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ABSTRACT

In the present work, electrostatic drift kinetic simulations of parallel plasma transport within the tokamak scrape-off layer (SOL) are con-
ducted using the COGENT code. The SOL configuration is represented in one-dimensional slab geometry, incorporating a heat source local-
ized in the midplane. The heat source parameters correspond to those characterizing edge-localized modes observed in the Joint European
Torus (JET) tokamak. The numerical model includes kinetic treatment of both ions and electrons, a simplified model for the gyrokinetic
Poisson equation that allows one to step over short time scales associated with fast electrostatic shear Alfv�en waves, and the logical sheath
boundary condition (LSBC) that enforces global system quasineutrality. A third-order accurate LSBC is derived to be consistent with the
third-order accurate upwind advection scheme utilized in the code, and it was shown to noticeably impact the simulation results, especially
parallel heat flux at the target plate. The findings of this study are in agreement with results from preceding fluid and kinetic simulations.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0230913

I. INTRODUCTION

Tokamak fusion reactors, operating under high-performance H-
mode1,2 conditions, are susceptible to the occurrence of edge-localized
mode instabilities.3,4 These instabilities have the potential to rapidly
expel hot plasma into the scrape-off layer (SOL).5–7 The resulting ener-
getic particles, which follow trajectories parallel to the magnetic field
lines within the scrape-off layer, can lead to significant energy deposi-
tion onto the plasma-facing components (PFCs). This deposition, in
turn, can trigger erosion, damage, and the release of impurities into the
core plasma.8,9 Accurate numerical simulations of the heat pulse prop-
agation and the total power load to the PFCs hold pivotal importance
for both theoretical studies aimed at comprehending underlying physi-
cal phenomena, as well as future experimental planning efforts.

A rigorous numerical analysis of the heat pulse propagation
caused by edge-localized modes (ELMs) in the scrape-off layer of a
tokamak necessitates simulations of plasma turbulence in a curved
tokamak geometry, encompassing both parallel and perpendicular
plasma transport as well as integrated ELM modeling.10,11 However,
the complexity of this problem often leads to its treatment in a simpli-
fied manner. A test case, derived from experiments conducted on the
JET,12 involving the propagation of an ELM-induced heat pulse along
the SOL to a divertor target plate, has been used as a benchmark in
recent literature. This test case is confined to a single spatial dimension

and models an ELM as an intense heat source near the midplane with-
out directly simulating the magnetohydrodynamic instabilities and
reconnection processes that drive the ELM. Despite these simplifica-
tions, this approach is valuable for testing simulation codes and gain-
ing insights into the physics of parallel heat propagation and divertor
heat fluxes.

Early investigations by Bergmann13 using a 1D1V particle-in-cell
(PIC) code revealed a sharp spike in the electron heat flux on the target
plate immediately following the ELM crash, accompanied by a rapid
increase in sheath potential. These studies indicated that the electron
contribution to the total target heat flux was minimal. Takizuka14 later
employed a 1D2V PIC model for electrons and a 1D3V model for
ions, confirming similar results. However, in the collisionless limit, the
initial spike in electron heat flux was significantly greater. It is note-
worthy that the plasma parameters used in these studies differed from
those in the JET experiment that was later fixed by Pitts.7 In 1D1V
PIC simulations that Pitts performed, the electron contribution was
around 30% of the total ELM energy, with results aligning well with
experimental observations.

Various numerical tools have been utilized to address this prob-
lem, including 1.5D3V PIC simulations,15 a Vlasov–Poisson model,16

and the BOUTþþ framework,17 which enabled comparisons between
non-local and diffusive heat flux models for the scrape-off layer.
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A comprehensive benchmark of fluid, Vlasov, and PIC approaches to
this problem was compiled by Havlí�ckov�a,18 where it was noted that
fluid models lacked a fast kinetic electron response for the parallel heat
flux. Of particular interest for the present work are the gyrokinetic sim-
ulations conducted using the Gkeyll19 and GENE20 codes, which have
demonstrated consistency with the results from PIC and Vlasov kinetic
models.18 Both studies employed identical simulation setups, boundary
conditions, and models for the electrostatic potential, making them
excellent benchmarks for comparison.

The problem was later revisited using the gyrokinetic
COGENT code,21 which employed magnetized kinetic ions and a
simplified Boltzmann electron model. Despite yielding results that
qualitatively aligned with earlier kinetic and fluid modeling investi-
gations, these outcomes omitted important electron kinetic effects.
Notably absent was the swift spike in the parallel heat flux observed
during transit electron times, a phenomenon previously documented
in prior studies.18–20 This discrepancy prompted a motivated effort
to enhance the existing model by introducing magnetized kinetic
electrons into the framework. In order to ensure a consistent and
equitable comparison, we opted to adopt the test case established
by Pitts7 and repeated by other authors. In particular, our model
assumes one-dimensional (1D) geometry and the ELM heat pulse
that is represented as a source of hot particles in the midplane. It
also includes the logical sheath boundary condition (LSBC) for elec-
trons to ensure global charge conservation and an algebraic model
for the electrostatic potential (see works of Shi19 and Pan20) to miti-
gate severe computational constraints of fast electrostatic Alfv�en
waves. In this study, we conduct a comprehensive analysis of the
latter two issues, resulting in several key findings.

The algebraic model for the electrostatic potential is governed by
a dimensionless parameter ðkqÞ20, which quantifies the strength of the
potential response to local deviations from charge quasineutrality (see
Sec. IIIC). Although this model has been widely adopted in the litera-
ture, a comprehensive validation has not been performed to the best of
the authors’ knowledge. Specifically, the appropriate value for the
parameter ðkqÞ20 required to ensure both efficient simulations and reli-
able results has remained uncertain. We tested this model by studying
the propagation of electrostatic shear Alfv�en waves and identified a
finite range of the ðkqÞ20 parameter that is optimal for accelerating sim-
ulations while maintaining an adequate level of charge quasineutrality.
We tested different advection schemes and demonstrated that the
first-order upwinding method was unusable over system time scales
determined by ion transit times. This advection method caused exces-
sive numerical heating of electrons, yielding unphysical simulation
results. To address this issue, we employed a third-order advection
scheme and developed the logical sheath boundary condition consis-
tent with the order of the advection method. Additionally, we demon-
strated that conducting simulations with finite collisionality is
preferable for achieving optimal results, since collisions help to miti-
gate numerical artifacts, such as Gibbs oscillations, which are present
when using high-order advection methods.

The paper is organized as follows. Basic equations and geometry
are described in Sec. II. The gyrokinetic Poisson equation (GPE) and
the algebraic model for the electrostatic potential are discussed in Sec.
III. Implementation of the LSBC is derived in Sec. IV. Simulation setup
and results are provided in Sec. V. Finally, we summarize our results in
Sec. VI and discuss possible future improvements.

II. PROBLEM FORMULATION
A. Geometry

Simulations encompassing the propagation of ELM heat pulses
have been executed employing the established test case configuration
from preceding studies.18–21 The intricate geometry inherent to the
tokamak scrape-off-layer is substituted with a simplified 1D slab
geometry. In this setup, all quantities exhibit variations solely in the
poloidal ŷ direction. The magnetic field denoted as B remains constant
in space and time, and it forms an angle h with the toroidal direction
ẑ; thus, it reads as

B ¼ B0b̂ ¼ B0 x̂ cosðhÞ þ ŷ sinðhÞð Þ; (1)

where B0 is the amplitude, and b̂ is the unit vector in parallel direction,
i.e., along the magnetic field line. The simulation domain spans in the
poloidal direction from �Ly to Ly where the divertor target plates are
located. The domain length is related to the connection length of the
scrape-off-layer L as 2Ly ¼ sinðhÞL. The ELM heat pulse is repre-
sented as a symmetric steady state source of hot particles with the scale
Ls in ŷ direction acting for 200ls (see details in Sec. VA). The sche-
matics of the problem geometry are shown in Fig. 1.

Owing to the design of the COGENT code, we have to consider a
two-dimensional (2D) problem with no dynamics and uniform distri-
bution of all physical quantities in the perpendicular x̂ direction. We
use four cells in the x̂ direction, which correspondingly slow down the
performance of our simulations. While our current work is focused on
removing this design limitation, it serves as a reliable means to demon-
strate the absence of perpendicular dynamics and validate the applica-
bility of the assumed 1Dmodel.

B. Gyrokinetic formulation

The finite volume continuum gyrokinetic code COGENT solves
for time evolution of the full gyrokinetic probability distribution func-
tion (PDF) faðR; vk; lÞ for species a,

@ga
@t

þrR � _Raga
� �

þ @

@vk
_vkaga
� � ¼ �S þ �C : (2)

Here, R is the particle guiding center coordinate; hence, rR is the dif-
ferential operator with respect to R; vk is the parallel velocity of the

FIG. 1. Illustration of the one-dimensional slab geometry used in the simulations.
Here, unit vectors ðx̂ ; ŷ ; ẑÞ form an orthogonal basis, where ŷ correspond to the
poloidal and ẑ to the toroidal directions of the tokamak. Another basis is made of
unit vectors ðx̂ ; b̂; n̂Þ, where b̂ is a vector in the direction parallel to the magnetic
field B and it makes an angle h with ẑ . Unit vector n̂ is orthogonal to both x̂ and b̂.
The domain is limited in y-direction by divertor target plates at 6Ly , and the heat
source that represents the ELM pulse is located in the midplane at �Ls < y < Ls.
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particle, i.e., the velocity of free streaming along the magnetic field line
direction b̂; l ¼ mav2?=2B is the magnetic moment, which is con-
served in the gyrokinetic approximation; qa and ma are the particle
charge and mass, respectively, ga ¼ B�

kafa is the distribution function
multiplied by the Jacobian of the transformation to the gyrokinetic
variables,22 with

B� ¼ Bþ cvkma

qa
r� b̂; (3)

and c is the speed of light in vacuum. On the right hand side (RHS) of
Eq. (2), �S ¼ SðR; vk; l; tÞ is the source function, and �C ¼ C½fa; fa� is
the collision operator with only like-species collisions employed in this
work. In the collisionless and sourceless case, the evolution of the PDF
is a pure advection in the reduced phase space R ¼ R; vk; lg

�
.

Adopting the geometry of the problem from Sec. IIA, one obtains the
guiding center velocity,

_R ¼ b̂vk þ x̂c
EyBz

B2
� ŷc

ExBz

B2
þ ẑc

ExBy

B2

¼ b̂vk þ x̂c
EyBz

B2
: (4)

All terms that contain Ex vanish due to the 1D nature of the problem,

and the last term x̂c EyBz

B2 represents a uniform E � B drift. In Eq. (3),

r� b̂ ¼ 0, therefore B� ¼ B0 and the only difference between fa and

ga is the scaling factor B0. Projections of the vector b̂ to ŷ and E to b̂
both yield a factor of sinðhÞ, as follows from Eq. (1), thus, the modified
Eq. (2) reads as

@fa
@t

þ vk sinðhÞ @fa
@y

þ qaEy sinðhÞ
ma

@fa
@vk

¼ Sþ C; (5)

where the source and collision terms are rescaled as B0S ¼ �S and
B0C ¼ �C .

Equation (5) combined with the gyrokinetic Poisson equation
(GPE) forms the gyrokinetic formalism that describes the orbit-averaged
motion of magnetized particles. This formalism generally incorporates
low-order drift terms and higher-order gyro-terms, such as phase aver-
aging and polarization correction in the GPE.23 However, due to the
simplicity of the geometry adopted in this study and the algebraic model
for the Poisson equation detailed in Sec. IIIC, the current formalism
reduces to drift kinetics, thereby justifying the title of this work.

III. ELECTROSTATIC POTENTIAL
A. Gyrokinetic Poisson equation

The electrostatic gyrokinetic equation Eq. (5) requires the electric
field, which is obtained through the solution of the gyrokinetic Poisson
equation24 for the potential /

qðni � neÞ ¼ �r2/
4p

�
X
a

r? � q2ana
maX

2
c;a

r?/

 !
; (6)

and

E ¼ �ŷ
@/
@y

: (7)

Here, Xc;a is the cyclotron frequency given by Xc;a ¼ qaB=ðmacÞ and
the sum over species in the right hand side (RHS) of Eq. (6) has

electron and ion terms. The electron contribution can be neglected,
since for ne � ni and for q ¼ qi ¼ �qe assuming two species plasma
with singly ionized ions we obtain

q2i ni
miX

2
c;i

¼ q2nim2
i c

2

miq2B2

¼ mi

me

q2nem2
e c

2

meq2B2
¼ mi

me

q2ene
meX

2
c;e

 !
� q2ene

meX
2
c;e

: (8)

The first term in the RHS of Eq. (6) corresponds to the vacuum part of
Poisson equation, while the last term is the polarization correction.
The last term is dominant since

4pq2i ni
mi

m2
i c

2

q2B2
0
¼ c2

V2
A
� 1; (9)

where V2
A ¼ B2

0=ð4pminiÞ is the Alfv�en velocity, and for the parame-
ters of simulations provided in Table I, c2=V2

A � 2 � 103 � 1; there-
fore, the vacuum term can be omitted.

The differential operator in the last term of Eq. (6) is perpendicu-
lar to the magnetic field direction b̂. In a different orthogonal coordi-
nate system ðx̂; b̂; n̂Þ shown in Fig. 1, n̂ ¼ ẑ sinðhÞ � ŷ cos ðhÞ;
hence, the perpendicular gradient of the potential is simplified to
r?/ ¼ �n̂ @/

@n and the divergence operator is given by

mic2

B2
r? � nir?/ð Þ ¼ mic2

B2
0

@

@n
ni
@/
@n

� �
: (10)

Following the chain rule, one obtains

TABLE I. Parameters of the simulations. Here, n0, T0, L0, and V0 are COGENT nor-
malization units for density, temperature, length, and velocity, respectively.

Description Label Value

Density normalization n0 1013 cm�3

Temperature normalization T0 100 eV
Magnetic field B0 3 T
Magnetic field angle h 0:1047 rad
Mass normalization m0 1:673 � 10�24 g
Velocity normalization V0 ¼

ffiffiffiffiffi
T0
m0

q
9:796 � 106 cm=s

Ion thermal velocity Vti ¼ V0

ffiffiffiffiffi
m0
mi

q
6:927 � 106 cm=s

Electron thermal velocity Vte ¼ V0

ffiffiffiffiffi
m0
me

q
4:197 � 108 cm=s

Alfv�en velocity VA ¼ B0ffiffiffiffiffiffiffiffiffiffiffi
4pmin0

p 1:463 � 109 cm=s

Parallel connection length L 8000 cm
Length normalization L0 ¼ L sinðhÞ 836:2277 cm
Source length Ls 130:661 cm
Ion cyclotron freq. Xci ¼ qB0

2cm0
1:436 � 108 s�1

Electron cyclotron freq. Xce ¼ qB0
cme

5:273 � 1011 s�1

Ion gyroradius qi ¼ Vti=Xci 4:824 � 10�2 cm
Electron gyroradius qe ¼ Vte=Xce 7:959 � 10�4 cm
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@

@n
¼ @y

@n
@

@y
þ @z
@n

@

@z
¼ @y

@n
@

@y
¼ �cosðhÞ @

@y
; (11)

and the gyrokinetic Poisson equation is transformed to the following:

0 ¼ ðni � neÞ þmic2

qB2
0
cos2ðhÞ @

@y
ni
@/
@y

� �
: (12)

B. Linear analysis

In this section, we derive and analyze the dispersion relation for
linear perturbations in the system of Eqs. (5) and (12). The sourceless
equilibrium solution (@@t ¼ 0) of Eq. (5) is an arbitrary smooth function

of ðmav2k=2þ q/Þ, where Ey ¼ � @/
@y . Based on the natural assumption

of Maxwellian equilibrium solution, we find the dispersion relation
using linear perturbation theory. In particular, consider small oscillat-
ing perturbations of the potential ~/ and the distribution function ~f a
characterized by frequency x and wave vector ky ,

/ ¼ ~/ expð�ixt þ ikyyÞ; (13)

fa ¼ n0
ma

2pTa

� �3=2

exp �
mav2k
2Ta

� laB
Ta

 !

þ ~f a expð�ixt þ ikyyÞ: (14)

Assuming stationary ions and making use of the relation ~Ey ¼ �iky ~/,
substitute the perturbation of the electron distribution function from
Eq. (14) into Eq. (5)

�i�x sinðhÞ~f e þ iky~f evk sinðhÞ þ
ikyq~/ sinðhÞ

me

@f0;e
@vk

¼ 0; (15)

where �x ¼ x= sinðhÞ. In the limit �x � kyvk, the plasma dispersion
function can be Taylor expanded; thus, the expression for the per-
turbed density reads as

~ne ¼
ð
vk ;l

dvkdl~f ¼ q~/ky
me

ð
vk;l

dvkdl

@f0;e
@vk

�x � kyvk

� q~/ky
�xme

ð
vk ;l

dvkdl
@f0;e
@vk

1þ kyvk
�x

� �
� � q~/k2yn0

�x2me
: (16)

Finally, ~ne from Eq. (16) and the gyrokinetic Poisson equation Eq. (12)
yield the dispersion relation for linear waves

x2 ¼ mi

me
X2

c;i �
sinðhÞky
� �2
cosðhÞky
� �2 ¼ V2

tek
2
k

q2s k
2
?
: (17)

Here, Vte is the electron thermal velocity V2
te ¼ Te=me, Te is the char-

acteristic electron temperature, k? ¼ cosðhÞky , kk ¼ sinðhÞky , and
q2s ¼ Te=ðmiXc;iÞ is the ion gyroradius.

The dispersion relation in Eq. (17) is the electrostatic limit of the
shear Alfv�en waves25–27 (ESAWs). The right-hand-side of Eq. (17) is
written in the way it widely appears in the literature where it is typi-
cally argued19 that the frequency can become very large for small k?qs
(for example the smallest possible k? resolved on the computational

grid); thus, the numerical stability of simulations should be considered
carefully, once these type of waves emerge. As a result, a tight time step
constraint25 such as Dtx�1 should be enforced. The issue is mitigated
in the electromagnetic formulation, as the perturbations from the vec-
tor potential Ak yield an additional term28 in the denominator in Eq.
(17), in particular k2? ! k2? þ x2

pe=c
2, where x2

pe ¼ 4pq2ne=me is the

electron plasma frequency. Notice, however, that in the present 1D
slab geometry, parallel and perpendicular components of the wave vec-
tor are related to each other; therefore, the argument of largex at small
k? is not valid. Instead, the frequency does not depend on ky at all and

equals x ¼ Xci tanðhÞðmi=meÞ1=2. For the parameters of the simula-
tions (see Table I), tanðhÞ ¼ 0:1051, mi=me ¼ 3670:5, thus,
x ¼ 6:37Xci. Even though x does not grow unboundedly large for
k? ! 0, the values greater than the ion cyclotron frequency eliminate
the benefits of the gyrokinetic approximation. In order to mediate this
issue, we adopt an algebraic potential model employed in Refs. 19 and
20 that imposes a lower bound limit on k? in the denominator on the
right hand side of Eq. (17). It is worth mentioning that using Vte and
qs in Eq. (17) might be confusing, since both these quantities depend
on ambiguous electron temperature that varies in space and time dur-
ing simulations. Instead, it is better to use the COGENT normalization
temperature T0 so that Vte;0 ¼ T0=me and q20 ¼ T0=ðmiXc;iÞ where
both are constants and have the meaning of the characteristic electron
temperature and ion gyroradius.

C. Algebraic model for the potential

The algebraic model for the electrostatic potential was used in
gyrokinetic simulations conducted by Shi19 and Pan.20 The fundamen-
tal concept behind this model is the substitution of the differential
operator in Eq. (12) with a predetermined constant value. Although
this model was utilized in simulations and yielded reasonably satisfac-
tory outcomes, it warrants more thorough examination and scrutiny.
In this context, we revisit the model, subjecting it to a more detailed
and rigorous examination to better understand its suitability and
applicability.

The gyrokinetic Poisson equation [Eq. (12)] in dimensionless
units reads as

0 ¼ ð�ni � �neÞ þ T0

mi
�m

2
i c

2

q2B2
0
� cos

2ðhÞ
L20

@

@�y
�ni
@�/
@�y

 !
; (18)

where normalizations are given in Table I such that �na ¼ na=n0,
�y ¼ y=L0, �/ ¼ q/=T0. Assuming for demonstration purposes that
the ion density �ni inside the differential operator on the right-hand-
side of Eq. (18) is constant, the equation can be analyzed in Fourier
space where all quantities Z are represented as a sum of harmonics
�Z ¼Pky

Zky e
þiyky with complex amplitudes Zky . The relation between

�/k and the charge density �nik � �nek is given by

ð�nki � �nkeÞ
�ni

¼ T0

mi
�m

2
i c

2

q2B2
0
� cos

2ðhÞ�k2y
L20

�/k: (19)

The denominator on the left-hand-side of Eq. (19) contains the ion
density that is assumed to be constant; thus, the subscript k is omitted.
The numerical coefficient in front of �/k characterizes the potential
response to the charge density variations, and this response is lower
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for higher ky modes. We denote this coefficient as ðkqÞ20, and it can be
viewed as the product of the ion gyroradius and some ky since

ðkqÞ20 ¼
T0

mi
�m

2
i c

2

q2B2
0
� cos

2ðhÞ�k2y
L20

¼ V2
ti;0

X2
ci

� cos
2ðhÞ�k2y
L20

¼ V2
ti;0

X2
ci

k2? ¼ ðqi;0k?Þ2: (20)

Ignoring the constant potential shift, i.e., �ky ¼ 0 mode, the smallest �ky
resolved in the simulations (corresponding to a half of wavelength) is
�ky ¼ p=2, which corresponds to one half of the wavelength. The larg-
est �ky is the Nyquist frequency, namely, �ky ¼ pNy for a grid with Ny

computational cells. For the parameters of simulations from Table I
and Ny ¼ 128 that was used for the production runs, we obtain

ðkqÞ20;min ¼ 8:207 � 10�9;

ðkqÞ20;max ¼ 5:379 � 10�4:
(21)

According to the design of the algebraic potential model, the coef-
ficient ðkqÞ20 is a constant in space and time; therefore, going back
from Fourier to coordinate space, the reduced GPE reads as

�ni � �ne

�ni
¼ ðkqÞ20�/: (22)

The most natural idea is to choose the parameter ðkqÞ20 such that it
corresponds to the dominant value of �ky in the spectrum of �/.
However, for smooth profiles of the initial plasma parameters and the
ELM heat source, �ky is close to �ky;min; hence, ðkqÞ20 is very small imply-
ing that there are no dominant modes with high �ky in the Fourier spec-
trum. That in turn imposes strict constraints on the time step and
eliminates the premise of using the algebraic model at all. On the other
hand, in the case of unphysically large ðkqÞ20, the local charge quasi-
neutrality is not established, since the potential and electric field
response are too weak. In order to select the proper value of the ðkqÞ20
parameter, we identify the following desired requirements:

• Convergence. The results of the simulations should not vary
noticeably when the parameter ðkqÞ20 is changed by an order of
magnitude. The results here are assumed to be some global obser-
vations, for example, the total parallel heat flux on the target
plate. We ignore small scale noise-like effects such as ESAW beat-
ing. The stability of the results does not necessarily guarantee the
correctness; however, in the opposite case, the model cannot yield
quantitatively reliable results, since there is no distinguished value
of ðkqÞ20.

• Time step constraint. Using the explicit Runge–Kutta time inte-
gration scheme, the time step is limited by the Courant–
Friedrichs–Lewy (CFL) constraint.29 Skipping some complicated
algebra that leads to corrections based on the advection scheme,
the maximum time step scales as Dt ¼ min½Dy=vy�. Typically, for
a fixed computational grid, hence fixed Dy, the maximum veloc-
ity is determined by super thermal electrons. However, at some
small ðkqÞ20, the phase velocity of the ESAW can become faster;
therefore, the maximum time step is dominated by the Alfv�en
wave. Our objective is to minimize or altogether circumvent such
situations to enhance computational efficiency.

• Quasineutrality. Ideally, we would like to keep local charge quasi-
neutrality on the same level as the original gyrokinetic Poisson
equation does, which is not possible if large ðkqÞ20 values are
used. Nonetheless, it is important to note that the total charge of
the system may not be conserved precisely throughout the simu-
lations. Factors contributing to this deviation could include leak-
age of the distribution function through the upper velocity
boundary of the computational domain or imperfections in the
boundary conditions. If the code can accommodate a certain
degree of global quasineutrality violation, we may anticipate that
local quasineutrality would be similarly affected, potentially
establishing a threshold value permissible within the algebraic
model. Figure 2 demonstrates how the maximum difference
ð�ni � �neÞ during a test run depends on ðkqÞ20. Local quasineutral-
ity of 1% is achieved at ðkqÞ20 ¼ 0:333.

• Resolution of ESAWs. By incorporating the algebraic model for
the electrostatic potential into the framework, the dispersion rela-
tion presented in Eq. (17) undergoes the following modifications:

x2 ¼ T0

me

sin2ðhÞk2y
ðkqÞ20

¼ k2yV
2
te;0 sin

2ðhÞ
ðkqÞ20

; (23)

where Vte;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T0=me

p
. The phase velocity of the electrostatic

shear Alfv�en wave is determined as

Vph ¼ x
ky

¼ Vte;0 sinðhÞ
ðkqÞ0

; (24)

so it is constant for all wavelengths unlike the original gyrokinetic
Vlasov–Poisson model where it is infinite for k? ! 0 as follows
from Eq. (17). The parameter ðkqÞ20 should be chosen in such a
way that the ESAW is resolved in simulations.

We conducted an analysis of the appropriateness of the algebraic
model, taking into account the specified criteria mentioned above. To
assess its suitability, we designed a specialized test case involving a col-
lisionless plasma comprised of deuterium ions and electrons. This
plasma contained no additional sources and was simulated within a

FIG. 2. Logarithmic plots of the normalized transit time str ¼ V0=Vph and normal-
ized maximum charge density Dn as a function of the ðkqÞ20 parameter. Blue dots:
measured str . Red dotted line: Analytic result from Eq. (24). Green dots: measured
Dn. Magenta dotted line: linear approximation of the measured data.
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1D geometry framework, characterized by the constant magnetic field
as described in Sec. II A. The ESAW was seeded by the initial profiles
for normalized densities and temperature of ions and electrons,

�ni;e ¼ 1:0þ 0:02 exp �p2ð�y � 0:5Þ2
� �

;

�T i;e ¼ 1:0;

�y 2 0; 1½ �:

At the beginning of the simulations, fast electrons in the density bump
stream away from the midplane at �y ¼ 0:5 that creates charge imbal-
ance and launches ESAWs. The waves propagate with the phase veloc-
ity given in Eq. (24) toward to the boundaries of the simulation
domain and reappear on the opposite side as the periodic boundary
conditions are used. In these test runs, we collected statistics on how
the transit time of the waves s ¼ L0=Vph and the maximum charge
density Dn depend on the parameter ðkqÞ20. We also studied how the
critical time step that determines stability of the simulations depends
on ðkqÞ20. The results of the simulations are visualized in Fig. 2.
Normalized transit time str is measured by approximating tracers of
the ESAWs (vivid diagonal lines in the top plot of Fig. 3) by straight
lines and by measuring the time it takes such a straight tracer to cross
the computational domain. It is then compared to the normalized ana-
lytical expression that follows from Eq. (24):

sa ¼ L0
Vph

V0

L0
¼ m0

me

sinðhÞ
ðkqÞ0

; (25)

and it was shown to be in good agreement for all values of ðkqÞ20 less
than 0.1. The wave structure for ðkqÞ20 ¼ 0:1 and greater gets smeared
out quickly, which is depicted in the bottom plot of Fig. 3. In fact, the
dispersion relation in Eq. (17) is no longer valid since it was derived
under the assumption x � kyvk sinðhÞ. Substituting x from Eq. (23)
and assuming that vk 	 Vte, the applicability condition reads as

ðkqÞ20 
 1 that is not satisfied for ðkqÞ20 � 0:1. The maximum charge
density Dn is defined as the maximum value of ð�ni � �neÞ over all the
domain and simulation time. It was observed that this difference is
always greatest at the very early stage of the simulations when the
wave gets launched. A plausible explanation of this observation is that
the wave eventually decays due to numerical dissipation and Landau
damping. We do not obtain an analytical scaling for Dn from the alge-
braic potential model; however, based on the measured data, it is possi-
ble to conclude that Dn 	 ðkqÞ20, and this scaling is valid again for

ðkqÞ20 � 0:1.
Results of the critical CFL number as a function of ðkqÞ20 are

shown in Table II. The critical CFL number determines the critical
time step when the code becomes unstable. The time step calculated as
a product of the base time step and the CFL number, where the base
time step is determined by the smallest ratio Dy=vy , thus, by the fastest
electrons resolved by the code as the space grid step Dy is fixed. In the
absence of ESAWs, the code typically runs with CFL¼ 1.0 even
though theoretically it can run even faster as the stability constraint
contains extra numerical factors that depend on the dimensionality of
the problem and on the advection scheme used. Skipping these details,
we conclude that the critical value of the ðkqÞ20 parameter is 0.00333
when the critical CFL number is 0.975, which is almost equal to unity.
In this context, the phase velocity of the waves reaches such high values

FIG. 3. Time evolution of the potential plot resolved for (a) ðkqÞ20 ¼ 0:001, and (b)
ðkqÞ20 ¼ 0:333. The top figure demonstrates clear signature of ESAWs propagating
in the domain and bouncing/penetrating the walls. The bottom figure shows fast dis-
sipation of the wave and smearing of the structure.

TABLE II. Critical CFL number for the COGENT time step as a function of the ðkqÞ20
parameter. CFL ¼ 1:0 for all ðkqÞ20 > 0:0333 that implies that the time step is lim-
ited by the fast electron dynamics instead of ESAWs.

ðkqÞ20 1�10�5 3.3�10�5 1�10�4 3.33�10�4 0.001 0.00333 0.01

CFL 0.0528 0.096 0.165 0.305 0.535 0.975 1.0
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that it begins to influence the stability of the code. Therefore, selecting
a value of ðkqÞ20 � 0:00333 is advantageous to attain the fastest possi-
ble simulation speed. Taking into consideration all the criteria we dis-
cussed, the optimal range for ðkqÞ20 falls in the interval [0.00333; 0.1],
resulting in local quasineutrality ranging from 10�4 to 10�2.

Finally, the applicability of the algebraic model and the suggested
optimal value of the parameter ðkqÞ20 should be regarded as estimates
that are specific to this test problem rather than rigorously derived
conclusions. This is primarily due to the fact that the dispersion rela-
tion in Eq. (17) was derived under the assumption of constant density
and temperature. The same assumption was employed in the numeri-
cal tests presented in Sec. III C. Consequently, in more complex simu-
lations where plasma parameters exhibit significant spatial and
temporal variations, the optimal value of ðkqÞ20 may also vary
accordingly.

IV. LOGICAL SHEATH
A. Formulation

The divertor target plates serve as absorbers of plasma particles
and heat, and in this simplified model, they are represented as fully
absorbing boundary conditions. Specifically, this entails the assumption
that upon contact with the boundary, every particle is absorbed, and no
new particles are introduced into the system thereafter. Consequently,
rapid electron escape from the domain occurs at significantly faster
rates, leading to the formation of a boundary sheath potential /sh. This
potential prevents further electron escape and maintains global plasma
quasineutrality. Achieving accurate numerical resolution of the bound-
ary sheath layer presents notable computational challenges, given that
the spatial and temporal scales of the sheath are orders of magnitude
smaller than that of the plasma bulk. Furthermore, given the algebraic
model adopted for the electrostatic potential in this context, which lacks
sensitivity to small-scale spatial features, achieving precise treatment of
the boundary becomes inherently unfeasible.

To address this challenge, reduced models are introduced in a
way that they capture important physical effects and omit all the
sheath complexity at the same time. One such model, explored in the
current study, is the logical sheath boundary condition.30 This bound-
ary condition is designed to manipulate the ingoing electron fluxes so
that the total normal boundary currents of electrons and ions are bal-
anced, thus upholding global quasineutrality. Achieving equilibrium
between electron and ion currents is accomplished by replicating the
behavior of the sheath potential, where slow electrons are reflected and
only fast electrons are permitted to exit the system. Importantly, the
LSBC eliminates the need for resolving the boundary sheath potential,
enabling significant simulation speed-up.

To simplify the discussion of the LSBC, we examine a modified
version of Eq. (5) without any sources and collisions, incorporating
some relabeling for clarity: y ! x, which is the coordinate in the con-
figuration space, and vk ! v, which is the coordinate in the velocity
space, respectively. The result is the 1D1V Vlasov equation in the con-
servative form,

@f
@t

þ @

@x
vfð Þ þ @

@v
_vfð Þ ¼ 0: (26)

Without loss of generality, we assume that the boundary is located at
x ¼ 0 and the plasma is at x > 0. The total particle flux through the
boundary is

W ¼
ð0

�1
f ðx ¼ 0; vÞ vdvþ

ð1
0

f ðx ¼ 0; vÞ vdv; (27)

where integration in Eq. (27) is split to the two parts (from �1
to 0 and from 0 to 1) to represent the outgoing and ingoing
fluxes, respectively. Conservation of the total charge in the system
implies that

qiWi þ qeWe ¼ 0; (28)

which becomesWi �We ¼ 0 for singly-ionized ions. For the standard
sheath BC, where electrons are reflected and ions are absorbed, the
absorbing ion BC leads to fiðx ¼ 0; v > 0Þ ¼ 0, and the charge con-
servation condition combined with Eq. (27) reads as

ð0
�1

fið0; vÞ vdv ¼
ð0

�1
feð0; vÞ vdvþ

ðvesc
0

feð0; vÞ vdv: (29)

Here, vesc represents the escape velocity, acting as a threshold deter-
mining whether electrons surpass or are reflected by the boundary.
From that, the sheath potential can be defined as /sh ¼ mev2esc=2, and
application of the LSBC involves determining the value of this poten-
tial at each time step.

Several important observations are noteworthy here. First, up to
implementation details, the formulation of the LSBC discussed in this
context can be adopted for integration into any continuum finite vol-
ume code framework, as it relies solely on the Vlasov equation.
Second, reflection of the electrons on the boundary is assumed to be
elastic, or in other words, fully charge and energy conservative; there-
fore, feð0; vÞ ¼ f ð0;�vÞ for v < vesc. Finally, the integration limits in
Eq. (29) can be extended to infinity, provided that the electron and ion
PDFs are zero on the boundary at v > 0 for ions and v > vesc for elec-
trons. As a result, implementation of the LSBC can be achieved by pre-
cisely enforcing this requirement for the PDF, as elaborated in the
subsequent section.

B. Implementation of LSBC

In the finite volume code COGENT, Eq. (26) is discretized on a
grid in the computational space. The computational domain spans
from 0 to xmax in the configuration space and from vmin to vmax in the
velocity space. The grid is uniformly spaced in both dimensions, with
spacings hx and hv in the configuration and velocity spaces, respec-
tively, leading to the following relations for the number of cells
hxNx ¼ xmax, hvNv ¼ vmax � vmin. The cell-averaged distribution
function f is defined in every cell as fi;j, where i is the configuration
index, and j is the velocity index, as illustrated in Fig. 4. The difference
between cell-averaged and cell-centered PDF is important when sten-
cils for high order operations are derived31 (in this work, for the third
order advection scheme), and it reads as

fca ¼ fcc þ h2x
24

f 00xx þ
h2v
24

f 00vv; (30)

where “ca” stands for “cell-averaged,” “cc” stands for “cell-centered,”
and f 00dd denotes the second derivative of fcc in the direction of averag-
ing d. In this work, the PDF is assumed to be cell-averaged; thus, the
subscript “ca” is omitted for better readability. According to Eq. (26),
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the rate of change of f in a given cell or sub domain is equal to the neg-
ative total flux of f through all the boundaries. By definition, the total
boundary fluxW is the integral over the boundary surface of the prod-
uct of the normal component of the phase space velocity and the distri-
bution function, which is exactly what is used in Eq. (29) to construct
the LSBC. The flux through one cell boundary at x ¼ 0 and velocity
limits v0 and v1 reads as

W ¼
ðv1
v0

f ðx ¼ 0; vÞ vdv: (31)

Using the Taylor expansion of f and the following variable transforma-
tions 2vc ¼ v0 þ v1, �v ¼ v� vc, and Dv ¼ v1 � v0, we rewrite Eq.
(31) as

W¼
ðv1
v0

f ð0; vÞ vdv¼
ðDv=2

�Dv=2

f ð0; vcÞ þ f 0ð0; vcÞ�v
� 	ð�v þ vcÞd�v þOðDv3Þ

¼ f ð0; vcÞvcDvþ ð f ð0; vcÞ þ vc f
0ð0; vcÞÞ

ðDv=2
�Dv=2

�vd�v þOðDv3Þ

¼ f ð0; vcÞvcDvþOðDv3Þ; (32)

where the integral of �vd�v is zero due to the symmetry of integration
and the integral of �v2d�v results higher order corrections OðDv3Þ,

which are later omitted. As follows from Eq. (32), the cell-centered
approximation for the flux given by the expression W ¼ f ðx; vcÞvcDv
is second order accurate with respect to grid spacing Dv. The total
boundary flux from Eq. (29) can be computed as the sum of the indi-
vidual fluxes on the boundary using Eq. (32), where face centered
velocity values are given by

vk ¼ vðkÞ ¼ vmin þ hv
2
þ hvðk� kminÞ; (33)

and the index k runs from kmin to kmin þ Nv � 1. If k0 is such that
vk0 � 0 and vk0þ1 > 0, then the second order accurate value of the
outgoing ion flux Ii reads as

Ii ¼
ð0

�1
fið0; vÞ vdv ¼ hv

Xk0
kmin

fiðx ¼ 0; vkÞvk: (34)

Here, we assume that the line v ¼ 0 lies exactly on the cell boundary
as shown in Fig. 4 in order to avoid unnecessary complexity associated
with cells being split by the v ¼ 0 level. The outgoing electron flux Ie is
computed in the same way as Ii with the only exception of different hv
and vk, as the velocity grid is usually renormalized to better capture
features of electron PDF. Calculation of the ingoing electron flux Je
requires additional efforts, since vesc is never on the cell boundary but
instead it splits a cell marked with k� index in the velocity space,

Je ¼
ðvesc
0

feð0; vÞ vdv ¼ hv
Xk��1

k0þ1

feð0; vkÞvk þ
ðvesc

vk��hv=2

feð0; vÞ vdv: (35)

The lower limit of integration in the last term in Eq. (35) corresponds
to the velocity coordinate of the low boundary of the k�-th cell, which
we denote as vlo. The upper boundary of this cell is vhi ¼ vlo þ hv. The
escape velocity splits this cell in the proportion n

n ¼ vesc � vlo
vhi � vlo

< 1: (36)

Thus, the last term in Eq. (35) can be approximated as nhvfeð0; vk� Þ.
The error of this approximation is Oðh2vÞ that is yet consistent with the
total error of Je, because errors from every cell Oðh3vÞ are accumulated
OðNvÞ times yieldingOðh2vÞ for the total error.

Exploiting the approach mentioned in the last paragraph of Sec.
IVA together with Eqs. (34) and (35), one obtains values of the distri-
bution function on the boundary x ¼ 0 for all vk as follows:

f ð0; vkÞ ¼ f ð0; vjÞ; for vk ¼ �vj; k < k�;
f ð0; vkÞ ¼ nf ð0; vjÞ; for jvk � vescj < hv=2;
f ð0; vkÞ ¼ 0; for vk > vesc þ hv=2:

8<
: (37)

Equation (37) works for both species with the only exception
that vesc ¼ 0 for ions implying full absorption, and vesc is an unknown
quantity for electrons that is found from the charge conservation
in Eq. (29).

C. Filling of the ghost cells

Notice that f ð0; vcÞ in Eq. (32) is the cell-centered value of the
PDF on the face, which is calculated using cell-averaged data from
nearby cells, depending on the order of the advection scheme. In this

FIG. 4. Computational domain and ghost cells at the lower boundary x ¼ 0. Ghost
cells at x < 0 and v < 0 are filled by the polynomial extrapolation from the compu-
tational domain. Ghost cells at x < 0 and v > 0 are filled in a way that the LSBC is
enforced.
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work, we consider first and third order upwinding schemes, denoted
as UW1 and UW3, with the following stencils for UW1:

~f iþ1
2;j
¼

fi;j; v > 0;

fiþ1;j; v < 0;

(
(38)

and UW3, respectively,32

~f iþ1
2;j
¼

1
6

�fi�1;j þ 5fi;j þ 2fiþ1;j
� �

; v > 0;

1
6

�fiþ2;j þ 5fiþ1;j þ 2fi;j
� �

; v < 0:

8>><
>>: (39)

Here, ~f iþ1
2;j

denotes the value of f on the cell face between cells with

indices (i,j) and (iþ 1, j). For example, ~f �1
2;1

is shown in Fig. 4 as a

solid red dot on the boundary interface between two cells marked with
purple and red crosses. Calculation of the face values of f for advection
in the velocity direction is done similarly to Eqs. (38) and (39) with the
only index swap ~f i;jþ1

2
! ~f iþ1

2;j
.

As it follows from Eqs. (37)–(39), calculation of the boundary
fluxes necessitates values of the PDF in the ghost cells at x < 0. Filling
ghost cells in the region (x < 0, v < 0) is rather straightforward. These
values are found via extrapolation from the computational domain
using a high-order polynomial function. Values of the PDF in the ghost
cells at the region (x < 0, v > 0) are computed based on the values of
the PDF on the boundary cell faces, provided by Eq. (37). This con-
straint alone is enough to fill the ghost cells for UW1 advection scheme

f�1;k ¼ f0;�k; for vk > 0; k < k�;

f�1;k ¼ nf0;�k; for jvk � vescj < hv=2;

f�1;k ¼ 0; for vk > vesc þ hv=2:

8>><
>>: (40)

Equation (40) assigns values of the ghost cells by mirroring in velocity
space values of the PDF in the boundary cells of the computational
domain.

The third order advection scheme employs multi-point stencils
and, thus, it requires more ghost cells to be filled. For every vk > 0, the
values in the ghost cells satisfy the following constraint:

~f �1
2;k

¼ 1
6

�f�2;k þ 5f�1;k þ 2f0;kð Þ; (41)

where the boundary value ~f is taken from Eq. (37). One more equation
to find unknown f�2;k and f�1;k can be derived from the fact that ~f �1

2;k
can be also found by

~f �1
2;k

¼ 1
6

�f1;k þ 5f0;k þ 2f�1;kð Þ; (42)

as if we reverse time and advect the PDF in the opposite direction.
Equations (41) and (42) yield the solution

f�1;k ¼ 1
2

f1;k � 5f0;k þ 6~f �1
2;k


 �
;

f�2;k ¼ 1
2

5f1;k � 21f0;k þ 18~f �1
2;k


 �
:

8>><
>>: (43)

By design, Eq. (43) provides a third order accurate Oðh3xÞ solution
for the PDF in the ghost cells. One may argue that the solution based

on the counter propagation approach might be unstable as it explicitly
makes use of the opposite direction stencil that is known to be unsta-
ble. While we did not do a precise stability analysis of Eq. (43), we
never encountered any instabilities in our numerical simulations; thus,
we conclude that this approach is a viable way to handle the LSBC for
UW3 advection scheme. An alternative way to prove it is by deriving
the solution from considering the face value ~f 1

2;k
that can be calculated

using shifted version of Eq. (41) and by local values of the PDF,
namely, f0;k, f1;k, and ~f �1

2;k
. We verified that the alternative approach

yields the same solution as in Eq. (43), and the details of the derivation
are provided in Appendix.

V. ELM HEAT PULSE SIMULATIONS
A. Simulation setup

Simulations of the ELM heat pulse propagation are performed
with the COGENT code based on key principles described in this
manuscript. Specifically, the simulations incorporate three fundamen-
tal components: (i) the one-dimensional geometry elucidated in Sec.
IIA (ii) the algebraic model for the gyrokinetic Poisson equation
expounded upon in Sec. III C, and (iii) the logical sheath boundary
condition introduced in Sec. IV. While the geometric configuration is
confined to one dimension, the computational domain spans four
dimensions, incorporating two velocity dimensions—parallel velocity
vk and magnetic moment l—in addition to the configuration dimen-
sions x and y. Notably, physical quantities are restricted to variation
along the y-direction, with the x-direction reserved solely for the verifi-
cation of the absence of the perpendicular instability. The computa-
tional domain adopts a uniform grid with dimensions specified as
follows: Nx ¼ 4, Ny ¼ 128, Nvk ¼ 128, Nl ¼ 64. The results are
insensitive to Nx and converge rapidly with respect to Nl. High resolu-
tion in Ny is required to realize fine features that can appear close to
the boundary, and high resolution in Nvk is essential for the effective
implementation of the LSBC. The code is executed on a single node
utilizing 32 central processing unit (CPU) cores, with a typical produc-
tion run requiring approximately 1 day, depending on grid resolution
and the time step. The computational time can be significantly reduced
when the problem simplifies to a 1D2V configuration, specifically in y,
vk, and l space. Parameters of the simulations are provided in Table I,
where COGENT normalization units for density, temperature, length
and velocity are n0, T0, V0, and L0 respectively.

The source term in Eq. (5) and initial conditions for both species
are taken from the works of Shi19 and Pan20 for the sake of fair com-
parison of the simulation results. The source term is modeled as the
following function:

Sa ¼ gðtÞSðyÞFMðvk; l;TsaÞ: (44)

Here, gðtÞ is the time dependent amplitude factor such that gðtÞ ¼ 1
for t < 200ls and gðtÞ ¼ 1=9 for t > 200ls, representing two stages
of the ELM crash with intense heat occurring for first 200 ls and relax-
ation immediately after. The Maxwellian function FMðvk; l;TsÞ for
species a is determined by the temperature Tsa with

Tsi ¼ 1:5 keV 0 � t � 200 ls;
0:26 keV t > 200 ls;

�
(45)

Tse ¼ 1:5 keV 0 � t � 200 ls;
0:21 keV t > 200ls:

�
(46)
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The shape profile in Eq. (44) is defined as

Sð�yÞ ¼ S0 cos
p�y
2Ls

� �
HðLs � j�yjÞ; (47)

where �y ¼ y � L0=2 is the domain centered coordinate, 2Ls is length
of the source along the magnetic field line projected to the y-direction,
and H is the Heaviside step function. The amplitude S0
¼ 9:066 � 1023m�3s�1.

Initial conditions for electrons are characterized by constant tem-
perature Te0 ¼ 75 eV and the following profile for density:

ne0
n0

¼ 0:7þ 0:3 1� 2j�yj
L0

� �
þ 0:5 cos

p�y
2Ls

� �
HðLs � j�yjÞ: (48)

The initial ion distribution function is represented as a combination of
two half-Maxwellian distributions, namely,

fi0 ¼
FL; �y < �Ls;

1� �y
Ls

� �
FL
2
þ 1þ �y

Ls

� �
FR
2
; �Ls < �y < Ls;

FR; �y > Ls;

8>><
>>: (49)

where left and right Maxwellian functions are defined as

FL;Rð�y; vk; l;Ti0Þ ¼ 2ni0ð�yÞFMðvk; l;Ti0ÞHð6vkÞ: (50)

The initial ion density in Eq. (50) is identical to the initial electron den-
sity to guarantee exact global charge conservation that is enforced
throughout simulations by the logical sheath boundary condition. The
ion temperature profile is as follows:

Ti0

T0
¼ 1þ 0:45 1� 2j�yj

L0

� �
þ 0:3 cos

p�y
2Ls

� �
HðLs � j�yjÞ: (51)

It is worth mentioning that the initial ion distribution function
aligns with the absorbing boundary condition, which dictates no
inflow at the boundary, thereby enforcing a zero PDF values at y ¼ 0
and vk ¼ 0. Conversely, under alternative circumstances, consistency
emerges on transit time scales, leading to the emergence of electrostatic
shear Alfv�en wave structures propagating from the boundaries. Past
studies have explored a smooth version of the source and initial plasma
profiles, wherein the sharp Heaviside step function multiplied by a
cosine function is substituted with a decaying exponential function.
However, neither previous investigations nor our current study
have discerned significant disparities between these two initial condi-
tions; thus, the findings presented herein exclusively pertain to the
sharp profiles.

B. Simulation results

A series of simulations were conducted employing UW1 and
UW3 advection schemes across varied values of the ðkqÞ20 parameter,
spanning 0.01–0.1. In all scenarios, the total charge within the system
was consistently conserved up to 	10�4 throughout the duration of
the simulations. However, it is noteworthy that the absence of machine
precision conservation arises from the leakage of the PDF through the
velocity boundary of the computational domain. While this issue could
potentially be alleviated by augmenting the resolution in the vk space
and achieving finer resolution of the exponential Maxwellian tails of
electron and ion PDFs, such endeavors did not yield improved results

and instead imposed a considerable computational burden on effi-
ciency of the simulations.

Simulations employing the first-order advection scheme proved
to be impractical due to significant numerical heating and dispersion
resulting from the low-order approximation, leading to unrealistic
electron heating on the ion acoustic time scales that it takes for the
ELM pulse to arrive at the target plate. Specifically, the total parallel
heat flux observed was nearly double that reported in prior studies.
Additionally, the poor convergence rate rendered it nearly infeasible to
conduct adequate simulations utilizing the UW1 advection scheme.
Consequently, our focus shifted to the third-order UW3 advection
scheme, which was subsequently employed for all simulations.

Before delving into the discussion of simulations employing the
third-order advection scheme, it is worth mentioning that we also
experimented with other approaches that did not require the compli-
cated third-order LSBC. One such approach involved using a hybrid
advection scheme, which applied the first-order method at the bound-
ary and the third-order method elsewhere in the bulk. While this
approach maintained relative simplicity in implementation and pro-
duced reasonable results, it suffered from inconsistencies in the fluxes
at the interface between the first and second cells from the boundary.
This inconsistency caused some unphysical jumps in the electron heat
flux at the target plate when the ELM source was turned off.

The primary challenge associated with the third-order advec-
tion scheme relates to Gibbs oscillations, which manifest when the
probability distribution function exhibits sharp features or jumps. In
our model, such jumps are inevitable in both velocity and configu-
ration spaces. In velocity space, the jump occurs at the escape veloc-
ity vesc, where the PDF transitions to zero over a single cell size. In
configuration space, inconsistencies between the PDF in the ghost
cells and the computational domain lead to jumps as well. The
Gibbs phenomenon results in the emergence of negative PDF val-
ues, exacerbating sharp gradients, which is shown in Figs. 5(a) and
5(c). Several approaches can mitigate this issue. One method,
employed by Pan,20 involves utilizing the non-oscillatory
ENO/WENO advection scheme33 and constructing a layered struc-
ture at the boundary that merges multiple advection schemes of
varying orders. However, this approach is challenging to implement
and compromises the high-order WENO5 approximation upon
transitioning to UW1 at the boundary. Another approach is positiv-
ity preservation, a routine in COGENT that eliminates negative
PDF values using nearby cells. While effective, this approach viola-
tes total charge conservation, resulting in deviations of a few per-
cent over the simulation time frame. In the current work, we adopt
a third approach, which introduces weak energy-conservative colli-
sions employing the Dougherty drag-diffusion collision operator34,35

that gradually transition the PDF to a Maxwellian distribution on
ion acoustic time scales. This strategy helps prevent sharp features
and negative PDF values without significantly altering the distribu-
tion function in the plasma bulk. Figures 5(a) and 5(b) demonstrate
the ion PDF at t ¼ 200ls on the target plate in collisionless and
weakly collisional cases. Sharp spikes of negative values observed in
the collisionless case are mitigated when collisions are included.
Notably, analogous plots for electron distribution functions depicted
in Figs. 5(d) and 5(e) do not exhibit Gibbs oscillations or sharp gra-
dients. A plausible explanation for this observation is that the oscil-
lations are mitigated by the rapid transit dynamics of the electrons.
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Scanning across the parameter space of the algebraic potential
model parameter ðkqÞ20 did not reveal any significant discrepancies in
the total target plate heat flux, in agreement with findings reported by
previous researchers. However, simulations conducted with low values
of ðkqÞ20 necessitate a reduction in the electron CFL number to miti-
gate instabilities induced by electrostatic shear Alfv�en waves. Unlike
the results presented in Table II, a CFL parameter of approximately 0.5
is required to maintain stability of simulations. These discrepancies
arise from the fact that the maximum resolved velocity in the simula-
tions exceeds that in the test outlined in Sec. III C, resulting in a smaller
stable CFL number.

Total parallel heat flux for species a is defined as follows:

Qa ¼ ma

2

ð1
�1

fav
3
kdvk þ ðTa? þ qa/ shÞ

ð1
�1

favkdvk; (52)

where fa and Ta? are the PDF and perpendicular temperature on the
boundary. The integration limits in Eq. (52) are different from those in
the works of Shi and Pan, in particular, no escape velocity is involved
in calculations. The reason is that the LSBC in the present work is

constructed in a way that it automatically enforces a cut off at vesc by
setting the PDF values to zero. The term proportional to qa/sh is the
correction due to the accelerating/decelerating effect of the sheath
potential Qsh. It does not impact the total target plate heat flux, since
ion and electron particle fluxes are the same; however, it noticeably
changes the fluxes of the individual species. The present results for the
heat fluxes are in decent agreement with ones obtained from Gkeyll
(see Fig. 3 in Ref. 19) and GENE (see Fig. 2 in Ref. 20).

The simulations were performed for ðkqÞ20 ¼ 0:04, UW3 advec-
tion scheme, with weak collisions introduced for both species. The
strength of collisions was controlled by a parameter ca, which is a
numerical coefficient in front of the Drag-Diffusion operator in the
right hand side of Eq. (5). The value of ca was chosen in a way that the
simulation results for heat fluxes and the sheath potential are close to
the original collisionless ones. The temporal evolution of divertor plate
heat fluxes is illustrated in Fig. 6. Notably, a rapid increase in the elec-
tron heat flux occurs at approximately 1:2 ls, corresponding to se=4,
where se ¼ L=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
denotes the electron transit time.

Subsequently, the ion heat flux remains relatively low, only experienc-
ing slight corrections due to the sheath potential, until the arrival of

FIG. 5. Top row: comparison of the ion distribution functions at the divertor plate at t ¼ 200 ls in collisional (ce ¼ 0:01, ci ¼ 0:01) and collisionless cases. (a) and (b) are y-vk
phase plots (l ¼ 0 slices) of the PDFs, and they both use the same custom colormap for better visibility purpose. Gibbs oscillations in the collisionless case are represented
by thin sharp stripes of negative values, which are shown with dark blue color. (c) Lineout plots of both PDFs at the target plate (y ¼ 0), with solid red and dashed blue lines
corresponding to collisionless and collisional cases, respectively. Bottom row: analogous plots but for the electron PDFs. (d) Collisionless case; (e) weakly collisional case; and
(f) lineout plots at y ¼ 0.
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hot ions from the ELM source at approximately 70ls, equivalent to a
quarter of the ion transit time. Following this, both fluxes exhibit
growth until the conclusion of the ELM heating period at 200 ls, fol-
lowed by a gradual decay over the ion transit time. The observed peak
heat flux around 3:6GW=m2 is approximately 10% lower than
reported in previous studies, but a value of 4GW=m2 in good agree-
ment with previous results is obtained when using higher electron col-
lisionality. A comparison of the effects of collisionality relative to
numerical dissipation is out of the scope of the present work and will
be explored in the future.

The evolution of the sheath potential /sh is depicted in Fig. 7. In
this analysis, we compare our findings from both collisional and colli-
sionless models with those presented in the work of Pan.20 Notably,
the rapid growth and subsequent plateauing of /sh closely mirror the
behavior observed in the electron heat flux. However, a disparity
between COGENT simulations and Pan’s results is the more pro-
nounced oscillatory nature of the plateau region in COGENT simula-
tions. These oscillations correspond to electrostatic Alfv�en wave
interactions with the domain boundary and are absent in Pan’s results,
where initial conditions were set to ensure Boltzmann equilibrium
between electrons and ions, thereby minimizing subsequent oscilla-
tions. The other notable discrepancy is in amplitude of the sheath
potential at the plateau region that might be speculated is due to differ-
ent numerical implementations of the LSBC in GENE and COGENT.
As previously mentioned, collisions for both species are weak, resulting
in minimal discrepancies between collisional and collisionless cases in
the temporal evolution of the sheath potential.

VI. CONCLUSIONS

Simulations of ELM heat pulse propagation in the scrape-off layer
of the tokamak were conducted utilizing the gyrokinetic code
COGENT. Adopting a simplified 1D geometry and leveraging simula-
tion parameters from prior studies facilitated a fair comparison and
validation of our results. Notably, our findings exhibit favorable agree-
ment with previous kinetic and gyrokinetic simulations, both in terms
of the electron and ion heat flux magnitudes, as well as their temporal
dynamics. To ensure the robustness and consistency of our findings,
we conducted a series of simulations employing various settings. This
encompassed parameter and resolution scans, as well as the utilization
of both collisional and collisionless models.

In this study, we focused on two crucial elements of our model:
the algebraic simplification for the electrostatic potential and the logi-
cal sheath boundary condition. Our investigation into the algebraic
model involved a comprehensive assessment of its applicability, con-
sidering local quasineutrality and the potential for numerical instability
induced by electrostatic shear Alfv�en waves. Through linear analysis
and the examination of ESAW propagation, we identified an optimal
parameter range within the model’s parameter space. This range sig-
nificantly enhances simulation speed while maintaining fidelity to
underlying physical processes.

The logical sheath boundary condition underwent a comprehen-
sive examination for the third order upwinding advection scheme,
which, to the best of our knowledge, had not been thoroughly explored
in prior literature. A focal point of this investigation was the proper
handling of ghost cells, a crucial aspect of the LSBC to ensure consis-
tency with the advection scheme utilized in the code. Our analysis
revealed both advantages and challenges associated with various advec-
tion schemes, encompassing issues like excessive numerical heating
and diffusion in first-order advection, and the Gibbs phenomenon in
higher-order schemes like the third order UW3. Notably, the current
implementation of the LSBC is adaptable to any finite volume code,
not limited to gyrokinetic models. While our research provides
advancement in understanding the LSBC, further studies are war-
ranted to extend its applicability to higher-order schemes and non-
oscillatory advection methods, such as WENO5.

Future research on the problem of ELM heat pulse propagation
should encompass extensions to two-dimensional or three-
dimensional geometries, including the complex geometries found in

FIG. 6. Total parallel heat flux on the target plate. Dotted red: parallel ion heat flux
Qi;k before entering the sheath region. Solid red: ion heat flux Qi adjusted by the
sheath potential impact. Solid black: electron heat Qe adjusted by the sheath poten-
tial. Dotted black: boundary sheath correction Qsh. Blue: total Qtot heat flux on the
target plate.

FIG. 7. Temporal evolution of the sheath potential. Red: GENE20 collisionless runa;
blue: COGENT collisionless run; dashed green: COGENT collisional (ce ¼ 0:01,
ci ¼ 0:01) run. In both COGENT simulations, UW3 advection scheme and
ðkqÞ20 ¼ 0:04 were used. aThe data are obtained from Fig. 3 in Ref. 20 by using a
data extractor script, therefore, errors on the order of the linewidth are possible.
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the scrape-off layer of tokamaks. To thoroughly address these exten-
sions, the models developed in the present work must be reevaluated,
and, if necessary, replaced with more advanced alternatives. For
instance, the algebraic model for the electrostatic potential may not be
easily adaptable due to significant discrepancies in parallel and perpen-
dicular scales within the SOL. Additionally, the steady-state model for
ELM heat pulses could be superseded by a self-consistently calculated
transport model once collisions and turbulence are adequately incor-
porated. The development of an advanced logical sheath boundary
condition that incorporates various divertor configurations, as well as
plasma-surface interactions such as recycling and secondary electron
emission, may be of particular interest.
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APPENDIX: FLUX BASED DERIVATION OF THE LSBC
FOR THE THIRD ORDER ADVECTION SCHEME

One can notice that the value of the distribution function on
the face with label 1=2 can be found either using stencil points
�1; 0; 1gf and employing Eq. (41) as

~f 1
2;k

¼ 1
6

�f�1;k þ 5f0;k þ 2f1;kð Þ; (A1)

or using the PDF value on the face labeled �1=2 and two nearby cell-
averaged values f0;k and f1;k. To that end, we consider the second
order Taylor expansion of f around the face labeled 1=2, namely,

f ðxÞ ¼ ~f 1
2;k

þ f 0kx þ f 00k
x2

2
þ Oðx3Þ; (A2)

where derivatives f 0k and f 00k are calculated at x ¼ hx . Ignoring higher
order terms, it follows from Eq. (A2) that

~f �1
2;k

¼ ~f 1
2;k

� f 0khx þ f 00k
h2x
2
: (A3)

By definition of a cell-averaged quantity, integrals of Eq. (A2)
with respect to x from 0 to 6hx are equal to cell-averaged values f0;k
and f1;k multiplied by the cell length hx . These integrals yield the fol-
lowing equations:

f0;k ¼ ~f 1
2;k

� f 0k
hx
2
þ f 00k

h2x
6
;

f1;k ¼ ~f 1
2;k

þ f 0k
hx
2
þ f 00k

h2x
6
:

8>>><
>>>:

(A4)

The system of three linear Eqs. (A3) and (A4) has three unknown
variables: f 0k , f

00
k , and

~f 1
2;k
. Skipping simple algebra, one can find the

solution as

~f 1
2;k

¼ 1
4

5f0;k þ f1;k � 2~f �1
2;k


 �
: (A5)

Equation (A1) combined with Eq. (A5) yields the expression
for f�1;k,

f�1;k ¼ 1
2

�5f0;k þ f1;k þ 6~f �1
2;k


 �
; (A6)

which is identical to Eq. (A3) used in Sec. IVC, hence concluding
the derivation.
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