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ABSTRACT

Axisymmetric (m¼ 0) gyrokinetic and extended-MHD simulations of a sheared-flow Z-pinch plasma are performed with the high-order
finite volume code COGENT. The present gyrokinetic model solves the long-wavelength limit of the gyrokinetic equation for both ion and
electron species coupled to the electrostatic gyro-Poisson equation for the electrostatic potential. The extended-MHD model is electromag-
netic and includes the effects of the gyro-viscous pressure tensor, diamagnetic electron and ion heat fluxes, and generalized Ohm’s law. A
prominent feature of this work is that the radial profiles for the plasma density and temperature are taken from the fusion Z-pinch experi-
ment (FuZE), and the magnetic field profile is obtained as a solution of the MHD force balance equation. Such an approach allows to address
realistic plasma parameters and provide insights into the current and planned experiments. In particular, it is demonstrated that the radial
profiles play an important role in stabilization, as the embedded guiding center (E � B) drift has a strong radial shear, which can contribute
to the Z-pinch stabilization even in the absence of the fluid flow shear. The results of simulations for the FuZE plasma parameters show a
decrease in the linear growth rate with an increase in the flow shear; however, full stabilization in the linear regime is not observed even
for large (comparable to the Alfv�en velocity) radial variations of the axial flow. Nonlinear stability properties of the FuZE plasmas are also
studied, and it is found that profile broadening can have a pronounced stabilizing effect in the nonlinear regime.
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I. INTRODUCTION

From the dawn of magnetic fusion energy studies, the Z-pinch
concept has been considered as a possible plasma confinement config-
uration suitable for maintaining a controlled fusion reaction.1,2 The Z-
pinch configuration is a cylindrically symmetric plasma column with
an axial current inside, such that the generated magnetic field creates
an inward Lorentz force that confines the plasma. Relatively simple
cylindrical geometry and the absence of any external magnetic fields
together with a great utilization of the generated magnetic field
(b � 1) make this concept quite attractive. However, Z-pinch plasmas
are susceptible to rapid magnetohydrodynamics (MHD) instabilities,
whose growth rate ci is on the order of the inversed Alfv�en time
ci � Va=a, where Va is the Alfv�en speed and a is the characteristic
radial size of the pinch. The instabilities completely disrupt the pinch
as was observed in certain experiments.2–4 The local linear MHD anal-
ysis of these instabilities was done by Kadomtsev,5 and it was shown
that the most unstable modes arem¼ 0 andm¼ 1, called sausage and
kink modes, respectively, where m is the angular number. Apart from
MHD modes, which typically have a spatial scale of the pinch radius,
short-wavelength drift modes with scale on the order of ion gyroradius

qi and growth rate on the order6,7 cd � ðk?qiÞVa=a can develop as
well. Here, k? is the wave vector in the perpendicular to the magnetic
field direction. These modes appear naturally in gyrokinetic formula-
tion6,8 and can also be captured with extended-MHD models5,9 if
proper drift terms are retained. For the wavelengths on the order of
the ion gyroradius, these modes can be as destructive as the ideal
MHD modes; therefore, the problem of Z-pinch stabilization becomes
even more complicated.

A renewed interest to the concept was prompted by the recent
successful experiments on the sheared flow stabilized (SFS) Z-pinches,
namely, ZaP10–12 and fusion Z-pinch experiment (FuZE).13–15 The
most recent FuZE experiment reports a pinch with a current of 200 kA
stable for approximately 5000 Alfv�en times, which is drastically greater
than characteristic linear instability growth time. In both experiments,
an axially sheared plasma flow is believed to play a key stabilizing role.
While there are no reported values of shear for the FuZE, the ones
from the ZaP experiment are somewhat a fraction of the Alfv�en veloc-
ity over the pinch radius16,17 a.

The idea of using a sheared flow for stabilization of Z-pinch plas-
mas originates from early work of Shumlak and Hartman,18 where
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they demonstrated that a moderate shear is capable of stabilizing the
m¼ 1 MHD mode, provided dvz=dr � 0:1kVa, where k is the axial
wave vector and vz is the plasma flow velocity. This result was obtained
for the Kadomtsev profile,5 which is marginally stable against the
m¼ 0 MHD mode. However, these results are in disagreement with
Arber’s work19 where no pronounced mitigation of the m¼ 1 mode
with the wavelength ka¼ 10/3 was observed even for larger values of
flow shear. A more detailed recent study20 on the stability of linear
ideal MHD modes did not support the original hypotheses either.
Nonlinear ideal-MHD simulations of the m¼ 0 mode were done by
Paraschev,21 and a different stabilization condition was reported
dvz=dr � Va=a. The ideal MHDmodel is, however, of limited validity
because of relevant experimental parameters for which (i) the plasma
is hot and therefore not strongly collisional, (ii) the ion Larmor radius
is not infinitesimally small, qi=a � 0:1, and therefore, finite Larmor
radius (FLR) effects have to be taken into account. To overcome these
issues, extended-MHD,9 gyrokinetic,22 and fully kinetic23 simulations
were performed by different authors. The main difference between the
kinetic and ideal-MHD models is that the linear growth rate can
decrease for kqi � 1 due to FLR effects,24 which is not observed in the
ideal MHD simulations. The stabilizing effect by a sheared flow on the
m¼ 0 mode was observed in all the simulations, yet, no complete sta-
bilization by the moderate shear was demonstrated in the gyrokinetic
simulations.22 Furthermore, the stabilization of the ka¼ 5.0 mode
only was reported in the fully kinetic simulations,23 and no data for
other wavelengths were obtained.

The aforementioned simulations were performed for the case of
some special model profiles for density and temperature. The most
common choice was the diffuse Bennett25,26 profile, which has a
unique property of being an equilibrium solution for a fully kinetic
formulation. A noticeable feature of this profile is that it has a moder-
ate logarithmic derivative of the pressure, and depending on the adia-
batic gas index C the profile is either stable or unstable at all r for the
m¼ 0 mode.9 A realistic profile obtained from recent experimental
data13 is, however, drastically different from the Bennett model profile.
Therefore, the stability properties of the FuZE plasmas can be substan-
tially different from those obtained in the previous numerical studies.

In the present paper, we make use of the COGENT27 code to
simulate the m¼ 0 mode behavior in a realistic (also called FuZE-like)
type of pinch profiles. The simulations are performed by making use
of the electrostatic and extended-MHD simulation models. The gyro-
kinetic formulation employs the electrostatic full-F long-wavelength
approximation. This model was tested and compared22 to fully kinetic
Particle-in-Cell (PIC) simulations, and it was shown to adequately
capture physics related to FLR effects. The model is missing electro-
magnetic effects and higher order FLR effects, as well as the capability
to deal with thermal-range flow velocities. The extended-MHD model
includes a gyroviscous pressure tensor based on Braginskii formula-
tion, generalized Ohm’s law and diamagnetic electron and ion heat
fluxes in the energy density equations. As mentioned earlier, the MHD
model has a limited validity for the parameters characteristic to the
FuZE plasmas. Nevertheless, its formulation consistently include elec-
tromagnetic effects and allows for arbitrary large shear values. While a
better extension of the model is needed in order to correctly capture
collisionless ion FLR physics (for example, a Chew–Goldberger–Low
model can be considered28), the results can still provide good insights
on the plasma behavior and shear flow stabilization process. Both

models demonstrate that a moderately sheared flow is not sufficient to
provide a global pinch stabilization. In addition, the effects of a profile
shape on the stability properties have been addressed, and it is found
that profile broadening can have a pronounced stabilizing effect in the
nonlinear regime.

The paper is organized as follows. Section II contains theoretical
background including data fitting, scaling analysis, and a review on the
main results obtained in the previous work. Details and results of the
gyrokinetic simulations are shown in Sec. III. The MHD model equa-
tions and simulations are covered in Sec. IV. Speculations on possible
stabilization mechanism for broad pinch profiles are provided in
Sec. V. In Sec. VI, the main results are summarized.

II. THEORETICAL BACKGROUND
A. Realistic profiles

We define a set of functions that describe the radial dependence
of the plasma density n(r) and temperature T(r) as a “FuZE-like
profile” if these functions are obtained via a nonlinear curve fitting of
the FuZE experimental data. The data are provided in the recent work
of Zhang et al.13 In particular, the density and temperature data are
shown in Figs. 3(b) and 4(b) of the cited work, respectively. The data
are fitted with smooth analytical functions in order to be used as the
initial conditions for numerical simulations.

While there are two profiles for density provided in Ref. 13, mea-
sured at axial locations of z¼ 13.8 cm and z¼ 15.0 cm, only the for-
mer is used in the present work. The most noticeable difference
between them is observed at the interior of the pinch close to the axis,
yet the simulated mode of interest is localized close to the periphery,
thus making this difference negligible. Moreover, the data at r¼ 0 are
very noisy and irregular, so that it cannot be fitted well. Therefore,
using both profiles is unnecessary and the only one is picked for all the
simulations here.

There is an infinite amount of possible fitting functions, yet, they
have to satisfy the following constraints in order to obtain a reasonable
setup. First, the radial derivative of the total pressure at r¼ 0 should be
zero; otherwise, the curl of the magnetic field has an irregular point,
hence a divergent current density on the axis of the pinch (see Sec. II B
for more details). Second, since the simulated instabilities are localized
on the periphery,22 the match between the fitting function and the
data on the periphery is more important than in the interior of the
pinch. Third, the experimental data are provided in the interval r
2 ½0; 0:5� cm, which does not define the extension of the fitting function
at r> 0. The main driver of the linear mode5,9 (the radial logarithmic
derivative of the pressure r

P
dP
dr) and, as a result, the stability and spatial

location of the mode are fully determined by the choice of the fitting
function. The driver can be made arbitrary large by making the density
small; therefore, the fitting function should be chosen such that the
spatial location of the mode overlaps with the experimental data consid-
erably. This can be achieved by an addition of some small floor to the
density function.

Taking into account all the requirements, the following fitting
function is introduced:

nðrÞ
n0
¼ 0:05þ 0:855 � exp � r2

0:32
� r4

0:0177

� �
; (1)

where n0 ¼ 1017 cm�3, and the radius r is measured in centimeters.
Notice that the density has a floor value 0.05. As it was mentioned, it
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helps to confine the spatial perturbation of the linear mode at some
reasonable radial location. The experimental data with the applied fit-
ting are shown in Fig. 1.

The data for temperature are much more irregular and cannot be
fitted well by any smooth function. In this particular realization, the
following fitting is used:

TðrÞ
T0
¼ 0:4015þ 1:0893 � exp �8:0148ðr þ 0:26Þ2

� �
; (2)

where T0 ¼ 1:0 keV, and the radius is again in centimeters. The mea-
sured data are centered at ~r0 ¼ �0:26 cm, because the pinch in the
experiment moved as a whole from the initial axis when the measure-
ments were performed. This effect is ignored in the present research
and the pinch is assumed to be always centered. Thus, the adjusted
radial temperature profile reads as

TðrÞ
T0
¼ 0:4015þ 1:0893 � exp �8:0148r2½ � (3)

and is illustrated in Fig. 2 together with the experimental data.
The self-consistent magnetic field of the equilibrium can be

found from the force balance equationrP ¼ J� B, or

@P
@r
þ 1
8p
@ B2ð Þ
@r
þ B2

4pr
¼ 0: (4)

Here, pressure PðrÞ ¼ Pi þ Pe ¼ ½niðrÞ þ neðrÞ�TðrÞ is the total
plasma pressure, and B is the magnetic field. The solution of Eq. (4) is

B2

4p
¼ b0

r2
� 2
r2

ðr
0

~r2
@P
@~r

d~r ; (5)

where b0=r2 is the “vacuum” term, i.e., the vacuummagnetic field gen-
erated by a d-function current at r¼ 0, which is absent in the current
setup. The second term is of interest, as it describes the magnetic field
generated by plasma current. For some analytical profiles (for example,

Bennett), the integral in Eq. (5) can be computed exactly. It follows
from Eq. (4) that @P=@r should be equal to zero at r¼ 0, because oth-
erwise the integrated result scales as r3 for small r, thus the magnetic
field goes as B /

ffiffi
r
p

, which is an unphysical behavior, as the corre-
sponding current density is divergent at r¼ 0. This requirement
imposes constraints on fitting profiles, as not any arbitrary smooth
profile yields a smooth magnetic field profile. The profiles used for
density in Eq. (1) and temperature in Eq. (2) satisfy this constraint.

It is convenient to write Eq. (5) in a dimensionless form where
the following variable normalization is used: B ¼ B0�B; n ¼ n0�n;
T ¼ T0�T ; P ¼ n0T0�P , where n0 and T0 were introduced earlier,
B2
0 ¼ 4pn0T0, and n ¼ r=a. Notice that in such a normalization, char-

acteristic ion thermal and Alfv�en velocities are equal V2
ti ¼ T0=mi

¼ V2
a ¼ B2

0=ð4pn0miÞ. This fact is widely used throughout the present
paper, as all the velocities are normalized to either thermal or Alfv�en
velocity, which is the same. The solution Eq. (5) reads as

�B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
n2

ðn
0

~n
2 @�P

@~n
d~n

vuuut : (6)

The integral in Eq. (6) can be computed numerically for any set of
points ni. Similarly to the Bennett profile, the characteristic radial size
of the FuZE-like profile is defined at the position of the maximum
magnetic field, in particular, in our case it is a¼ 0.37 cm. Figure 3
shows the comparison between Bennett and FuZE-like profiles. The
latter has much sharper features of the pressure and magnetic field,
hence higher logarithmic pressure gradients and greater anticipated
linear growth rates.

B. Fluid and mass flow

A charged particle in a strong magnetic field moves freely with vk
along the field direction b and orbits around the guiding center with
the perpendicular velocity v?. The guiding center drifts in the

FIG. 1. Least squares density fitting with a smooth function. Data points and error
bars are taken from the experimental results.13 All points are taken with the same
weights.

FIG. 2. Least squares temperature fitting with a smooth function. Data points and
error bars are taken from the experimental results.13 All points are taken with the
same weights.
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perpendicular direction29 with _R, so that the guiding center velocity
and the parallel acceleration are given by

_Ra ¼ vkbþ c
mav2k
qaB
ðr � bÞ? þ

c
qaB

b� ðqar/þ larBÞ; (7)

_vka ¼ �
b
ma
þ

cvk
qaB
ðr � bÞ?

� �
� ðqar/þ larBÞ: (8)

Here, a denotes the species of the particles, ions, and electrons in this
case,ma and qa are the particle mass and charge, c is the speed of light,
l ¼ mav2?=ð2BÞ is the particle magnetic moment, and / is the electro-
static potential. In the axisymmetric cylindrical geometry, Eq. (7) sim-
plifies, and the axial component of the guiding center drift velocity
reads as

_Ra;z ¼ c
mav2k
qarB

þ c
qaB

qaEr � l
@B
@r

� �
: (9)

Assuming a Maxwellian distribution function and making use of
Eq. (9), the axial component of the mean drift velocity can be found,

Vgc;a ¼
1
na

ð
v3

_Ra;zfaðx; vÞd3v

¼ c
B

Er þ
T
qar

1� r
B
@B
@r

� �" #
; (10)

where Er ¼ � @/
@r is the radial component of the electric field. The first

term in the right-hand side of Eq. (10) is the E � B drift, and the last
term is the combination of magnetic drifts. For a given pressure and
plasma flow profiles, the electric field is uniquely defined29 from the
following equation:

vi;e
c
¼ E� B

B2
7
rPi;e � B
qni;eB2

; (11)

where q is the elementary charge, and singly ionized ions qi ¼ �qe
¼ q are considered for simplicity. Equation (11) is the expression for
the fluid velocities of ions and electrons vi;e in terms of the E � B and

diamagnetic drifts. For stationary ions vi ¼ 0, the difference between
the E � B and total drift velocity of ions and electrons Eq. (10) is illus-
trated in Fig. 4, where the parameters are those from the FuZE-like
pinch.

For an axisymmetric cylindrical geometry, Eq. (11) simplifies to

ẑ � vi;e
c
¼ Er

B
7
@Pi;e
@r

1
qni;eB

: (12)

For subthermal flows, ion fluid velocity vzi is a fraction of the thermal
velocity Vti ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
, thus the first term in Eq. (12) scales as Vti=c.

The second term on the right-hand side of Eq. (12) scales as

@Pi;e
@r

1
qni;eB

/ nT
aqnB

/ Vti

c
Vti

xcia
/ �Vti

c
; (13)

where a is the characteristic radial scale of the pinch, xci ¼ qB=ðmicÞ
is the ion cyclotron frequency and the magnetization parameter
� ¼ qi=a ¼ Vti=ðaxciÞ. In strongly magnetized plasmas, �� 1; thus,
the fluid velocity is approximately equal to the drift velocity.
Therefore, a fluid shear flow is required for the existence of the E � B
velocity shear and vice versa. This assumption is violated in the case of
FuZE-like profiles. First, the parameter � is not vanishingly small, but
instead is equal to 0:1� 0:2 depending at what location inside the
pinch it is measured. Second, the profile itself has very sharp gradients,
so the last term in Eq. (12) becomes comparable to the other terms,
therefore strong E � B velocity shear can be present even in the
absence of the fluid flow. In this work, we consider linear shear flow,
Vsh ¼ jVar=a, and the parameter j is called a shear parameter.
Figure 5 demonstrates how the E � B velocity depends on the radius
for the FuZE-like profile for 5 different values j. Figure 6 shows the
radial derivative of the E � B velocity for the same values of j. There
is a very noticeable spike of the derivative at r=a 	 1:3, where embed-
ded shear value corresponds to j 	 1:5.

The conjecture is made here, that in collisionless plasmas, the
instability dynamics is predominantly determined by the guiding cen-
ter velocity, as the motion of every individual particle is only deter-
mined by drifts. As it follows from Fig. 4, the difference between the

FIG. 3. Comparison of the Bennett and FuZE-like profiles for the same value of the
normalization n0 and T0. Both profiles have the maximum value of the magnetic
field at a¼ 0.37 cm.

FIG. 4. Axial components of the normalized drift velocities for FuZE-like pinch equi-
librium: E � B drift compared to the total ion and electron drifts. All velocities are
normalized to the Alfv�en velocity Va.
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guiding center velocity and the E � B velocity is small, especially,
when the radial derivative is considered. Assuming the conjecture is
true, the two conclusions follow. First, if there is an embedded shear of
the drift motion in the system, the amount of the fluid flow shear
required to change the system behavior should be at least comparable
to the intrinsic value of the guiding center shear. Second, if any stabili-
zation via sheared flow exists, then it should apply to the embedded
guiding center velocity shear as well, therefore addition of an extra
fluid flow shear can be both stabilizing or destabilizing, depending on
how the fluid shear is related to the embedded one. For example, for
the FuZE-like profile, positive j increases the radial derivative of the
E � B velocity, while negative j decreases (see Fig. 6); hence, more
suppression of the linear mode should be anticipated for positive j.

Returning to the comparison of different pinch profiles, notice a
peculiarity of the commonly used Bennett profile. The diamagnetic
term in Eq. (13) is independent of r for any values of the parameter �,
which means that the Bennett profile is unique, as no embedded shear
of the E � B drift is present. Moreover, even the total guiding center

drift, including the magnetic field corrections in Eq. (10), does not
depend on r either. As a consequence of that, simulations based on the
Bennett profile do not provide a general picture, as they are lacking
important physics related to the embedded guiding center drift shear.

III. GYROKINETIC SIMULATIONS

The gyrokinetic simulations are performed with the high-order
finite volume code COGENT.27 The code numerically solves the fol-
lowing equation for the gyro-distribution function fa,

@

@t
B
kafa
	 
þrR � _RaB



kafa

� �
þ @

@vk
_vkaB



kafa

	 
 ¼ 0; (14)

where rR denotes a differential operator with respect to the guiding
center coordinates, b ¼ B=B is the unit vector in the direction of the
magnetic field, Bka ¼ Bka � b, and

Bka ¼ Bþ
macvk
qa
r� b: (15)

The guiding center drift and parallel acceleration are given by Eqs. (7)
and (8), respectively. The simulations are performed in the 2D cylin-
drical configuration space (r, z) with angular symmetry assumed, and
the 2D velocity space ðvk;lÞ. The simulation domain has radial
boundaries at r¼ 0.18 and r¼ 0.82 cm, with 64 cells in the radial
direction and 32 cells in the axial direction. The domain and the den-
sity fitting function floor in Eq. (1) are chosen such that the spatial
mode is localized away from the external radial boundary at r ¼ Rmax

in order to eliminate any possible boundary stabilization effects. In the
axial direction, only one full wavelength of the mode is seeded. The
domain spans from z¼ 0 to z ¼ k, where different values of k are
tested (from 0.16 to 2.56 cm). Periodic boundary condition is applied
in the axial direction. Dirichlet boundary condition at r ¼ Rmax and
Neumann at r ¼ Rmin are used for the potential. The linear growth
rate is measured as a function of the wave vector kz ¼ 2p=k for differ-
ent values of j. More details of the simulations and the methodology
of the measurements are provided in the previous work of Geyko
et al.22

Linear growth rates obtained from the simulations are shown in
Fig. 7, and the main observations are the following. First, the growth
rate curve cðkzÞ has the same shape as the one obtained for the
Bennett case,22 namely, it has a roll-over at high kz part of the spectra.
Second, the main difference now is that the problem has become shear
direction dependent, and a moderate fluid shear (j � 0:2) can play
even a destabilizing role, if the direction is not properly chosen.
Finally, the growth rate dependence on j is quite weak, and no stabili-
zation is observed for j on the order of a fraction of unity.

All these observations are in agreement with the conjecture in
Sec. II B. Indeed, if the guiding center shear is what determines linear
mode stability, then slightly changed by the fluid flow shear (according
to Fig. 6), it does not have a significant effect on the growth rate. If
stronger shear is required for better stability, then according to Fig. 6
positive fluid flow shear j > 0 should lead to more mode stabilization
and negative shear j < 0 should do the opposite, exactly what is dem-
onstrated in Fig. 7. It also follows from the conjecture that for the fluid
flow shear to be comparable to the intrinsic E � B velocity shear, it
should be at least j 	 1:5, i.e., superthermal (or super-Alfv�enic) shear,
which is not observed in the experiments.

FIG. 5. Normalized E � B velocity as a function of radius for different values of
shear parameter j.

FIG. 6. Radial derivative of the normalized E � B velocity as a function of radius
for different values of shear parameter j.
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As no linear mode mitigation is revealed in the numerical sim-
ulations, the source of Z-pinch stabilization in the experiments
remains unclear. To address this question, we look at the nonlinear
evolution of the system simulated for different values of the domain
size in the axial direction, namely, k ¼ 0:32 and k ¼ 0:96 cm. In
both cases, linear modes with the corresponding wavelengths are
initially seeded and evolve to the nonlinear stage. Strictly speaking,
a nonlinear evolution assumes presence of all the modes supported
by the system; therefore, artificial limitation on the domain size
cuts off the long-wavelength part of the spectra and does not pro-
vide a complete physical picture. The case of the small domain
(k ¼ 0:32) is nevertheless studied both for academic purposes and
also for comparison with the similar evolution of the turbulence in
the Bennett profile case. Figures 8 and 9 show the density plots of
the nonlinear evolution for k ¼ 0:32 and k ¼ 0:96 cm modes,
respectively. The main difference is that the perturbations of the
short-wavelength mode are located on the periphery and do not
propagate into the interior of the pinch. The bulk of the pinch is
then not perturbed, and therefore, a nonlinear stability can be
claimed. In order to verify this conjecture, the evolution of the ini-
tial perturbation is diligently monitored throughout entire evolu-
tion. The maximum amplitude of the perturbations and
disturbance of the pinch occur at the time of transition from linear
to nonlinear stages [t 	 11:6 a=Va, see Fig. 8(a)], yet the perturba-
tion is not sufficient to completely disturb the pinch. Figure 8(b)
shows late time nonlinear evolution, where perturbations have
smaller amplitude and are well-localized on the periphery of the
pinch. It is not the case for the long-wavelength modes though, as
illustrated in Fig. 9. The perturbations reach the inner boundary of
the simulation domain, and, in principle, they can possibly spread
into the interior of the pinch.

It is interesting to compare the nonlinear evolution of the same
wavelength for Bennett and FuZE-like profiles, in particular, a case of
nonlinear stabilization of the FuZE-like pinch. Two similar normalized
wavelengths are chosen: kza ¼ 7:26 for FuZE-like and kza ¼ 7:5 for
Bennett cases. Figure 10 demonstrates that nonlinear perturbations of
the mode for the Bennett pinch are not confined on the periphery and

instead propagate to the inner boundary of the domain. Since no fluid
flow shear is involved (j¼ 0) in both simulations, this phenomenon is
purely due to the pinch profile shape.

IV. EXTENDED-MHD SIMULATIONS

The present gyrokinetic model suffers from the absence of elec-
tromagnetic effects that are especially important for long-wavelength
modes,22 and from the limitations on the drift velocity, which should
not exceed thermal speed. These issues can be addressed in the
extended-MHD model, also implemented in the COGENT code. The
MHD model simulates the following equations. The continuity equa-
tion reads as follows:

FIG. 8. Gyrokinetic simulations of the m¼ 0, kza ¼ 7:26 mode for the FuZE-like
profile. Plots demonstrate normalized ion gyrokinetic density distribution. Plot (a)
shows the transition from the linear to nonlinear stages, where the amplitude of the
perturbations is at maximum. Plot (b) shows the nonlinear evolution at later time,
where perturbations are localized on the periphery.

FIG. 7. Normalized growth rate of the linear m¼ 0 mode for the FuZE-like profile
as a function of the axial wave vector kza. Five different values of the shear param-
eter are considered.
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@q
@t
þr �m ¼ 0; (16)

where q 	 mini is the fluid density and m ¼ qu is the momentum
density with u 	 vi as the electron–ion mass ratio is very small. The
momentum density is governed by the MHD equation of motion

@m
@t
þr � muþ IP þ pð Þ ¼ J� B

c
: (17)

Here, p is the gyro-viscous pressure tensor, based on Braginskii’s for-
mulation. The ion and electron energy densities are defined as

ei ¼
1
2
qu2 þ Pi

c� 1
;

ee ¼
Pe

c� 1
:

(18)

The equations for ei and ee include diamagnetic heat fluxes qi and qe,

@ei
@t
þr � uðei þ PiÞ þ upþ qi

� �
¼ qnu � Eþ Qie; (19)

@ee
@t
þr � ueðee þ PeÞ þ qe

� �
¼ �qnue � E� Qie: (20)

In Eqs. (19) and (20), Qie is the ion–electron heat exchange, and ue is
the electron velocity, which is given by

ue ¼ u� J
qn
: (21)

Equations (16)–(21) are coupled with the generalized Ohm’s law,

me
@J
@t
¼ q2n Eþ u� B

c
� 1
qn

J� B
c
�rPe

� �" #
: (22)

Ampère’s law

@E
@t
¼ cr� B� 4pJ; (23)

and Faraday’s laws

@B
@t
þ cr� E ¼ 0: (24)

The diamagnetic heat flux terms qi;e are responsible for the existence
of certain drift modes in the MHD model, such as the entropy mode
studied by different authors.5,7–9 The model equations are identical to
those used in the work of Angus et al.9 with the exception that gyro-
viscosity is included here in this work. More details of the model and
MHD simulations can be found in Ref. 9.

The extended-MHDmodel is tested and compared to the electro-
static gyrokinetic one for the FuZE-like pinch profile. The growth rate
of a linear m¼ 0 mode is found for different values of the normalized
axial wave vector kza, and the results are shown in Fig. 11. The growth

FIG. 9. Gyrokinetic simulations of the m¼ 0, kza ¼ 2:42 mode for the FuZE-like
profile. Normalized ion gyrokinetic density distribution is shown during the nonlinear
stage of evolution. The perturbations are spread into the interior of the pinch.

FIG. 10. Gyrokinetic simulations of the m¼ 0, kza ¼ 7:5 mode for the Bennett pro-
file. Normalized ion gyrokinetic density distribution is shown during the nonlinear
stage of evolution. The perturbations are spread into the interior of the pinch.

FIG. 11. Comparison of shear-less normalized growth rate curves. Red: gyrokinetic
COGENT, blue: ideal MHD, green: extended MHD.
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rate roll-over effect at the high-k part of the spectra is reproduced, and
it is in a reasonable match with the one from the gyrokinetic simula-
tions.22 This effect appears in the MHDmodel due to the gyro-viscous
pressure tensor p. Interestingly, the growth rate obtained by the ideal-
MHD simulations is considerably greater than one from the extended-
MHD, which suggests that FLR effects play an important role in the
linear mode stabilization. Furthermore, this circumstance demon-
strates the significance of the pinch profile, as the difference between
the ideal-MHD, gyrokinetic, and fully kinetic simulations are much
less for the Bennett profile (Fig. 3 from the work of Geyko et al.22).

The nonlinear mechanism of the stabilization is also verified via
the extended-MHD simulations. The wavelengths of the modes are
chosen differently, yet they are of the same order that are used in the
gyrokinetic simulations, namely, kza ¼ 11:1 for the short-wavelength
and kza ¼ 3:7 for the long-wavelength mode. The results of the MHD
simulations are consistent with the gyrokinetic ones: short-wavelength
perturbations nonlinearly saturate on the periphery, while long-
wavelength perturbations penetrate into the interior and completely
disrupt the pinch.

As it is demonstrated in Fig. 11, the gyrokinetic and extended-
MHD models provide quantitatively different results for the linear
mode growth rate. The discrepancies between the models also take
place when the nonlinear evolution is considered. For example, the
mode with kza ¼ 7:26, which is nonlinearly stable in the gyrokinetic
model, is unstable in the extended-MHD model, thus, different value
of the mode wavelength was chosen to demonstrate nonlinear stability.
Similarly to Fig. 8, two snapshots of nonlinear evolution of the mode
with kza ¼ 11:1 are demonstrated in Fig. 12. The simulation domain
in the extended-MHD model is different and captures the axis of the
pinch, but the plot is drawn in the same domain as for the gyrokinetic
simulations. Figure 12(a) shows the transition from the linear to non-
linear stages where the maximum disturbance of the pinch is observed;
Fig. 12(b) shows late time nonlinear evolution. In both cases, the pinch
is nonlinearly stable.

Finally, large fluid flow shears j ¼ 61:1 are tested, where the
variation of the flow over the pinch radius is greater than the Alfv�en
speed. Even this unrealistic flow shear is shown to be insufficient to
fully mitigate linear modes. Figure 13 is a logarithmic plot of the per-
turbation amplitude of kza ¼ 3:7 mode as a function of time. The
mode is unstable for all three values of j, and the only difference is the
growth rate, which is nearly unchanged for j ¼ �1:1 and noticeably
lower for j ¼ 1:1. This observation is consistent with the previously
mentioned conclusion that, in the case of FuZE-like profile, the
amount of shear required for suppression of linear instabilities should
be at least comparable to the amount of embedded guiding center drift
shear. For the parameters of the problem, it is approximately j ¼ 1:5
(see Fig. 6). This requirement is only necessary but not sufficient,
which was demonstrated in the simulations.

V. PROFILE FLATTENING STABILIZATION

As it was shown in Sec. III, nonlinear pinch stabilization can be
achieved for short wavelengths, and the stabilization mechanism is the
pinch profile itself rather than fluid shear flow. In this section, the non-
linear stabilization is investigated in more detail by varying tempera-
ture and density profiles, while maintaining them ‘close’ to the
experimental data. For example, one can argue that experimental data
vary depending on the axial location of the measurements and is

obtained with some errors.13 As a result, fitted analytical profiles are
defined with some ambiguity, which can possibly have an impact on
stability properties of the pinch. Out of density and temperature pro-
files, the latter is worse-defined, as the fitting curve does not capture
data points even when experimental errors are taken into account (see
Fig. 2). A set of gyrokinetic simulations is performed in order to inves-
tigate the importance of the temperature profile. To that end, three
profiles with FuZE density and constant temperatures are considered:
T0 ¼ 0:5, T0 ¼ 1:0, and T0 ¼ 2:0 keV. Since pinch characteristic
radius is defined as a point where the magnetic field reaches its maxi-
mum, the new profiles have slightly larger scale a¼ 0.415 cm. Thermal
and Alfv�en velocities, and therefore growth rate normalization, change
by a factor {

ffiffiffiffiffiffiffi
1=2

p
; 1.0;

ffiffiffi
2
p

}, respectively. Figure 14 demonstrates

FIG. 12. Extended-MHD simulations of the m¼ 0, kza ¼ 11:1 mode for the FuZE-
like profile. Plots demonstrate normalized mass density distribution. Plot (a) shows
the transition from the linear to nonlinear stages, where the amplitude of the pertur-
bations is at maximum. Plot (b) shows the nonlinear evolution at later time, where
perturbations are localized on the periphery.
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comparison of the normalized linear mode growth rate curves for all
three constant temperature profiles and a shearless FuZE profile. As
expected, the difference of the growth rates for the first three profiles is
negligible, because the dynamics is determined by the plasma magneti-
zation � ¼ Vti=ðaxciÞ that is independent of temperature for fixed
density, as B2

0 ¼ 4pn0T0 from the normalization. However, the differ-
ence of the growth rate between FuZE and constant temperature pro-
files is also relatively small. The shape and the amplitude of the curves
are very similar and the main discrepancy is due to scale normalization
(a¼ 0.415 cm instead of a¼ 0.37 cm). The similarity also persists
when linear mode structure and nonlinear pinch evolution are consid-
ered. These simulations demonstrate that the spatial variation of the
temperature in the FuZE experiment does not play an important role
in stability properties of the pinch.

To study stabilizing role of the density profile, consider the fol-
lowing family of fitting profiles:

nðr; pÞ ¼ 0:05þ 0:855 � p

þ0:855 � ð1� pÞ � exp � r2

0:32
� r4

ð0:0177þ pÞ

 !
;

(25)

where p is a flattening parameter. The dependence of the density curve
on p is shown in Fig. 15. The temperature is kept constant and equal
to T¼ 1.0 keV for simplicity, since proven to be unimportant. As p
increases, the match between the experimental data and the fitting
curve becomes worse, so there is no point to consider p> 0.04 if the
experimental profile is implied. While the model is indeed inaccurate
and should not be considered as a rigorous analysis, it is illustrative
and suitable for better understanding of the stabilization phenomena.

Simulations for different values of the parameter p and different
wavelengths have been performed. The first observation is that linear
mode stabilization cannot be achieved via profile flattening. The growth
rate decreases as p gets larger, yet even for p¼ 0.04, which is very far
from the experimental data, the normalized growth rate of the most
unstable mode (k ¼ 0:32 cm) only decreases from 1.05 to 0.6.

The nonlinear behavior is, however, significantly different. The
nonlinear perturbation shifts from the interior of the pinch to the
periphery, very similar to as it was observed for short-wavelength
modes for the FuZE-like pinch in Fig. 8. A density plot of the nonlin-
ear evolution of k ¼ 1:28 cm mode is demonstrated in Fig. 16. This
mode is shown completely unstable in both gyrokinetic and extended-
MHD simulation. For the test profile with p¼ 0.04, all of the perturba-
tions are located at r> 0.4, which is at the outer periphery of the pinch.
Thus, the interior remains unperturbed and global pinch stabilization
can be claimed.

The flattening of the profile basically pushes the instabilities to
the periphery and exploits the nonlinear stabilization mechanism
described for the short-wavelength modes. Nevertheless, it remains
arguable how robust this mechanism can be as the required modifica-
tions to the profiles can be so large that they might not adequately rep-
resent the experimental data.

VI. DISCUSSION AND CONCLUSION

The stability properties of m¼ 0 modes in a FuZE-like type of a
Z-pinch have been studied in the present work. The pinch profile is

FIG. 13. Logarithmic plot of the amplitude of a linear mode with kza ¼ 3:7 as a
function of time for three values of the shear parameter j: �1.1, 0.0, and 1.1. In all
three cases, the mode is unstable.

FIG. 14. Normalized growth rate of the linear m¼ 0 mode for the shearless (j¼ 0)
FuZE-like profile (black) and three profiles with constant temperature (red, green,
blue) as a function of the normalized axial wave vector kza.

FIG. 15. Possible relaxation of the density profile fitting curve for five different val-
ues of the flattening parameter p in Eq. (25).
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shown to play an important role in both the growth rate of linear
modes and stabilization possibilities via axially sheared fluid flow. The
key difference of any realistic profile, including the FuZE-like one,
from the model Bennett profile is that the particle guiding center
velocity has an intrinsic embedded shear, even for a zero fluid flow.
Unlike the Bennett case, the presence of a fluid flow shear does not
necessarily lead to the mode mitigation and the reduction of the
growth rate, but can also make the system even more unstable. The
intrinsic guiding center flow, however, for the parameters of the FuZE
experiment, has quite a pronounced (up to Alfv�en speed over the
pinch radius) local shear; thus, no moderate (sub-Alfv�enic) flow shear
is sufficient to change the instability behavior drastically.

These conjectures have been confirmed by numerical simulations
performed with the COGENT code. Both electrostatic gyrokinetic and
extended-MHD models agreed that the growth rate of the linear
m¼ 0 mode is not considerably affected by a subthermal fluid shear
flow. The changes of the growth rate corresponding to the sign of the
applied shear found to be consistent with the guiding center drift pic-
ture. The nonlinear stabilization of the short-wavelength modes
(ka � 7:5 in gyrokinetic, ka � 11:1 in extended-MHD simulations)
has been observed. The mechanism of such stabilization is due to non-
linear saturation of the modes on the pinch periphery such that the
interior of the pinch remains unperturbed. The global pinch stability
has not been achieved, as the mechanism is unable to stabilize long-
wavelength modes.

The results presented in this work do not support the conjecture
that Z-pinch stabilization observed in some experiments is due to a
sheared axial flow of the plasma. It is shown that if a realistic pinch
profile is considered, no sub-Alfv�enic fluid flow shear is sufficient for
stabilization of linear modes. Relaxation of pressure gradients,
described in Sec. V, is not sufficient either. A possible explanation is
that the linear modes are always unstable and the global pinch stability

is achieved by a combination of nonlinear saturation of the modes and
finite Larmor radius effects. In order to proceed and investigate this
phenomenon thoroughly, more detailed computational models are
needed. To that end, higher order FLR effects are developed, included
and being tested in the COGENT code, as well as further improve-
ments of the extended-MHDmodel are being done.

The failure of the present model to adequately describe experi-
mental observations might be also due to misinterpretation of experi-
mental data. For example, a commonly accepted assumption of a
stationary axisymmetric pinch might be invalid, since not realized in
experiments. In this case, a large series of experiments has to be per-
formed in order to verify a proper setup for analytical models. This is
a subject of future research and out of scope of the present work.
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