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Abstract Plasmas with varying collisionalities occur in many applications, such as
tokamak edge regions, where the flows are characterized by significant variations in
density and temperature. While a kinetic model is necessary for weakly-collisional
high-temperature plasmas, high collisionality in colder regions render the equations
numerically stiff due to disparate time scales. In this paper, we propose an implicit-
explicit algorithm for such cases, where the collisional term is integrated implicitly
in time, while the advective term is integrated explicitly in time, thus allowing time
step sizes that are comparable to the advective time scales. This partitioning results
in a more efficient algorithm than those using explicit time integrators, where the
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time step sizes are constrained by the stiff collisional time scales. We implement
semi-implicit additive Runge-Kutta methods in COGENT, a finite-volume gyroki-
netic code for mapped, multiblock grids and test the accuracy, convergence, and com-
putational cost of these semi-implicit methods for test cases with highly-collisional
plasmas.

Keywords IMEX time integration - plasma physics - gyrokinetic simulations -
Vlasov-Fokker-Planck equations

1 Introduction

The purpose of this paper is to describe the application and performance of a semi-
implicit time integration algorithm for the solution of a system of Vlasov-Fokker-
Planck equations, motivated by the goal of simulating the edge plasma region of
tokamak fusion reactors. Plasma dynamics in the tokamak edge region is an unsteady
multiscale phenomenon, characterized by a large range of spatial and temporal scales
due to the density and temperature variations. Figure 1 shows the cross-section of a
typical tokamak fusion reactor. The geometry is defined by the magnetic flux surfaces
that contain the plasma, and the core and the edge regions are marked. Within the edge
region, as the temperature decreases from the hot near-core region to the cold outer-
edge region, there are three scale regimes. The hot and dense plasma in the inner edge
region adjacent to the core plasma is weakly collisional, and the mean free paths of
the particles are significantly larger than the density and temperature gradient length
scales [20,26,25]. Near the separatrix that separates the closed magnetic field lines
from the open ones, the plasma is moderately collisional, and the mean free paths are
comparable to the density and temperature gradient scales. At the outer edge (near the
material surfaces), the cold plasma is strongly collisional. In this region, the particle
mean free paths are significantly smaller than the density and temperature length
scales.

Due to the weak collisionality near the core, a kinetic description with an appro-
priate collision model is required to model accurately the perturbations to the veloc-
ity distribution from the Maxwellian distribution. The Vlasov-Fokker-Planck (VFP)
equation governs the evolution of the distribution function of each charged particle in
the position and velocity space [80]. In the presence of a strong, externally-applied
magnetic field, the ionized particles gyrate around the magnetic field lines. In the con-
text of tokamaks, the radius of this gyromotion (gyroradius) is much smaller than the
characteristic length scales. The gyrokinetic VFP equation represents the dynamics
of the particles averaged over the gyromotion [58,20], i.e., it describes the motion of
the guiding center of the particles. It is thus expressed in terms of the gyrocentric co-
ordinates (parallel and perpendicular to the magnetic field lines) and does not contain
phase-dependent terms. As a result, one velocity dimension and the fast time scale of
the gyromotion is removed. The drift-kinetic model is the long wavelength limit of
the gyrokinetic model, where turbulent length scales (comparable to the gyroradius)
are neglected. We consider the drift-kinetic VFP equation in this paper.

Numerical algorithms to solve the gyrokinetic equation can be classified into three
families. The Lagrangian particle-in-cell (PIC) approach [14,38,39,18,16,17] solves
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Fig. 1 Cross-section of a tokamak fusion reactor. The edge region is shaded in dark blue while the core
region is shaded in light blue. The geometry is defined by magnetic flux surfaces. The separatrix (blue
line) separates the open flux surfaces outside it from the closed flux surfaces inside it.

the equations of motion for “superparticles” in the Lagrangian frame. The primary
drawback is that the number of superparticles needed to control the numerical noise
is very large [80,32]. Eulerian methods [42,77,84,20,85,83] solve the VFP equation
on a fixed phase space grid, where the phase space comprises the spatial position and
velocity coordinates. Semi-Lagrangian approaches [36,73,22,70,71] follow charac-
teristics, either tracing backward or forward in time, requiring interpolation of the
solution from or to a fixed phase-space grid. In this paper, we adopt the Eulerian
approach that allows the use of advanced numerical algorithms developed by the
computational fluid dynamics (CFD) community.

The gyrokinetic VFP equation is a parabolic partial differential equation (PDE)
that comprises an advective Vlasov term and the Fokker-Planck collision term. The
Vlasov term describes incompressible flow in the phase space [80,37], i.e., the evolu-
tion of the distribution function by the gyrokinetic velocity of the particles and their
acceleration parallel to the magnetic field. The Fokker-Planck term describes the col-
lisional relaxation of the distribution function to the Maxwellian distribution [80,72]
and acts in the velocity space only. The difference in the time scales of these two
terms varies significantly in the edge region due to the variation in the collisionality.
The weakly and moderately collisional plasma at the inner edge and the separatrix, re-
spectively, exhibits collisional time scales much smaller or comparable to the Vlasov
time scales, while the strongly-collisional plasma at the outer edge exhibits colli-
sional time scales much smaller than the Vlasov time scales. Consequently, the VFP
equation exhibits disparate scales and is numerically stiff. Explicit time integration
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methods are inefficient because the time step size is constrained by the collisional
time scale. Implicit time integration methods, on the other hand, are unconditionally
linearly stable, but they require solutions to a linear or nonlinear system of equations.
Linearly implicit [61,8,59,55,56,60,11] and nonlinearly implicit methods [57,28,
13,79,78] have been applied to the Fokker-Planck operator in isolation, and several
implicit algorithms have also been proposed for the VFP equation [29,65,50,81].
In our context, the accurate resolution of the unsteady dynamics requires time steps
comparable to the Vlasov time scales, and thus a fully-implicit approach is inefficient.

Semi-implicit or implicit-explicit IMEX) time integration methods [1,66,48] al-
low the partitioning of the right-hand-side (RHS) into two parts: the stiff component
integrated implicitly, comprising time scales faster than those of interest, and the
nonstiff component integrated explicitly, comprising the slower scales. Such meth-
ods have been applied successfully to many multiscale applications [27,35,33,44,
52,47,76,82]. In the context of the Vlasov equation, semi-implicit approaches have
been proposed [19, 10,41, 62] that partition the Vlasov term and integrate the parallel
advection implicitly in time.

In this paper, we propose a semi-implicit algorithm for the gyrokinetic VFP equa-
tion, where we integrate the Vlasov term explicitly while the stiff Fokker-Planck
term is integrated implicitly to allow time steps that are comparable to the Vlasov
time scales. The Fokker-Planck term represents a nonlinear advection-diffusion op-
erator that can be expressed in two forms: the Landau form [53] and the Rosenbluth
form [72]. Although the two forms are theoretically equivalent, they differ in their im-
plications on the implicit numerical solution of this term. The Landau form expresses
the advection and diffusion coefficients as direct integrals and is well-suited for con-
servative numerical methods [15,49,57,28,61,7,4]. However, when integrated im-
plicitly, the integral form results in a dense, nonlinear system of equations. Naive
algorithms scale as O (NZ), where N is the number of velocity space grid points,
whereas fast algorithms [31,8,2,6] scale as O (NlogN). The Rosenbluth form, on the
other hand, relates the advection and diffusion coefficients to the distribution function
through Poisson equations for the Rosenbluth potentials in the velocity space. Thus,
each evaluation of the Fokker-Planck term requires the solution to the Poisson equa-
tions, which scales as O (N), assuming that an efficient Poisson solver is available.
The primary difficulty is the need for solving the Poisson equations, defined on an in-
finite velocity space, on the truncated numerical domain, and several approaches have
been proposed [45,3,64,54,67,55,13]. An additional difficulty with the Rosenbluth
form is the difficulty in enforcing mass, momentum, and energy conservation [12,
79], and modifications are necessary to ensure energy and momentum are conserved
to round-off errors. In this paper, we consider the Rosenbluth form of the Fokker-
Planck term.

Our semi-implicit approach is implemented in COGENT [24,26,25], a high-order
finite-volume code that solves the gyrokinetic VFP equations on mapped, multiblock
grids representing complex geometries. We implement multistage, conservative ad-
ditive Runge-Kutta (ARK) methods [48], where the resulting nonlinear system of
equations for the implicit stages are solved using the Jacobian-free Newton-Krylov
approach [51]. We investigate the performance of the ARK methods for test problems
representative of the tokamak edge and compare it to that of the explicit Runge-Kutta
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(RK) methods for VFP problems. In particular, we verify the accuracy and conver-
gence of the ARK methods and their computational efficiency with respect to the
RK methods. Although the preconditioning that we have implemented reduces the
cost of the implicit solve significantly, our approach is a preliminary effort, and the
implementation of better preconditioning techniques will be addressed in the future.

The outline of the paper is as follows. Section 2 introduces the gyrokinetic VFP
equations and the nondimensionalization used in our implementation. Section 3 de-
scribes the high-order finite-volume method that COGENT uses to discretize the
equations in space. The time integration methods are discussed in Section 4. The
algorithm verification through two test cases is presented in Section 5, and Section 6
summarizes the contributions of this paper.

2 Governing Equations

The plasma dynamics at the tokamak edge are described by the full-f gyrokinetic
VFP equation [37,26]. In this paper, we consider a single species, and the axisym-
metric governing equation is expressed in the nondimensional form as

ag# + VR (RBﬁf) + aiv” (V||Bﬁf) =Cr (f)v (D

where f = f (R, Vs ,u,t) is the distribution function defined on the phase space (R, Vs /.1.).
R = (r,0) is the spatial gyrocenter position vector in the configuration space with r

as the radial coordinate and 6 as the poloidal coordinate, v| is the velocity parallel to
the externally applied magnetic field B, and u = mv? / |B| is the magnetic moment.
The configuration space R is two-dimensional, and (1) is a four-dimensional (2D-
2V) PDE. Vg denotes the divergence operator in the configuration space. In the long
wavelength limit, the gyrokinetic model reduces to the drift-kinetic model, and the
Vlasov velocity and parallel acceleration are given by

. . 1
RER(R7V“7H7Z‘) = E
l

v = vy (Ryvy ) = —

* /’La i H
{vB + b x (ZE+ EVRB>] 7 (2a)

% H
B*. (ZE By B) : 2b
mB; TR (2b)
where m and Z are the mass and ionization state, respectively, A, is the Larmor num-
ber (ratio of the gyroradius to the characteristic length scale), b= B/ |B| and B = |B|

are the unit vector along the magnetic field and magnitude of the magnetic field, and

* _ % mv” N
B*=B (R,v||):B+7La7V><b. 3)
Bﬁ = B*-b is the Jacobian of the transformation from the lab frame to the gyrocen-
tric coordinates. In this paper, we consider cases with uniform magnetic field, and
thus B* = B. The electric field is E = —Vg ¢, where ¢ is the electrostatic potential.
In this paper, we consider cases where ¢ = ¢ (R) is specified; however, COGENT
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generally computes a self-consistent electrostatic potential from the species charge
densities [24,26] where a Boltzman or vorticity model is assumed for the electrons.

The Rosenbluth form of the Fokker-Planck collision term for a single species is
expressed as [25]

C(F) = VeV T (4a)
? = gf—i- <?V(Vu#)f, (4b)
where V. is the collision frequency, and the coefficients are defined as follows:
i {GV} g [KVW Kvﬂ] ’ )
Oy vy Kup

_do B m\ 0@ 9%
GVH _a_v”7 GIJ_4!'L (E) 57 KVHVH __3—\/ﬁ7

m\ 9%p m\2[_ 9%p dp
KVHIJ - KMVH = —4u (E) 81/“—8[17 Kupy = —8u (E) |:2[,La—uz + ﬁ] . (6)

The operator V( denotes the gradient operator in the velocity space (9 dv|,d/d 1).

V)
The Rosenbluth potentials, ¢ and p, are related to the distribution function through
the following Poisson equations in the two-dimensional velocity space (v” , [.L):

%9 m 9 op
8—vﬁ+Eﬁ <2I~Lﬁ> =/ (7a)
’p m 9 op
8—vﬁ + Eﬁ (2#@) = Q. (7b)

The Maxwellian distribution function, defined as

n(R m 2 myv—y(R 2—1— B(R
fM(R,V”,,ll):\(/E)(ZT(R)) exp(_ {v ||2(T()li) uB( ))7 ®

is an exact solution of the Fokker-Planck collision operator (c (fp) = 0), where the
temperature 7 (R) is given by

T (R) = ﬁ//% | (0 =TT (R)* + uB| £ (R,vy. 1) B (Rov) dvydp (9)

n(R) = %//f(R»VH’#)Bﬁ (R.vy) dvydu, (10)

1
v (R) = mn—(R)//Vuf(RaVW)Bﬁ (R,v) dvjdp an
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are the number density and average parallel velocity, respectively.
The equations in the preceding discussion involve non-dimensional variables. The
non-dimensionalization is derived by

i v i i f T
I=—, VW=7 n=—, m= 7f:_7 T:_7
Tref Vref Nyef Myef Sref Tref
LR S NN .
Bref ' ¢ref ’ Href ' - Lref ’

where (°) is the physical (dimensional) quantity and (+);er are the reference quantities.
The Larmor number and the collision frequency are expressed as

A

a = ) ¢
eLietBret m>

ref m

4 2\ 2
MyefV tref€ 4nZ
_ MyefVref V. — fref ref! A ( ) ’
respectively, where A, is the Coulomb logarithm. The primitive reference parame-
ters are nyr (number density), Tier (temperature), Lyer (Iength), myer (mass), and Bier
(magnetic field); the derived reference quantities are

Tref L .
©f (thermal speed), fre = —< (transit time),

Myef Vref
T;cf

ZBref

Vyef =
Nyef
3
ref

(magnetic moment), fef = (distribution function),

Href =
T,

Oref = cref (potential);
e

and e is the elementary charge.

3 Spatial Discretization

Equation (1) is a parabolic PDE, which we discretize in space using a fourth-order
finite-volume method on a mapped grid [21,63]. The computational domain is de-
fined as a four-dimensional hypercube of unit length in each dimension,

Q={£:0<&,<1,1<d<D}; §=E ey, (12)

partitioned by a uniform grid with a computational cell defined as

w-:ﬁ i—le h i+1e h (13)
i 4 2d B Zd )

where D = 4 is the number of spatial dimensions, e, is the unit vector along dimen-
sion d, and i is an integer vector representing a four-dimensional grid index. The
transformation x = X (&) defines the mapping between a vector in the physical space
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X= (R,vH , u) and a vector in the computational space €. Equation (1) is integrated
over a physical cell X (wj) to yield the integral form

% [ Bisax|= [ v (Bif)ax+ [ #(rax (14)
X(

wj) X(w;) X(wj)

where the Vlasov and collision terms are
) J
V(B f E—|:V ARBif)+=—(vBf }, C(f)=cr(f). (15)
(Bis) == |V (REif) + 50 (8 ) f

Defining the computational cell-averaged solution as

Jx

7 1 % . _
ﬁzQ'/Blldeé, J:’E , (16)

where wj is the volume of the computational cell wj, the physical cell-averaged so-
lution is

.
L . * L o
= Xt (/)B“fdx: V/Jdg /BHde'g':Ji 4 whereJi:a/Jdé.
X(wj i Wi Wi
(17)

The Vlasov and collision terms in (14) can be written in the divergence form as
follows:

. o T

v (Bif) =Vx-V(Bir): V(Bif) =~ | (R-D)Bis. (R-8)Bir, wBis, 0],

(18a)

T

C()=Vx-C(f): C()=v[0, 0. Ty, T-p] (18b)

where T, é,v], [l are the unit vectors along the r, 6,v|, 1 coordinates, respectively,

and Vy denotes the divergence operator in the physical space. Using the divergence
theorem, (14) is expressed as

of 1 A i
= /V(B”f)-nds—i— / C(f) ids
T BX(wi) 8X(w,)
. 1 > T T
7@; /N (V+C)dag — / N (V4C)dAg |,  (19)

AH—le i-le
2% 2%
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where fi is the outward normal for dX (w;), N =JVy&, and AL Le, denote the faces

along dimension d of the cell wj. The face-averaged Vlasov and collision fluxes on a
given face are defined as

<Vii%ed> 1,

it €4 |A.

/ N'Varg: (Vo) = (Viege, ) e 200

E
(Cre,) = T / NTCdAg: (Cire ) ={(Ciuye)ea  (20b)
1i2 d Alil

2%
The computational cell is a hypercube with length £ in each dimension with the vol-

A,di =hP=1 vd. Thus, (19) can be

ume as w; = AP, and the area of each face as il
Wi Le,

written as

T ()~ (i) + (G~ (Gaa))]

Defining the solution vector as consisting of the cell-averaged distribution function
at all the computational cells in the grid, (21) is expressed for the entire domain as a
system of ordinary differential equations (ODEs) in time,

E:q/;(_)Jrcf(f);f:[fi], iE{j:a)jG.Q}; (222)
7 (f) = %ﬁl <Vi+%ed> - <Vif%ed>) = V(Bﬁf> Jrﬁ(ARp,Avﬁ,AyP) ,
(22b)

(<éi+%ed>_<éif%ed>> %(f)+ﬁ(ARq AVl Ap q), (22¢)

where p,q are the orders of the schemes used to discretize the Vlasov and collision
terms, respectively.

Equation (22) requires the computation of the face-averaged Vlasov and colli-
sional fluxes defined by (20), for which we use the discretization described in [21].
The following relationships between the cell-centered and face-centered quantities
and cell-averaged and face-averaged quantities to fourth order will be used in the
subsequent discussion:

w1 +0(h"), (23a)
< >li%ed 24 d’ZI 8<§d/ itle ( )
d';ﬁd 2
) D 52, .
i = 242 86d +ﬁ(h), (23b)
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for an arbitrary variable u, where (u), 1 e denotes the face-averaged value, i; denotes
2
the cell-averaged value, and Uiy Le, and u; denote the face-centered and cell-centered
2

values, respectively. We note that it is sufficient to compute the second derivatives
in the RHS of (23) to second order using centered finite-differences since they are
multiplied by 42. The face-averaged fluxes in (22) are computed to fourth order as

2 2 1.d s ) s 4
th Z {Go <Nd>ii%ed} ’ {GO 4 >ii%ed}+ ﬁ<h ) ) (24a)
s=1

D
Ciled - Z <Ncsl>ii%ed <Cs>iiled

2
§=

,_

hzZ{ (NVihite, ) {60 (Chase O (0, @4b)

where Gé’d ~ Ve — ed% and <N(§>ii%ed ;8 =1,---, D are the column vectors of the
face-averaged metric quantities [21].

Equation (24a) requires computing (V*). logoS = 1,---,D. Writing each compo-
nent of four-dimensional Vlasov term as an advection operator,
(R-7) ,s=d,
S— 48 —=1.---.D: s _ (R-G),SZde
Vi=ad'f, s=1,---.D; a = | ,s:dv”’ (25)
0 B S = du'

where d,,dg,dV” ,dy are the spatial dimensions corresponding to r,6,v, i coordi-

nates, respectively, the face-averaged flux (V*) is computed to fourth order from

i+ % €y
the discrete convolution as

s _ /8 z da 8f 4
Wiicde, = @hite, <f>ii%ed+ déd(agd’ 9511’) | o e

ized

The face-averaged advective coefficients (a*),, 1 o, Are computed by evaluating R and
2
V|| at the face centers using (2) and transforming them to face-averaged quantities

using (23a). The cell-averaged distribution function in the computational space fl is
defined and related to f; as follows:

fi V/Bﬁfd!; = fi=J {fi—véf V¢J}+ﬁ(h4) 27)

The derivatives d/d &y in (26) and V¢ in (27) are computed using second-order cen-
tral finite-differences since they are multiplied by 4. Finally, the face-averaged distri-

bution function in the computational space < f > . is computed from cell-averaged
it 2€4
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values using the fifth-order weighted essentially nonoscillatory (WENO) scheme [46]
with upwinding based on the sign of (a*), Loy Thus, the algorithm to compute ¥ (f')
in (22a) is fourth-order accurate, and p = 4 in (22b).

Equation (24b) requires the computation of the face-averaged collision flux (C*); . ley:
We note that the velocity space grid is Cartesian in our drift-kinetic model and inde-
pendent of the configuration space grid; thus, (C*) = 0if s # d, and (24b) only

ii%ed
needs (C?). ., The face-averaged flux is obtained from the face-centered collision
2
flux
g _ ,
I_i‘i%ev ’ d_dVH I ”] =11 '\;\”,
d . i I ) it 7% Itaey
Cil, =\I", ,d=d, (28)
=3¢ ityey 1"”1 =TI, -0
. i+ = 1-5e
0 , otherwise i+ aeu 2

using (23a). Equation (4a) involves derivatives in the velocity space (v”, u) only,
and to simplify the subsequent discussion, two-dimensional grid indices (k,) will be
used, such that

Ukt-p,l+q = Mi+pev‘| +qey k=1i- €5 l=i-ey (29)

for an arbitrary grid variable u and p,q € Z. The computation of I 'l . 1s described
2%

in the following paragraphs and can be extended trivially to computing Fl i Lo -
2€u

Evaluating (4b) at the face i+ %e"H , the Fokker-Planck collision flux along the v
dimension is given by

af af

VI VI

r

=1
ki

s 1
1+ zevH

- [GVIf Ty 30)

ki

The face-centered advective term is computed as

[le\f} krhi Oy yilir 3D

where the distribution function at the interface f, 1 , is computed using the fifth-
2

order upwind interpolation method based on the sign of O'vH’ kel ie.,
Ot < 0,
fk+%.l = ;_Ofk—2,l - gfk—l,l + %fk,l + %fkﬂ,l - %fk-ﬂ,la (32a)
Oy ktd 20,
fk+%71 = %fk+3,l - gfk-ﬂ.l + %fk—&-l,l + %fk,l - %fk—l.b (32b)

Note that the advective term is on the RHS of (1), and a negative value of GVH el
5 2

implies a right-moving wave. The cell-centered values of the distribution function
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Sk, are obtained from its cell-averaged values using (23b). The diffusion terms are
computed as follows:

P d
[Kvm a_f} = Koyt 4 a_f ’ &9
Ikt S| ey
and
af 1 of af
[Kvluﬁ} k3.0 2 (Kvlu’k%’l% O | d -4 Skt Gy kedieh)
(34)
where
1
af _Lfor] L of . (35)
ou kplixl 2 u kl+4 I [SENES

The derivatives at the cell faces in (33) and (35) are computed using fourth-order
central differences:

- St — gl + g — o4 36
w1 Ay (24fk 11 8fk,l+8fk+1,l 24fk+271), (36)
2

o
aVH

and similarly for d f/du| ksl The advective and diffusive coefficients in (31), (33),
and (34) are related to the Rosenbluth potentials through (6). Appendix A describes
the computation of the Rosenbluth potentials from the distribution function by dis-
cretizing and solving (7), which is defined on the infinite velocity domain but is
solved on a truncated numerical domain. Our current implementation is second-order
accurate, and therefore, the coefficients in (31), (33), and (34) are calculated by dis-
cretizing (6) with second-order finite differences:

1

Oy k+1 :A—v” (—Prs+ Per1) (37a)
1| Pr—17—2Pk1+ Prv1 Pkt — 2Pk+1,0+ P42,
y __ P =26 Ly P / : 37b
vkt T ) [ Av? + A3 » G70)
2‘IJ, 1im _ _
. L = I+5 Pl = Pi+1,1 = Ph,i+1 7+ Ph1,1+1 . (37¢)
VKt 7,045 B AVHA,U

The magnetic field magnitude B in (37¢) varies in the configuration space only. Over-
all, the algorithm to compute ¢ (f) in (22a) is second-order accurate and ¢ = 2 in
(220).
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Mass and Energy Conservation The Fokker-Planck collision term conserves mass,
momentum, and energy in its analytical form, and it is important that these quantities
are discretely conserved as well. Mass conservation is expressed as

/c(f)dv=o:»/1_*>-ds=o (38)

Q 9Q,

where Qy = [=V| max: V. max] X [0, Umax] is the velocity space domain, and v = (;}ju, )
-ds

is the velocity space coordinate. Equation (38) is satisfied if the normal flux

is zero over the entire velocity space boundary, and this is enforced by setting the
coefficients Oy» Ops Kyyv» Kuprs and Koy at the velocity boundaries to zero. Energy
conservation is expressed as

Ee(ry (R) = / c(f) (vﬁ + uB) dv =0, (39)
Qy

and is enforced using the approach described in [79], adapted for Cartesian velocity
coordinates. Let

) =T oy (B V) =0Ty [® V] @0

and let 2@ () and €@ (F) be the corresponding spatially discretized terms. Equa-
tion (39) implies

£y (R) = ~Ea ) (R). @
We define
ve (R) = —Era (1)) (R)/ g (1)) (R), 42)
and modify (4) as
() = vV T, ?:?f+Vg(R)?V(W)f 43)

We note that v (R) — —1 as Avj,Au — 0 for a consistent discretization of the col-
lision term, and this factor counteracts the energy imbalance in the collision term
resulting from the discretization errors. Equation (43) is discretized as decribed in
the preceding discussions. Discrete enforcement of momentum conservation is also
discussed in [79]; however, the numerical test cases considered in this paper have neg-
ligible average velocities and yielded stable and convergent results without momen-
tum conservation enforcement. In our implementation, discrete energy conservation
is necessary to preserve a Maxwellian solution; without the modification described
by (43), unphysical cooling of the Maxwellian solution is observed that is alleviated
by refining the grid in the velocity space. This behavior is similar to that reported
in [79].
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Fig. 2 Eigenvalues of the RHS of (22a) (Ar) and its constituent terms — the Vlasov (Ay) and collision
terms (A¢). (a) In the hot near-core region, the collisional eigenvalues (red) are much smaller than the
Vlasov eigenvalues (blue). (b) However, in the cold edge region, the former are much larger in magnitude
than the latter. Note the change in the horizontal scale.

4 Time Integration

Equation (22a) represents a system of ODEs in time that are solved using high-order,
multistage explicit and IMEX time integrators in COGENT. The plasma density and
temperature vary significantly in the edge region along the radial direction, and as a
result, the stiffness of (22a) changes substantially from the inner edge region (adja-
cent to the core) to the outer edge. We use a simple problem to analyze the eigen-
values of the RHS of (22a). The two-dimensional (in space) Cartesian domain is
R = (1,0) = (x,y) with specified density and temperature and a Maxwellian distribu-
tion function. The periodic domain is 0 < x,y < 1, where x = %/Lief,y = §/ Lyet are the
non-dimensional spatial coordinates; £,y are the physical coordinates; and Lef = I m
is the reference length. A uniform density n = 1 is specified, and the temperature is
specified as

T =1+0.1cos(2my), (44)

where n and T are nondimensional quantities. The magnetic field is (By,By,B;) =
(0,0.2,2) where z is normal to the plane of the domain, and the reference magnetic
field is Brs = 1T. The reference mass is specified as the proton mass, i.e., Mer =
1.6726 x 10~2*g. We consider two values for the reference density and temperature,
corresponding to two extremes of the edge region: the hot near-core region with . =
1020 m_3, Tief = 500eV, and the cold edge region with n.f = 1019 m_3, Tier = 20eV.
These values are based on measurements in the edge region of a DIII-D tokamak [69].

The Jacobians of the RHS of (22a) and its constituents ¥ and % are computed
by applying finite differences on these operators, which scales as & (Nz) opera-
tions where N is the total number of grid points. Therefore, a very coarse grid with
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(Nx,Ny,NV”,N”> = (6,16,16,12) points is used to discretize the domain for this

analysis. Figure 2 shows the eigenvalues of the RHS of (22a) as well as its con-
stituents evaluated separately:

e ([20]) r((5]) ea ().

where Z (f) = 7 (f) + € (f) and A ([-]) are the eigenvalues of []. In the hot near-
core region, shown in Figure 2(a), the eigenvalues of the Vlasov term dominate the
spectrum, and thus, the overall system of equations is not stiff with respect to the
Vlasov time scale. However, in the cold edge region, shown in Figure 2(b), the strong
collisionality results in the eigenvalues of 4 being much larger than those of the
eigenvalues of ¥ . It should be noted that the magnitudes of the eigenvalues of ¥ are
similar in the two figures.
The stable time step for an explicit time integration method is constrained by

ARAL € {21 Peyp (2) < 1}, (46)

where & represents the stability polynomial. It is evident from Figure 2 that, though
an explicit method will allow time steps comparable to the Vlasov time scales in the
near-core region, it will be constrained by the collisional time scales in the cold edge
region. This fact motivates the use of the IMEX approach, where the collisions are
integrated in time implicitly, while the Vlasov term is integrated explicitly; therefore,
the stable time step for an IMEX method is constrained by

AvAt € {z: Pvex (z) < 1}, 47)

where Z\ex is the stability polynomial for the explicit component of the IMEX
method. The IMEX approach allows time steps comparable to the Vlasov time scales
in the entire edge region.

In this paper, we investigate high-order multistage ARK methods [48] that are
expressed in the Butcher tableaux [9] form as:

ng
(CIFI” *\"Ct LB ) Z ajj,Ci = Z dij, (48)

where a;;,b;,c; define the explicit component of the IMEX method, with a;; =0, j >
i d,-j,l;j,éi define the implicit component, with @;; = 0, j > i; and ny is the num-
ber of stages. The implicit components of the methods considered in this paper are
L-stable, explicit-first-stage, single-diagonal-coefficient implicit Runge-Kutta (ES-
DIRK) methods, and the coefficients satisfy ay; = 0; a; = v,i = 2,--- ,n;, where
Y is a constant. In addition, the methods are conservative, and b; = l~),', Vi. A time step
of the ARK methods applied to Eq. (22a) is expressed as follows:

i

) =, + Ar {jilaij“/? (f(-f)) + Y @ (f<-f>) } ,i=1,,ng,  (49a)

B0 =1+ Ar i {b,-“f7 (EW) 57 (f<">) } , (49b)
i
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where At is the time step, n denotes the time level (f, = f(z,) ,7, = to +nAt), and £/)
are the stage solutions. The second—order (three—stage) (“ARK2”) [34], the third-
order (four-stage) (“ARK3”) [48], and the fourth-order (six-stage) (“ARK4”) [48] are
implemented.

Equation (49a) is a nonlinear system of equations for i > 1 that is expressed as

F(y)=ay—¢(y)—r=0, (50)

where y = ) is the unknown stage solution and

i—1

b ar Y {7 () ¢ (1) }] e

J=1

o L
CyAr T yAt

We use the Jacobian—Free Newton-Krylov (JENK) approach [51] to solve Eq. (50).
The inexact Newton’s method [23] is used to solve the nonlinear equation, where the
initial guess is the solution of the previous stage yo = f'(()') = =1 (note that the first
stage is always explicit), and the k-th Newton step is

d.7 (y) de (y)

Yitr1 =Y — / (Yk)il F (i) /()’) = dy =oal— d—y’ (52)

where Il is the identity matrix and _¢# is the Jacobian of .%. The exit criterion is

17 (91 ll2 < max (&[|.7 (yo) 2. &) or |7 "7 (yi) |12 < &, (53)

where &, and &, are the absolute and relative tolerances for the Newton solver, re-
spectively, and & is the step size tolerance. Equation (52) requires the solution to the
linear system of equations,

(7 (ylx=F (y4), (54)

which is solved using the preconditioned generalized minimum residual (GMRES)
method [74,75]. The GMRES solver only requires the action of the matrix _# on a
vector, which is approximated by computing the directional derivative [68],

S (yi)x = (€ (yi+ex)—C (yo)] ., (55)

[F (ye+ex)— F (yi)] = ax —

mn | =
| =

where € = /€, (1 +[|yx|l2)/|x||2 and &, is machine round-off error (taken as 10~ !4
in our algorithm). The exit criterion for the GMRES solver is

[rrll2 < max (&, & [roll2), 1= 7 (yi)xi+-F (ya), (56)

where X; is the solution at the /-th GMRES iteration, and ro = .% (yy) since xg = 0.
The preconditioned GMRES algorithm uses a preconditioning matrix to acceler-
ate convergence. Equation (54) is rewritten as

L7 Wol[2 3] [2 (v0)] ™' x= 7 (v), (57)
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where & ~ ¢ is the preconditioning matrix. Although the Jacobian _¢ is not as-
sembled, the preconditioning matrix & is assembled and stored as a banded matrix.
The preconditioner is constructed as

d (y)

Z(y)=as - dy

LEM =@+ (aan), r<qg 68
Thus, the preconditioning matrix is defined as the Jacobian of a lower—order dis-
cretization of the collision term. In our current implementation, % is constructed
by reconstructing f, , 1 in (31) with the first-order upwind method and discretizing

a"H f Y and dy f | kel in (33) and (35) with second-order central differences. In
+§. » T2

addition, the conversions from cell-centered to cell-averaged solutions and vice-versa
using (23) are neglected, which results in a nine-banded sparse matrix. The Gauss—
Seidel method is used to invert it. Though this preconditioning approach is satisfac-
tory for the cases presented in this paper, we are exploring more efficient approaches
presented in the literature [79].

5 Results

In this section, we test the accuracy, convergence, and computational cost of the
IMEX time integration methods by applying them to two cases that are represen-
tative of the tokamak edge region. The edge is characterized by a steep decrease in
the plasma density and temperature in the outward radial direction [69] that results
in an increase in the collisionality from the near-core region to the edge. Our current
implementation is insufficient to resolve significant variations in temperature due to
the use of a fixed velocity grid in the entire configuration space domain; implementa-
tion of adaptive velocity grids based on the local thermal velocity will be pursued in
future studies. We investigate our time integration methods for constant and varying
collisionality by considering two Cartesian, two-dimensional heat transport problems
where R = (x,y). Both of these problems involve the thermal equilibration of an ini-
tially sinusoidal temperature profile while a specified electrostatic potential drives the
flow. The first problem is essentially one-dimensional with zero gradients along the x
dimension, and the collisionality does not vary significantly through the domain. The
second problem introduces significantly varying collisionality along the x dimension
(similar to the variation at the tokamak edge) by specifying an appropriate density
profile. The performance of the IMEX methods is analyzed for both these problems
and compared with that of the explicit RK methods.

The cases and the results in this section are described in terms of the nondi-
mensional variables described in Section 2, unless noted otherwise. The reference
quantities (dimensional) and their values are

Lief = 1m, Nref = 1020 m73; Tief = 206V,
Mpef = 1.6726 x 1072*g, Brog = 1T, Vet = 4.377 x 10%cm/s,
tref = 2.3 X 10775, Uref = 1.602 x 107 B gem?s72G ™! @ep = 20V,

(59)
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and the nondimensional values in the subsequent discussions should be multiplied by
the corresponding reference values in (59) to calculate the dimensional values.

COGENT is implemented for distributed-memory parallel computations using
the MPI library, and the simulations discussed in this paper are run on a Linux cluster
where each node has two Intel Xeon 8-core processors with 2.6 GHz clock speed and
32 GB of memory.

5.1 Case 1: Uniform Collisionality

This case simulates the parallel heat transport over a two-dimensional (in config-
uration space) slab where the collisionality does not vary significantly throughout
the domain. The configuration space domain is 0 < x,y < L, where L = 1, and the
velocity space domain is —3.5 < v < 3.5, 0 < pu < 10. The initial solution is the
Maxwellian distribution in the velocity space with uniform density n (x,y,r = 0) = 1,
and the initial temperature profile is specified as

T(x,y,t =0)=To(y) = 1+0.1cos(2my). (60)

A steady electrostatic potential ¢ (x,y,r) = —0.1cos(27y) and a constant magnetic

field By = 0.2, B, = 2 are applied throughout the simulation. Periodic boundary con-

ditions are applied at all boundaries. Flow gradients along x are zero at all times in

the simulation, and this case is essentially one-dimensional. The species charge and
mass correspond to ionized hydrogen. The collision time is defined as

7=2 m—T3~ L oux 10 %s=7=

4 T et A tref

=0.104, 61)

where (N) are dimensional quantities and 7 is the nondimensional collision time. The
Coulomb logarithm is specified as A, = 11 [40]. The collisional mean free path is
A = v, where vy, = /2T /m is the thermal velocity, and the characteristic length
scale is k[l = (B/By) (L/2r); consequently, the ratio of the particle mean free path
to the characteristic length scale is

kjA = 0.065, (62)

and therefore, the plasma is highly collisional for this case.

The solutions discussed in this section are obtained on a grid with (Nx,Ny , NVH m

N—

(6,64,36,24) points. Figure 3 shows the evolution of the density and temperature in
time. This solution is obtained with the ARK4 method with a time step of At = 0.05
that results in a Vlasov CFL of oy ~ 1.1 and a collision CFL of 6¢c ~ 12.9, defined

as follows:
(Rﬁ)At (Ry)At VHAI
oy = 63
\'% max{ Ax ) Ay 7AV“ ) ( a)

Oy At o, At Ko At k., At Ko uAt
cc:max{ Yl I3 VIVl Hp VIH . (63b)

AVH ’ Au ' Avﬁ ' A,I.L2 ’AVHA[J
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Fig. 3 Evolution of density and temperature in time. The constant initial density assumes a cosine-like
profile to balance the specified electrostatic potential. Thermal equilibration drives the temperature to a
constant value.
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Fig. 4 Parallel heat flux as a function of time at y = 0.25: The heat flux attains its “quasi-steady” value
consistent with the temperature gradient at an instant in time. As the temperature equilibriates, it decays to

Zero.

The simulation is run until a final time of 75 = 130 on 192 cores (12 nodes) with 8
MPI ranks along y, 6 ranks along v, and 4 ranks along f. The specified electrostatic
potential forces the initially constant density to assume a sinusoidal profile while ther-
mal equilibration drives the temperature to a constant value. These processes occur on
the slow transport time scale (77 ~ mL?/2tT). Figure 4 shows the normalized paral-
lel heat flux (I'[;t/I) at y = 0.25 as a function of time, where I = 1.87 x 108gs~3
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is the heat flux computed by the Braginskii model [5],

v —7T(R)}? B
F(R)//{VIIV_(R)}{ : <2)} TEZ (R B (R vy
(64)

is the nondimensional parallel heat flux, and

) pi— % _%_14 1 10 -3
ref = Nyt Lopm ;= 1.4 X 07 gs (65)

is the reference heat flux. At a given time, the collisions drive the heat flux to a value
consistent with the local temperature gradient at the collisional time scale 7. As the
temperature assumes a constant value, the heat flux decays to zero, which happens
on the transport time scale. Thus, this problem demonstrates the disparate time scales
resulting from a highly-collisional plasma.

Figure 5(a) shows the L, norm of the time integration error as a function of the
collisional and Vlasov CFL numbers defined by (63) for solutions obtained at a final
time of 7 = 0.1. The errors for the ARK methods are compared with those for explicit
second-order (RK2a), third-order (RK3), and fourth-order (RK4) RK methods. The
error is defined as

fe =f- TRK4,At:10—5 ) (66)

where f is the numerical solution and fgy, 4, 10-5 is the reference solution obtained

with the RK4 method with a time step of Ar = 107 (corresponding to oy ~ 2.2 x
1074, oc ~ 2.4 x 1073). The relative tolerance for the Newton solver is & = 10710
for all the solutions, and the absolute tolerance &, is specified as the maximum value
& for which the error in solving the nonlinear system is less than the truncation
error of the time integration method for a given At. Thus, it is a function of the method
and the time step size and is defined as

& =max(gq) suchthat [[feg,|l2 = £ 9-10]l2, (67)
where f¢ ¢, is the error defined by (66) for a solution obtained with an absolute toler-
ance of &, and £ |10 is the error for a solution obtained with an absolute tolerance

of 10719, As an example, Figure 5(b) shows the L norm of the error as a function
of the absolute tolerance g, for the ARK4 method at three values of Af. A toler-
ance €M ~ 1072 is sufficient for the largest time step At = 0.04, the intermediate
time step At = 0.004 requires a tolerance of €M ~ 107>, and the smallest time step
At = 0.0004 requires €™ ~ 10~°. This approach avoids solving the nonlinear sys-
tem of equations to a higher accuracy than required by the time integration method
for a given At. The relative tolerance for the GMRES solver is specified as & = 1074,
and the absolute tolerance is specified as & = €"** /10 for all the simulations. Fig-
ure 5(a) shows that all the methods implemented converge at their theoretical orders.
The errors for a given method are shown at all CFL numbers for which the method is
stable. The explicit RK methods are unstable beyond a collisional CFL of o¢ ~ 0.5
that corresponds to a Vlasov CFL of oy ~ 0.04 since they are constrained by the
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Fig.5 Accuracy and convergence: (a) The L, norm of the error as a function of the collisional and Vlasov
CFL numbers. The time integration methods converge at their theoretical orders of convergence. (b) The
error as a function of the Newton solver absolute tolerance for ARK4 at three values of Ar. A higher At
allows a more relaxed tolerance without increasing the truncation error.
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Fig. 6 Computational cost: (a) The error as a function of the number of calls to the collision operator 4
and (b) the error as a function of the wall time in seconds. The IMEX approach allows significantly faster
stable solutions compared with explicit time integration.

collisional time scale. The ARK methods allow stable time steps comparable to the
Vlasov time scales; the maximum Vlasov CFL is oy ~ 1.1, corresponding to a colli-
sional CFL of o¢ ~ 12.

The computational cost of the ARK methods are compared with that of the ex-
plicit RK methods for the solutions shown in Figure 5(a). Figure 6(a) shows the L,
norm of the truncation error f¢ as a function of the number of calls to the collision
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Table 1 Computational cost with and without preconditioning for solutions obtained with the ARK4
method at a final time of 7y = 130. The preconditioner is effective at reducing the cost of the linear solver
at higher CFL numbers.

At oy oc NGMRES Nc ‘Wall time (seconds)
No PC With PC No PC With PC No PC With PC

ARK4

0.01 0.2 24 180,568 188,974 388,408 397,023 1.4x10° 1.5x10°
0.025 0.6 6.1 73,734 59,096 156,935 142,297 5.7x10* 53 x10*
0.04 0.9 9.7 54,321 25,852 103,801 75,249 3.7x10* 2.7 x10%

0.05 1.1 121 49,905 21,755 89,544 61,298 33x10* 23x10*
RK4
0.002 0.04 0.50 — 260,000 1.1x10°

operator % (F). It is defined as
Nc = Nr X ng (68)

for an explicit RK time integrator, where N7 =t /At is the total number of time steps,
and n; is the number of stages in the RK methods. Since we use the JFNK approach
to solve the nonlinear system of equations in the ARK time integrators, it is defined
as

Nc = Nr X ng + NNewton + NGMRES (69)

for the ARK methods, where Nnewton 1S the total number of Newton iterations and
NGMREs is the total number of preconditioned GMRES iterations. The time step Af
(and consequently, the collisional and Vlasov CFL numbers) increases as one moves
along a curve from bottom-right to the top-left. In the region where the explicit meth-
ods are stable, they are more efficient, and this is expected because of the additional
burden on the ARK methods to solve an nonlinear system of equations. However, the
ARK methods allow stable solutions at a significantly lower cost at higher CFL num-
bers where the explicit methods are unstable. The metric shown in Figure 6(a) does
not reflect the cost of assembling and solving the preconditioner. The Gauss-Seidel
method is used to invert the preconditioner, and 80 iterations are required to solve
it to sufficient accuracy. Figure 6(b) shows truncation error ||fe||> as a function of
the the wall time (in seconds), which includes the additional cost of preconditioning
the system. The simulations are run on 96 cores (6 nodes) with 8 MPI ranks along
Y, 6 ranks along v, and 2 ranks along y. A similar trend is observed, and the ARK
methods allow for significantly faster stable time step. For example, the fastest stable
solution with ARK2 is ~ 6 times faster than that with RK2a, while the fastest stable
solution with ARK4 is ~ 4 times faster than that with RK4.

The performance of the preconditioner is assessed for the ARK4 method. Table 1
shows the number of GMRES iterations (Ngmrgs), number of function calls to é
(Nc), and the wall time for solutions obtained with various time steps A¢ at final time
of ty = 130. The simulations are run with the preconditioner (“With PC”) and with-
out it (“No PC”) on 192 cores (12 nodes) with 8 MPI ranks along y, 6 ranks along
Vs and 4 ranks along u. As a reference, the number of function calls and the wall
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Fig. 7 (a) Temperature 7" at y = 0 as a function of time for the solutions reported in Table 1. The solutions
obtained with the semi-implicit ARK4 method agree well with that obtained with the explicit RK4 method.
(b) The normalized difference between the ARK4 and RK4 solutions.

time are reported for the explicit RK4 with the largest stable time step At = 0.002;
this represents the fastest stable solution with the RK4 method. The preconditioner is
ineffective at the lower CFL numbers considered; at ¢ = 2.4, the number of precon-
ditioned GMRES iterations is slightly larger than the number of unpreconditioned
GMRES iterations, while at oc = 6.1, the number of preconditioned iterations is
slightly less than the number of unpreconditioned iterations. At the higher CFL num-
bers oc = 9.7,12.1, the preconditioner reduces the number of GMRES iterations by
factors of ~ 2.1 and ~ 2.3, respectively. The number of function calls N¢ includes the
calls from the Newton solver and the time integrator, and therefore, the effect of the
preconditioner is less pronounced when considering this metric. At the highest stable
time step for the ARK4 method (Ar = 0.05), the number of function calls for the
preconditioned simulation is ~ 1.5 times smaller than that for the unpreconditioned
simulation. In terms of the wall time, the preconditioned simulation is ~ 1.4 times
faster than the unpreconditioned simulation, and this shows that the construction and
inversion of the preconditioner is relatively cheap even though 80 Gauss-Seidel it-
erations are required. Overall, this test case does not result in a very ill-conditioned
system,; at the highest collisional CFL number considered, the unpreconditioned sim-
ulation requires only ~ 4 GMRES iterations on average (Ngmres /(N7 x ny + ), where
ng® = 5 is the number of implicit stages for ARK4 and the nonlinearity is sufficiently
weak that only one Newton iteration is observed for each implicit stage). Figure 7(a)
shows the evolution of the temperature 7' at y = 0 for the simulations in Table 1. The
solutions obtained with the semi-implicit approach at high collisional CFL numbers
agree well with the solution obtained with the explicit RK4 method with a time step
constrained by the collisional time scale. Figure 7(b) shows the normalized difference
between the ARK4 solutions (Tark4) and the fastest RK4 solution (Trk4,A—0.002)-
The errors are larger for larger time steps, and they grow with time as expected; the
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Fig. 8 The initial density variation along x for the varying collisionality case and the consequent collision-
ality variation. The plasma is weakly collisional for x — O while it is highly collisional for x — 1.

global (in time) error at a given time is an accumulation of the local truncation error
for all preceding time steps.

5.2 Case 2: Varying Collisionality

This case is similar to the previous case, except that a significant variation in the
density, and therefore, the collisionality, is introduced along x. The initial density is
specified as

n(x,y,t =0)=ng(x) =1— 6+ dtanh (27x — 1), (70)

where & = 0.475. The problem setup is identical to the previous case in all other
aspects. Figure 8 shows the initial density and the ratio of the mean free path to the
characteristic length scale k| A. The mean free path is comparable to the characteristic
length scale near x = 0, and the plasma is weakly collisional. On the other hand, the
mean free path is much smaller than the length scale near x = 1, and the plasma
is strongly collisional. The collisional time scales are thus comparable to the Vlasov
time scales as x — O but are much smaller as x — 1. This variation in the collisionality
is representative of the radial variation in the tokamak edge region [69]. The plasma
conditions as x — 1 correspond to the previous test case. This case is solved on a grid
with (Nx,Ny,NV” ,NH> = (32,32,36,24) points in the subsequent discussions.
Figure 9 shows the cross-sectional temperature along y at x = 0.1 (weakly colli-
sional) and x = 0.9 (strongly collisional). The solutions are obtained with the ARK4
method at a time step of Af = 0.1, corresponding to a Vlasov CFL number of oy ~ 1.1

and a collisional CFL number of o¢ =~ 26. The simulation is run until a final time of
ty = 130 on 384 cores (24 nodes) with 4 MPI ranks along x, y, and ¢t and 6 MPI ranks
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along v|. The dynamics are similar to the previous test case; however, the varying col-
lisionality results in varying thermal equilibration and density diffusion rates. Near
x = 0, the collisional and Vlasov time scales are comparable while near x = 1, the
collisional time scale is much smaller than the Vlasov time scale. In the region where
the plasma is weakly collisional (x — 0), the temperature equilibrates much faster
while the equilibration is much slower in the region where the plasma is strongly col-
lisional (x — 1). Figure 10 shows the evolution of the normalized parallel heat flux
(I'Iies/Ip) aty = 0.25and x = 0.1,0.9. At x = 0.1, the heat flux decays to zero much
faster than at x = 0.9 due to the faster equilibration.

Figure 11(a) shows the L, norm of the time integration error as a function of the
Vlasov and collisional CFL numbers defined by (63) for solutions at a final time of
ty = 0.2. The errors are computed with respect to a reference solution obtained with
the RK4 method and a time step of Az =2 x 1073, corresponding to a Vlasov CFL
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Fig. 9 Cross-sectional temperature 7 (y) at x = 0.1,0.9 at four different solution times. The temperature
equilibrates faster in the low-collisionality region (x = 0.1) than in the high-collisionality region (x = 0.9).
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=0.25

Parallel heat flux (I'T" ./ 'p) at y

0 20 40 60 80 100 120

Fig. 10 The time evolution of the parallel heat flux at y = 0.25 and x = 0.1,0.9. The dynamics are quali-
tatively similar to those in Fig. 4. In the low collisionality region (x = 0.1), thermal equilibration is faster
and the heat flux decays to zero faster than in the high collisionality region (x = 0.9).

number of oy & 2.2 x 10~* and a collisional CFL number of 6¢ ~ 4.7 x 10~3. Thus,
the fastest collisional time scale is ~ 21 times faster than the Vlasov time scale for this
test case. The relative and absolute tolerances for the Newton and GMRES solvers
are specified in the same way as described for the previous test case. All the methods
considered converge at their theoretical orders of convergence. The maximum stable
time step for the explicit RK methods correspond to the collisional CFL number
of oc ~ 0.5 because they are constrained by the collisional time scales. The semi-
implicit methods are stable until a collisional CFL of o¢c ~ 25 that corresponds to a
Vlasov CFL of oy ~ 1.1; thus, they are constrained by the Vlasov time scale.

Figure 11(b) shows the error as a function of the number of calls (Nc) to the
collision operator € (f) defined through (68) and (69) for the explicit RK and semi-
implicit ARK methods, respectively. The ARK methods allow significantly less ex-
pensive stable solutions; for example, the fastest stable solution with ARK?2 is ~ 7
times less expensive than that with RK2a, and the fastest stable solution with ARK4
is ~ 6 times less expensive than that with RK4. Figure 11(c) shows the error as a
function of the wall time. The simulations are run on 192 cores with 4 MPI ranks
along x and y, 6 ranks along v|, and 2 ranks along y. The wall times include the cost
of assembling and inverting the preconditioning matrix (80 Gauss-Seidel iterations),
and similar trends are observed. Thus, the additional cost of the preconditioner is in-
significant despite 80 Gauss-Seidel iterations being required to solve it to sufficient
accuracy.

Table 2 compares the computational cost of the fastest stable solution with the
ARK4 method, both with and without the preconditioner, as well as the fastest stable
RK4 solution. The preconditioner reduces the total number of GMRES iterations by
a factor of ~ 3. The unpreconditioned simulation requires an average of ~ 5 GM-
RES iterations in each implicit stage, while the preconditioned simulation requires
an average of ~ 1.8 GMRES iterations. The nonlinearity was sufficiently weak that
the Newton solver was observed to converge in one iteration for these simulations.
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Fig. 11 Convergence and work-precision: (a) The error as a function of the Vlasov and collisional CFL
numbers for explicit RK and semi-implicit ARK methods. All the methods converge at their theoretical
orders. (b) The error as a function of the number of calls to the collision operator %, and (c) the error as a
function of the wall time in seconds. The ARK methods allow significantly faster stable solutions.

The total number of calls to the collision operator (Nc), which includes calls from the
time integrator and the Newton solver, is reduced by a factor of ~ 1.7 by the precon-
ditioner, while the total wall time is reduced by ~ 1.6. The difference in these two
factors reflects the cost of inverting the preconditioning matrix with 80 Gauss-Seidel
iterations. The preconditioned ARK4 solution is ~ 11 times faster than the fastest
stable RK4 solution in terms of the wall time. These solutions are obtained on 384
cores (24 nodes) with 4 MPI ranks along x, y, and (1, and 6 ranks along v||. Figure 12
shows the cross-sectional density 7 (y) at x = 0.1 and x = 0.9 for the two simulations
in Table 2 at the final time of 7, = 130. The initially constant density developes a non-
constant profile to balance the specified electrostatic potential. The solution obtained
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Table 2 A comparison of the computational cost with and without preconditioning of the fastest stable
solution with the ARK4 method at a final time of ty =130, as well as the fastest stable solution with RK4.
The preconditioner is effective at reducing the cost of the linear solve.

At oy oc NGMRES N¢ Wall time (seconds)
NoPC WithPC NoPC  WithPC No PC With PC

ARK4
0.1 1.1 25.8 33,131 11,535 52,551 30,852 2.5x 104 1.6 x 10*
RK4
0.002 0.02 0.52 — 260,000 1.7 x 10°
0.064 : : ‘ 1.10 : : :
RK4, A=0002 — RK4, A=0002 —
ARK4, At=0.1 o 1.08 ARK4, At=0.1 o |
0.062 1
1.06 - 1
0.060 q 1.04 F i
0S8t 10t 1
> 2 100} 1
(=] =
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0.054 | | 096 | |
094 | 1
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092 | 1
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Fig. 12 Cross-sectional density n(y) at two x locations corresponding to the weakly and strongly colli-
sional regions for the simulations in Table 2 at the final simulation time of ¢, = 130. The solutions agree
well with each other.

with the semi-implicit ARK4 method agrees well with that obtained with the explicit
RK4 method.

6 Conclusion

This paper describes a semi-implicit time integration algorithm for the Vlasov-Fokker-
Planck equations with the motivating application area being tokamak edge plasma
simulations. The dynamics in the edge region of a tokamak fusion reactor are charac-
terized by disparate length and time scales. The hot, weakly-collisional plasma near
the core requires a kinetic model; however, near the cold edge, the strong collisional-
ity renders the kinetic model numerically stiff. Explicit time integration methods are
thus too expensive for such applications. In this paper, we consider as our governing
equations the drift-kinetic Vlasov equation, which is the long-wavelength limit of the
gyrokinetic VFP equation, with the Fokker-Planck collision model in the Rosenbluth
form.
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We implement high-order, semi-implicit Additive Runge-Kutta methods where
the Vlasov term is integrated explicitly in time while the Fokker-Planck term is in-
tegrated implicitly. The semi-implicit algorithms are applied to two test problems,
where the ratio of the collisional time scales to the Vlasov time scales are represen-
tative of the tokamak edge region. We show that the semi-implicit time integrators
allow time steps that respect the Vlasov time scales and are larger than the maximum
time steps allowed by explicit time integrators, which respect the collisional time
scales. Accuracy and convergence tests of the methods show that the semi-implicit
methods converge at their theoretical orders. We also assess the computational cost of
these methods and compare the relative cost of the semi-implicit solutions with those
obtained with explicit Runge-Kutta methods. Overall, the IMEX approach results in
significantly faster stable solutions. Explicit methods are more efficient when seeking
solutions with high accuracy. However, the IMEX approach allows faster solutions
that are less accurate (due to a higher truncation error from a larger time step size)
but well-resolved; explicit methods cannot yield solutions at a comparable cost even
allowing for lower accuracy since their time step sizes are constrained.

Two deficiencies of this paper are areas of active research and will be reported
in future publications. A better preconditioning approach is needed, both in terms of
constructing the preconditioning matrix as an approximation to the true Jacobian and
implementing an efficient method to solve it. The use of fixed velocity grids restricts
us to applications without severe temperature gradients, and thus, our current im-
plementation cannot solve for true tokamak conditions where the temperature drops
significantly from the hot core to the cold edge. This limitation will be addressed by
using velocity renormalization.

A Computation of Rosenbluth Potentials

The Rosenbluth potentials are related to the distribution function by Poisson equations, given by (7), that
are defined on an infinite velocity domain. The algorithm implemented in COGENT to solve them on a
finite numerical domain was introduced in [25] and is summarized briefly in this section. The numerical
velocity domain is defined as Q, = [ﬂ/nmax,vurmax} % [0, Umax ], while the infinite velocity domain is

Qy 0o = [—00,00] X [0,00]. The Green’s function method is used to compute the boundary values as
Ly s
== [ L4 71
(P(V(?Qv) in / |Van7v/‘ v, (71a)
Qv
1 7 .
p (voo,) = i / ‘v{mv 7v"f (v')av', (71b)
Qv

where v, is the velocity vector at the computational domain boundary d€Qy. Direct evaluation of (71) is
expensive and an asymptotic method is used. The Green’s function is expanded as [43]
1 SRS
=4r
1=0m=—

!
V< * / /
— o Vi (0 Yim (60,v), 72
‘V—V’| 121+1V[>+] Im( 7W) lm( 71l/) ( )
where Y}, is the spherical harmonic function, 6 = arccos (v”/v) is the pitch angle, y is the gyro-angle,
vs =max (|v|,|V'|), and v< = min (|v|,|V'|). Therefore,

— h 2nB
Z 7IIHPZ (cosB); hy= e /f(vH,u) VP (cos@)dvdu, (73)
=0 |Vaﬂv| Q

J>|_

?(Vag,) =~ p
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where P; denotes the Legendre polynomials, v = |v| is the particle speed, and
f(vH,/J:v>min|va_Qv|) =0. (74)

The second Rosenbluth potential p is expressed on the domain boundary in terms of the first Rosenbluth
potential ¢ as

o L (P(V/) /.
P90) = 32 [ iy, 1" @

Though this is similar to (71a), the above analysis does not apply because ¢ (vH,/.t 1V > min |anv D #0.
Equation (75) is decomposed as

min \Vaszv | T o min ‘va_qv

| T 2
1 ! . A / A /
= / L)ldv’: / v%lv/d@/L),der / v2dv/de/L),|dw,
3 Voo, V| " 1) Voo, =V " 30 [vaa, -V
(76)
where @ (V) is the numerical solution to Eq. (7a) and
~ I &l
(P(V):*E ZTPI(COSGY ()]
i=o |Vl
Therefore,
min‘vagv| T B
/ v dv/dO/ dy = Z gl[ TP (cos0); g = —/(f) Vs u) VR (cos@)dvdu,
|Va_Q —v’| \Va + m
0 Qy Q
(78)
where @ (v) = ¢ (v),v < min ,¢(v)=0,v>min
mrhoal Iy Py (cos 6) I 1 1
/ 2”l"/de/ = Z 121100: < [ e [
IV - * 2[vaa, | 2|vaq,| (21=1)|va,|
(79)

The second Rosenbluth potential is thus expressed at the computational domain boundary as

. 2
1 & h 20+1 min |V,
p (VG.QV) _ |: 8i ! ( _ { ! 3QV|}

— - P, 0). (80
4”1:0 ‘V89v|l+] 2(21+1) 21 —1 |Van‘l—] |V9.Qv|l+l >} I(COS ) (80)

Equations (73) and (80) serve as the boundary conditions for (7) on the finite numerical domain Q,. Cut-
cell issues, arising in evaluating (78), are solved by linear interpolations [25], and therefore, the current
implementation uses second-order central finite differences to discretize the derivatives in Eq. (7). The
fourth-order implementation will be investigated in the future. We use the conjugate gradient method
with a structured multigrid preconditioner from the hypre library [30] to solve the discretized system of
equations.
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