the same order, then the drift
velocity can be estimated as vd � �Vt , and E/B in Eq. (9) is of
order �Vt/c, thus dn=ni � �2. However, for academic purposes and
to be in a match with kinetic simulation results,29 higher values of
drift equilibrium velocity, up to vd � Vt , can also be considered.
In this case, E/B scales like Vt/c and dn=ni � �. The gyrokinetic
approach is not strictly valid for such high drift velocities, as Eq.
(5) is missing high order terms that become comparable to the
retained magnetic term in Eq. (5), and therefore possibly change
the drift motion. Yet, shear velocities observed in experiments10

are considerably slower than Vt, and most of our simulations are
done for subsonic flows as well.

The set of equations (1)–(6) supports multiple solutions for the
equilibrium, even unphysical ones, if all equilibrium quantities depend
on the radial coordinate only. Indeed, Ga has radial components only
in this case, while both B� and _R do not have this component. As a
result, the second and the third terms in Eq. (1) are exactly zero, so
any possible radial-dependent gyrokinetic distribution function is a
solution. For the analysis in this work, the commonly used Bennett
equilibrium profile is considered,4,31–33 which provides the ion density
and the magnetic field as follows:

n ¼ n0
ð1þ n2Þ2

; (11)

B ¼ ĥ
2B0n

ð1þ n2Þ
; (12)

where n ¼ r=r0, n0 and B0 are density and magnetic field amplitudes,
r0 is the radial characteristic size of the pinch. Bennett equilibrium is
derived under the following set of assumptions: (i) All quantities
depend on the radial coordinate only; the pinch is infinitely long in the
axial direction. (ii) Both species are streaming in the axial direction
with velocities vi and ve, which are constant in space and time;
electron-ion collisions do not change these velocities. (iii) Both species
have Maxwellian distribution function with temperatures Ti and Te,
respectively, and these temperatures are constant in space and time.
The difference between the ion and electron densities is relativistically
small, i.e., of the order maxðv2i ; v2eÞni=c2 � �2nix2

ci=x
2
pi, yet sufficient

enough to create charge separation and the corresponding electrostatic
force comparable with the magnetic component of the Lorentz force.
Notice, however, that this density difference is different from the one
obtained in Eq. (9) for the gyrocenter densities, and therefore smaller
by a factor x2

ci=x
2
pi. The simulations are performed considering a

frame where the electrostatic field in the shear-free case vanishes,
namely, when vi ¼ 	ve ¼ v0. Furthermore, assuming that electrons
and ions have the same temperature T0, and considering singly ionized
ions, qi ¼ 	qe ¼ q, we obtain the following useful relations between
various pinch parameters: Relation between the magnetic field ampli-
tude and the streaming velocity

v0
c
¼ B0

2pqn0r0
; (13)

which can be obtained from Eq. (8); expression for the temperature in
terms of the density and magnetic field amplitude

T0 ¼
B2
0

4pn0
; (14)

expression for the linear particle densityNL

NL ¼ pr20n0; (15)

and for the total current I

I2 ¼ 4c2NLT0 ¼ c2B2
0r

2
0 : (16)

Also, notice that the characteristic Alfv�en velocity defined using the
peak density and the peak magnetic field is the same as the ion thermal
speed

V2
a ¼

B2
0

4pmin0
¼ T0

mi
¼ V2

ti: (17)

Equations (13)–(17) provide a set of constraints for Bennett equi-
libria. The values used in our simulations for the pinch radius r0, peak
density n0, and magnetic field B0 are taken from experimental data.
Sheared flows are studied using a linear shear profile; therefore, ion
and electron velocities read as

vi;e ¼ 6v0 þ vs; (18)

where shear velocity is defined as

vs ¼ jnVa: (19)
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Here, j is a dimensionless coefficient that determines shear strength,
later in the paper called “shear parameter.” Such shear does not change
the total current and produced magnetic field; thus the equilibrium
profile for density remains the same.

The simulations are performed using parameters characteristic
of the FuZE23 experiment, namely, r0¼ 0.091 cm, n0 ¼ 4:25
�1018 cm	3; B0 ¼ 32 T; T0 ¼ 1198 eV [obtained from Eq. (14) to
be consistent with the Bennett profile]. At peak magnetic field, the
gyroradius of the ion is small qi=r0 � 0:12. The domain in the radial
direction spans from rmin to rmax, where rmin varies from 0.05 to
0.07 cm and rmax from 0.15 to 0.30 cm, depending on the mode wave
length and on the shear strength. The largest value of � is reached at
r¼ 0.30 cm: � � 0.21, yet the modes considered in this work are local-
ized at smaller r, so the errors on the boundary are not important. The
zero Dirichlet boundary condition (BC) is used for the electrostatic
potential at r ¼ rmax, assuming a conducting wall at the outer bound-
ary, and Neumann boundary condition at r ¼ rmin, where the poten-
tial derivative is in agreement with Eq. (8) to produce the right value
of shear velocity. Note that the zero Dirichlet BC for the potential
enforces zero particle flux at the outer radial boundary, and therefore a
boundary condition for the distribution function is not required. At
the inner radial boundary, the inflow boundary condition corresponds
to a Maxwellian distribution function with n0(rmin) and T0. Such
boundary conditions can be adequate for the case where the mode
structure is localized to the domain interior and does not extend to the
inner radial boundary. Moreover, boundary conditions for the electro-
static potential can change the structure of the mode and hence have
an impact on the growth rate if the radial size of the domain is small
or even comparable to the physical radial scale of the mode. This is the
reason why different domain sizes are used in the r̂-direction depend-
ing on the mode number kz—the radial extent of the mode is smaller
for higher kz. In each of the simulations, the outer radial boundary is
chosen to be large enough such that it has no effect on the radial size
of the mode. The noticeable variation of the growth rate, associated
with an improper radial boundary size, is approximately 10%.

In the axial direction, the domain resolves only one full wave
length of the seeded mode (zmin ¼ 0; zmax ¼ k) and periodic bound-
ary conditions are used.

The mode was seeded by initial density perturbation

niðr; zÞ ¼ ni0ðrÞ � 1þ cosðkzzÞgðrÞð Þ; (20a)

neðr; zÞ ¼ ni0ðrÞ � 1	 cosðkzzÞgðrÞð Þ 	 dnðrÞ; (20b)

where kz ¼ 2p=zmax, dn is the equilibrium density difference from
Eq. (7) that supports sheared flow, and gðr;�r c; a0Þ is the radial enve-
lope with amplitude A, center �r c, and width a0

gðr;�r c; a0Þ ¼ A exp 	ðr 	 �r cÞ2

a20

 !
: (21)

Parameters A, �r c, and a0 are chosen individually for every value of kz in
order be in close radial match to the eigenmode. The amplitude is chosen
to be small enough to observe the linear growth rate of the mode for the
longest possible time, yet large enough to seed the mode and distinguish
it from the numerical noise. The values used here range from 10	7 to
10	4. Center �r c and width a0 are usually picked after a preliminary run
of a coarse resolution and are rc � 1:1	 1:8r0, and a0 � 0:1	 0:5r0.
No seeded temperature perturbation is used in all the runs.

Spatial grid resolution is varied depending on the mode wave
number kz. Due to high order spatial discretization of the code, even a
relatively coarse resolution, e.g., 32� 32, in the R�Z plane is suffi-
cient to provide an accurate mode structure and growth rates for all
modes in the shear-free case (see Sec. V for more details). In the case
of a strong shear flow, the resolution is increased up to 128� 64 in
order to resolve a fine mode structure adequately. The code employs
an explicit time advance scheme Runge-Kutta(4,4); therefore the time
step is limited by the Courant Friedrichs Lewy (CFL) constraint, and
decreases as the resolution or the mode wave number increases.

III. LINEAR DISPERSION ANALYSIS

A linear dispersion relation obtained from the governing equa-
tions in a simplified case is presented and examined in this section.
This provides some insight into the what types of modes are expected
in the simulations.

Refer to gyrokinetic equations (1)–(6). Consider electrostatic
problem with given magnetic field of the shape B ¼ ĥBðrÞ, then
ðr� bÞ? ¼ ẑ=r and rB ¼ r̂ @B@r . Under the assumptions of axial
symmetry, i.e., @=@h ¼ 0 we have the following expressions for drift
velocity and acceleration:

_Ra ¼ vkĥ þ c
mav2k
qarB

ẑ þ c
qaB

r̂qa
@/
@z
	 ẑqa

@/
@r
	 ẑla

@B
@r

� �
; (22a)

_vk ¼ 	
cvk
rB
@/
@z

: (22b)

Substitute Eq. (22) into Eq. (1) to obtain

@fa
@t
þ

macv2k
qarB

	 c
B
@/
@r
	 cla

qaB
@B
@r

 !
@fa
@z

þ c
B
@/
@z

@fa
@r
	
cvk
Br
@/
@z

@fa
@vk
¼ 0: (23)

By choosing a frame where the equilibrium electric field is identically
zero, the term @/=@r vanishes in the shear-free case (see Sec. II).
When the shear is present, the equilibrium electric field remains due
to charge separation in the GPE that establishes shear flow.

Make use of la ¼ mav2?=ð2BÞ to get

@fa
@t
þ c
B
@/
@z

@fa
@r
þ mac
qarB

v2k þ
v2?
2

w

� �
@fa
@z

	 c
B
@/
@r
@fa
@z
	
cvk
rB
@/
@z

@fa
@vk
¼ 0; (24)

where w ¼ 	 r
B
@B
@r . For Bennett profile magnetic field Eq. (12), we

have w ¼ ðn2 	 1Þ=ðn2 þ 1Þ, which goes to the toroidal field limit as
n!1 and to the constant field limit as n ¼ 1.

Consider the equilibrium distribution function

f0a ¼
ma

2pTa

� �3=2

n0aðrÞ exp 	
mav2k
2Ta
	 laB

Ta

 !
; (25)

and a small perturbation of the distribution function ~f a expð	ixt
þikzzÞ with a corresponding electrostatic potential ~/ expð	ixt
þikzzÞ. In a linear order, the kinetic equation for perturbations reads
as
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	ix~f a þ ikz
mac
qarB

~f a v2k þ
v2?
2

w

� �
	 ikz

c
B

~f a

@/0

@r

þikz ~/
c
B
@f0a
@r
	
cvk
rB
@f0a
@vk

 !
¼ 0: (26)

The radial derivative of the potential can be replaced by the electric
field E ¼ 	 @/0

@r . Use Eq. (25) to find derivatives for Eq. (26)

@f0a
@r
¼ @n0a

@r
f0a
n0a
	 f0ala

Ta

@B
@r
¼ 	 f0a

La
þ f0aw

r
mav2?
2Ta

; (27a)

@f0a
@vk
¼ 	f0a

mavk
Ta

; (27b)

where n0L	1a ¼ 	 @n0a
@r , and express the distribution function in terms

of the perturbed potential

~f a ¼ ~/
kzcf0a
B
�

1
La
	 ma

rTa
v2k þ

v2?
2

w

� �

	xþ kzmac
qarB

v2k þ
v2?
2

w

� �
þ ckzE

B

: (28)

All parameters in Eq. (28) are functions of the radial coordinate. To
make an analytical progress, we assume kr0 
 1 and fix the values of
the background profiles at some given value of r. The density perturba-
tion then reads as

~na ¼
ð1
	1

dvk

ð1
0

2pv?dv?~fa : (29)

The velocity-dependent part can be removed from the numerator of
Eq. (28), so that Eq. (29) takes the following form:

~na ¼ 	
qan0a ~/
Ta

þ qan0a ~/
Ta

ma

2pTa

� �3=2

�
ð1
	1

dvk

ð1
0

pdðv2?Þ exp 	
mav2k
2Ta
	mav2?

2Ta

" #

�

xqarB
kmac

	 qarE
ma
	 rTa

maLa

xqarB
kmac

	 qarE
ma
	 v2k þ

v2?
2

w

� �

¼ 	 qan0a ~/
Ta

þ qan0a ~/ffiffiffi
p
p

Ta

ð1
	1

dy
ð1
0

2xdx exp ð	x2 	 y2Þ

�
W 	 r

2La

W 	 y2 þ w
2
x2

� � : (30)

In Eq. (30), W ¼ ½x	 ckzE
B � �

rqaB
2ckzTa

, which will be of different sign for
electrons and ions.

The integral Eq. (30) is similar to one in Ricci’s work18 but here
we miss the term 1	 k2v2?=2x

2
ci. This is a pressure correction term30

that is small in the long-wavelength limit and is neglected in the pre-
sent “minimal” model. The integral in Eq. (30) can be taken analyti-
cally only in some special cases: w¼ 1 and w¼ 0. For w¼ 1

I1 ¼ 	e	2w
ð1
0

2xdx
ew	x

2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=2	 w

p erfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=2	 w

p� �

¼ 	e	2wp3=2erfc2
ffiffiffiffiffiffiffi
	w
p� �

; (31)

and for w ¼ 0

I0 ¼ 	e	2w
ð1
0

2xdx
ewffiffiffiffiffiffiffi
	w
p erfc

ffiffiffiffiffiffiffi
	w
p� �

¼ e	wpw

ð	wÞ3=2
erfc

ffiffiffiffiffiffiffi
	w
p� �

: (32)

Assume equal temperatures Ti ¼ Te ¼ T , and then W ¼Wi

¼ 	We. Expressions for the ion and electron densities for arbitrary w
read as

~ni ¼ 	
qn0i~/
T
þ qn0i~/ffiffiffi

p
p

T
W 	 r

2Li

� �
IwðWÞ; (33a)

~ne ¼ þ
qn0e~/
T
	 qn0e~/ffiffiffi

p
p

T
	W 	 r

2Le

� �
Iwð	WÞ; (33b)

where Iw is chosen according to the value of r.
W or x can be found by substitution of Eq. (33) into the gyroki-

netic Poisson equation (7). In the limit of short-scale perturbations,
the GPE can be modified as follows:

r? �
miðni0 þ ~niÞc2

B2
r?/

� �
¼ mic2

B2r
@

@r
rni0

@/0

@r

� �
þmic2

B2r
@

@r

� rni0
@~/
@r

� �
þmic2

B2r
@

@r
r~ni

@/0

@r

� �

þmini0c2

B2

@2~/
@z2

: (34)

The first term on the right hand side of Eq. (34) is the equilibrium
shear flow term, which is not a perturbation, and therefore exactly
cancels the other equilibrium terms in the GPE. Higher order term
Oð~ni

~/Þ is omitted as we are doing linear analysis. In the remaining
two terms, the differential operator applies to ~/ and ~ni only, assuming
that background quantities have a large spatial scale compared to the
perturbation scale. Finally, the radial structure of the mode can be con-
sidered as a half sinusoidal if the boundary conditions are such that
~/ ¼ 0 on the radial boundaries. In this case, the wave number can be
expressed as kr ¼ p=Lr , where Lr is the radial domain length and the
following replacements @=@r ¼ ikr ; @=@z ¼ ikz can be made. Taking
into account all these assumptions, we obtain the GPE for the per-
turbed quantities

qð~ni 	 ~neÞ ¼ 	r? �
minic2

B2
r?/

� �

¼ mini0c2

B2
ðk2r þ k2zÞ~/ þ i

mikrc2E
B2

~ni; (35)

where ~ni and ~ne are from Eqs. (33).
Consider a simple case of long-wavelength perturbations in a

shear-free flow pinch. Electrostatic field is zero; therefore, W ¼ xrqB
2ckzT

.
The ideal MHD interchange mode7 has a growth rate of the order
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Im½x� ¼ c � Vt=r0. Therefore, W � VtqBm
2cmkzT

¼ 1
kzqi

 1, and the inte-

gral in Eq. (30) can be approximated by Taylor expanding the
denominator

IwðwÞ �
ð1
	1

dy
ð1
0

2xdx exp ð	x2 	 y2Þ

� 1
w
þ y2

w2
þ wx2

2w2
þ ð2y

2 þ wx2Þ2

4w3

� �

¼
ffiffiffi
p
p

w
1þ 1

2w
þ w
2w
þ 3
4w2
þ w2

2w2
þ w
2w2

� �
: (36)

Substitute this expression into Eq. (35)

q2

T
	2þ 1	 r

2WLn

� �
IwðWÞþ 1þ r

2WLn

� �
Iwð	WÞ

	 


¼ mic2ðk2r þ k2zÞ
B2

; (37)

and solve for x

x2 ¼ 2T
mir2

� k2z
k2z þ k2r

3þ ðwþ 1Þ 2w	 r
Ln

� �	 

: (38)

As it follows from Eq. (38), x can be either real or imaginary, meaning
exponential growth for the latter. For w ¼ 1, the ideal mode stability
condition is Ln=r > 2=7, in agreement with the result from Ricci’s
paper18 in the collisionless limit. The magnitude of x is the same as
initially assumed x � Vt=r0, so the result in Eq. (38) is valid as long
as the expression in square parentheses is not close to zero.

For the Bennett profile, w and Ln can be expressed as functions
of n

w ¼ n2 	 1

n2 þ 1
;

r
Ln
¼ 4n2

n2 þ 1
: (39)

To find the stability condition, evaluate the square parentheses with
substitutions from Eq. (39)

3þ ðwþ 1Þ 2w	 r
Ln

� �	 

¼ 3	 n2

1þ n2
: (40)

The expression in Eq. (40) is positive for n <
ffiffiffi
3
p

, so the ideal MHD
mode is stable for n � 1. This is in agreement with the simulations
results, where the center of the mode is localized at n �

ffiffiffi
3
p

for low kz
modes. Notice though that the m ¼ 0 mode is always unstable for the
Bennett profile27 in the ideal MHD analysis, if �c< 2, where �c is the
heat capacity ratio �c ¼ cp=cv. This contradictory result can be
explained by the fact that our model is kinetic, therefore does not con-
tain an adiabatic closure for pressure terms, and is also collisionless.

In order to investigate the dispersion relation in the general case,
Eq. (35) needs to be analyzed on a complex plane and the roots have
to be determined numerically. For simplicity, one can assume a large
scale radial structure of the modes kr ¼ 0, yet still small compared
to the pinch radius. The normalized growth rate for both w ¼ 0 and w
¼ 1 is shown in Fig. 1.

There are some important observations that can be made here.
First, the shear effect does not change the growth rate much. The
main contribution of the shear is through the electric field, which
changesW

W ¼ x	 ckzE
B

	 

� rqaB
2ckzTa

: (41)

It adds the real part to x, making the perturbation drift with E�B
velocity. The second contribution of the shear is the change of back-
ground electron density in Eq. (35). These changes are however small
as parameter � is small that is always assumed.

Second, the growth rate for w ¼ 1 case has a cutoff at kzqi � 2.
In fact, the condition should be ðk2z þ k2r Þq2

i � 4, since kz and kr
appear exactly in such a combination in Eq. (35). In a realistic sce-
nario, w is expected to be between 0 and 1, therefore the cutoff to be at
some higher values of kqi, yielding to FLR stabilization of the mode.
The polarization terms in the GPE are indeed important: A simplified
version of the gyrokinetic Poisson equation (ni 	 ne ¼ 0) provides the
linear dependence of the growth rate on kz but does not have any cut-
off or even decay at high values of kz.

The current linear analysis helps to describe the mode behavior
only qualitatively. First, the derived result is valid for local modes,
while the modes of interest have a radial size of the order of r0 and are
thus global. Second, the exact analytical dispersion relation is not
known for an arbitrary value of w in the interval [0,1] and the behavior
can only be anticipated to be similar to the cases of w ¼ 0 and w ¼ 1.
Finally, and most important, some of the FLR terms are not correctly
taken into account, like no gyroaveraging for particle drifts, the long-
wavelength limit for the gyrokinetic Poisson equation, or missing
pressure terms18 in density integrals. However, even inclusion of the
polarization term in the long-wavelength limit in the GPE is enough
to provide decreasing nature of the growth rate for high k, while the
other effects change the cutoff value without changing the general pic-
ture dramatically.

IV. SIMULATION RESULTS

The main goal of the simulations is to find how the growth rate
of the mode depends on the wave number kz and shear parameter j.
Among all quantities, the axial component of the electric field is the

FIG. 1. Normalized growth rate of a local entropy mode at r ¼ r0 as a function of
wave number kz at kr ¼ 0 for constant (w ¼ 0) and toroidal (w ¼ 1) magnetic
fields and for two values of the shear parameter. Solid line: No shear j ¼ 0.0;
dashed line j ¼ 0.5.
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most informative and vivid one to provide the growth rate and the
structure of the mode. Unlike the density or the potential in the
sheared flow case, Ez has no mean part as Ez ¼ 0 in the equilibrium,
which makes it much better for illustration purposes. We also compare
our results of the growth rate of the density perturbation and it is all
consistent.

The growth rate is defined as follows. For a given value of kz and
j, the “center” of the mode in the radial direction rc is determined. At
a given time t, the slice of the mode at r ¼ rc provides a function of
Ezðz; tÞ, which is Fourier decomposed to n¼ 1, 2, 3 modes (the seeded
mode is n¼ 1). Fourier amplitude of the n-mode by our assumption
grows as An / exp ðcntÞ.

Such an approach in determining c has advantages and disadvan-
tages. It might suffer from the fact that rc is not determined correctly,

or the fact that the mode can slowly move in the radial direction as it
evolves. It is especially noticeable at the beginning of the run when the
eigenmode forms from the seeded perturbation. In order to mitigate
these types of errors we wait for some time (usually, about 1–5 Alfv�en
times) and let the system settle. The alternative approach used in
papers27,29 is to consider a weighted radial integral of the mode instead
of doing a fixed radius slice. This helps to avoid the mentioned prob-
lems but that does not well describe a growth rate of a very stretched
“thin” mode, when the mode can wrap around the domain in the axial
direction.

The time evolution of the first three harmonic amplitudes is dem-
onstrated in Fig. 2. The main harmonic n¼ 1 starts from a value of
10	10 while the other two start from the numerical noise. Eventually
they are settled by the time 10 and 15 Alfv�en units and grow with dou-
ble and triple growth rates, respectively. This is in agreement with

FIG. 2. Time evolution of the three harmonics A1, A2, and A3 of the seeded mode
with kzr0 ¼ 5 and j ¼ 0. The growth rate at a linear stage is in units of inversed
Alfv�en time Va/r0.

FIG. 3. Normalized growth c of the seeded mode as a function of kz for no shear
flow j ¼ 0. Also comparison to the ideal MHD27 and kinetic simulations (LSP).29

FIG. 4. Evolution of a mode with kzr0 ¼ 12:5, and j ¼ 0:25. The initial seeded mode tilts and stretches along the axial direction, until it gets to the shape in the right picture,
and then it slowly grows with the normalized growth rate c � 0:081Va=r0 until it gets to the nonlinear stage.
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previous results from papers.27,29 The weakly nonlinear mechanism of
such growth rates of the higher harmonics is described by Book et al.34

The dependence of the growth rate on the mode number for
shear-free flow is shown in Fig. 3. The behavior is qualitatively similar
to the results of the growth rate obtained from the local linear disper-
sion relation Fig. 1. In particular, the growth rate scales linearly with kz
at small kz, reaches its maximum value at kzr0 � 5, which corresponds
to kzqi � 0:6, and slowly decays at higher kz. These results are in good
overall agreement with the results from fully kinetic PIC simulations.29

In the shear-free flow case, the mode structure is of the shape of
two blobs of positive and negative perturbation. The structure is sta-
tionary, as the simulations are performed in a time frame where equi-
librium electric field is zero. The radial size of the structure decreases
as the wave number increases, so the mode does not change its struc-
ture much.

In the case of sheared flow, the mode drifts in the axial direc-
tion with E�B velocity, where the fields are determined by

approximately the position of the center mass of the mode in the
radial direction. Since the mode is initialized by the same type of
perturbation as for the case of zero shear, the overlap between the
eigen mode and the perturbation becomes small. Consequentially,
the mode takes considerably more time to settle and get to the eigen
state: It tilts and stretches due to the shear until it eventually gets to
the shape shown in Fig. 4. The stretching is consistent with the
shear parameter and gets stronger as j increases. This circumstance
makes the simulations less efficient, as a higher radial resolution is
needed to resolve the structure correctly. Besides, the seeded pertur-
bation now needs to be higher, because otherwise it will be washed
away by a sheared flow and the mode will take dramatically longer
time to grow from the numerical noise. Figure 5 shows how the
seeded perturbation evolves in time in a sheared flow with j ¼ 0:5.
It forms a structure which resembles an eigenmode but the ampli-
tude slowly decays in time, demonstrating a shear stabilization
effect. In high shear case j ¼ 0:75 most seeded modes are

FIG. 5. Evolution of a seeded mode with kzr0 ¼ 10, and j ¼ 0:5. The initial seeded mode tilts and stretches along the axial direction becoming very narrow in the radial direc-
tion. Such a structure slowly decays.
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immediately destroyed, as no instability is observed, though this
result is on the limit of the applicability of our numerical model.

The growth rate is measured as a function of kz for three different
values of shear. The results are shown in Fig. 6. Slight shear, up to
j¼ 0.25, is unable to stabilize the mode; it, however, makes the growth
rate smaller, which is especially noticeable for high-kzmodes.

To explain stabilization of the entropy mode by the sheared flow,
refer to the local linear growth rate obtained from the dispersion rela-
tion shown in Fig. 1. Strongly sheared flow makes the mode stretched
in the axial direction so much that its radial scale becomes very small;
therefore kr and total k become very large. As it was derived in Sec. III,
the growth rate decreases for w ¼ 0 and has a cutoff at high k for w
¼ 1. In the simulations, the mode is localized at r> r0, thus, somewhat
intermediate behavior for the growth rate can be anticipated, or in
other words, a cutoff at some large values k. This is what the shear
flow effect on the mode is—it moves it to the cutoff region by increas-
ing kr, which yields to the stabilization mechanism.

V. DISCUSSION AND CONCLUSION

Electrostatic gyrokinetic simulations are demonstrated to be a
very useful and appropriate tool for m¼ 0 modes in sheared flow Z-
pinch plasmas. Inclusion of the second order FLR polarization term in
the long-wavelength limit is shown to be sufficient to capture physics
missing in MHD models and provide adequate dependence of the
growth rate on the shear parameter j and the mode wave number kz,
as demonstrated in Fig. 3. The high-order spatial discretization nature
of the COGENT code allows speeding up the calculation dramatically.
One can find comparison of a coarse run and a fine run in Fig. 7. The
coarse run has a resolution 16� 16� 24� 24 in the R� Z � vk � l
configuration space, and the fine run has a resolution 64� 64
� 48� 32, which is 48 times greater in the total number of cells. The
coarse resolution run provided the same mode structure as the fine
resolution one. What is more important, the difference in growth rates
is less than one percent, namely cf ¼ 0.698Va/r0 for the fine run, and
cc ¼ 0.693Va/r0 for the coarse run. The speed up gain in terms of
computer time is approximately by a factor of 70. A more detailed

convergence study of the code, including difference of second and
fourth order spatial discretization, is reported elsewhere.35

The benefits of using coarse resolution gyrokinetic simulations
are even greater if compared to full kinetic or particle-in-cell simula-
tions. For example, up to 500 times speed up was achieved when a
coarse resolution was used for the same parameters of a shear-free
mode as in recent PIC simulations.29 In gyrokinetics, the fast elec-
tron gyroperiod time scale is not resolved; hence, the limitations
are either due to the time scales of the simulated processes (in our
case Alfv�en time that is much greater than the electron gyroper-
iod) or due to numerical constraints, such as CFL conditions,
which can cause a slow down of simulations for high-k modes and
high shear parameter values. The CFL constraint can be in princi-
ple overcome by using implicit time integrators. Besides, com-
pared to PIC simulations, gyrokinetic simulations do not suffer
from statistical noise; therefore, a much clearer picture of a mode

FIG. 6. Normalized growth rate c of the seeded mode as a function of kz for three
values of the shear parameter j. Red: j ¼ 0; green: j ¼ 0.1; blue: j ¼ 0.25.

FIG. 7. Comparison of the mode structure for coarse and fine runs. Both pictures
show the same mode at a linear growth stage at approximately the same time.
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structure can be obtained, including its evolution and distortion,
like shown in Fig. 5.

The validity of the electrostatic approximation is worth discus-
sing. Magnetic field changes and the electromagnetic part of the elec-
tric field are neglected in our model. A variation of the magnetic field
dB can be estimated from the equality of the kinetic and magnetic
pressures

dBB � 4pdP � 4pTdnT; (42)

where dnT denotes a small number density variation. In order to link
it to the charge density variation dn in the GPE, think about the for-
mation of the perturbation. Consider a parcel of excessive density at
some radius r. Electrons and ions feel centrifugal and lrB forces in
the radial direction and drift in the axial direction with vi;e
� 6cmi;ev2=ðqrBÞ. This drift motion creates charge separation qdn,
which can be estimated from the continuity equation

@ðqdnÞ
@t

þr � j ¼ 0; (43)

where j is the drift current and given by qẑdnTðvi 	 veÞ, and its diver-
gence has only one contribution in the ẑ direction. Therefore, dn can
be expressed in terms of dnT as follows:

dn � kzcT
xqrB

dnT; (44)

where x is substituted instead @=@t, kz instead of @=@z, and also small
electron drift contribution is ignored. From Faraday’s law, the ordering
for curl E is obtained

jr � Ej � x
c

dB � 4pxT
cB

dnT: (45)

There are two main contributions of magnetic field variation to the
system behavior. First, changing in time magnetic field creates nonpo-
tential electric field (denote as E�). We can estimate this effect by com-

paring curl and divergence of the field �E ¼ jr�E�jjr?�E?j. Second, changed

electric field and magnetic field alter particle drifts. For E� B drift,
the effect is small, once �E is small; forrB drift, the effects will be eval-
uated separately.

Compare the electromagnetic part of electric field to the potential
part jr? � E?j. Make use of the GPE Eq. (6)

qdn � minic2

B2
r? � E?; (46)

together with Eq. (14) for temperature and find the ratio of electro-
magnetic to electrostatic parts

�E ¼
jr � E�j
jr? � E?j

� 4px2minir
B2kz

¼ x2r
V2
t kz

: (47)

The quantity in Eq. (47) should be much less than unity in order to
neglect electromagnetic effects. For an ideal MHD mode, x � Vt=r0,
thus Eq. (47) reads as �E ¼ ðkzr0Þ	1 � 1. In the simulations kzr0 is
varied from 1.5 to 15, so electromagnetic effects might be important
for small kz ideal MHDmodes. Notice, however, that in the long wave-
length limit, the ideal MHD mode growth rate depends on kz linearly;
therefore, electromagnetic effect contribution remains bound and
comparable to the electrostatic one. For the entropy mode, we

anticipate to get different scaling for the growth rate7 x � kzqiVt=r0;
thus, Eq. (47) reads as �E ¼ kzq2

i =r0, which is well satisfied for all the
values for kz. The discrepancy due to the absence of electromagnetic
effects can be seen in Fig. 3: while the MHD and fully kinetic models
are found to be in good agreement for a long-wavelength part of the k-
spectra, the COGENT results are systematically lower by 10%–15%.

Compare the impact of the magnetic field variation on the drifts
to the main drift term E� B. In Eq. (4), the drift term is proportional
to qr/þ lrB; therefore, parameter �D ¼ ldB=ðq/Þ has to be small
for the electrostatic approximation to be valid. From Eq. (6), we
obtained / as

/ ¼ dn
qB2

minik2zc
2
: (48)

Make use of Eqs. (42) and (44) and substitute magnetic moment as
l � T=B to find �D:

�D ¼
kzr0x
xci

: (49)

For the ideal MHD mode, �D � kzqi and for the entropy mode
�D � ðkzqiÞ2, so drift corrections are small in the long-wavelength
limit and might be considerable otherwise, which is again demon-
strated in Fig. 3, as COGENT results start to deviate from PIC ones for
kzqi � 2.

Finally, as discussed in Sec. III, for the case of kzqi � 1, FLR
effects become important and therefore have to be treated properly,
namely, gyro-orbit averaging, correction of the gyrokinetic Poisson
equation, and the pressure term in the expression for density should
be included. This motivates us for the next step in code improvement
to incorporate all these FLR features, as well as to develop a hybrid
MHD-gyrokinetic magnetostatic code. MHD equations are to be used
in the region of small magnetic field where the gyrokinetic formalism
breaks because the parameter � ¼ x=xci is no longer small. In the
region of high plasma magnetization, both codes couple through the
pressure term: Gyrokinetics provides a proper pressure tensor for
MHD equations and MHD in turn provides time varying magnetic
field, and therefore correct drifts for the gyrokinetics. Such an
improvement should dramatically increase code applicability and
accuracy of the physical model used.
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