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This paper proposes a semi-implicit time integration method for the Vlasov–Fokker–
Planck equations to simulate the dynamics of tokamak edge plasmas. The plasma is cold
and highly collisional near the edge, and the collisional time scales are significantly faster
than the advective time scales. Explicit time integration is inefficient because the time
step is limited by the collisional time scale. High-order conservative additive Runge-Kutta
methods are used to integrate the Vlasov term explicitly and the collision term implicitly,
and this allows time steps comparable to the advective time scale. The semi-implicit
approach is implemented in COGENT, a high-order finite-volume code that solves the
gyrokinetic equations on mapped, multiblock grids. Test problems representative of the
tokamak edge are used to verify the algorithm and to compare the computational cost with
explicit time integration.

I. Introduction

The dynamics of plasmas at the tokamak–type fusion reactor edge are characterized by a large range
of spatial and temporal scales. Adjacent to the hot core region, the plasma is weakly collisional,1–3 and
the accurate modeling of the transport processes requires a kinetic simulation with a detailed collisional
model. On the other hand, the cold edge region is strongly collisional with much smaller mean free paths
and collisional time scales. The Vlasov–Fokker–Planck (VFP) equation for each charged species governs
the evolution of its distribution function in the phase space comprising the spatial position and velocity
coordinates.4 The gyrokinetic model averages these equations over the particle gyromotion (the fastest time
scale) and thus eliminates one velocity dimension.1,5 These equations form a system of parabolic partial
differential equations (PDEs), and three families of numerical methods have been developed to solve them:
Lagrangian particle-in-cell (PIC) methods,6–11 semi-Lagrangian methods,12 and Eulerian methods.1,13–17

The PIC method solves the equations of motion for “superparticles” in the Lagrangian frame; however,
one drawback of this approach is that the required number of superparticles may be very large to control
the numerical noise.2,4, 18 The semi-Lagrangian approach alleviates this drawback by using a grid-based
approach: the Vlasov equations are integrated along their characteristics, and a high-order interpolation is
used to compute the distribution function at grid points.12 This paper focuses on the Eulerian methods that
solve the PDE by discretizing it over a phase space grid, which allows for the use of advanced numerical
algorithms from the Computational Fluid Dynamics (CFD) community.

The VFP equation comprises a Vlasov operator that describes incompressible flow in phase space4,19 and
a Fokker–Planck collision term that describes the collisional relaxation of the distribution functions.4,20 The
latter is expressed as a nonlinear, integro-differential advection–diffusion operator where the advective and
diffusive coefficients are integral functions of the distribution function. The numerical implementation of this
term raises two concerns:21 (i) the conservation of mass, momentum, and energy in the discrete form and (ii)
numerical stiffness. The Fokker–Planck operator can be expressed in two different but analytically equivalent
forms: the Fokker–Planck–Landau form22 and the Fokker–Planck–Rosenbluth form.20 The Landau form
expresses the advection and diffusion coefficients of the Fokker–Planck operator as direct integrals, and this
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form is well-suited for conservative numerical methods.23–29 However, the integral form of the coefficients
results in dense, nonlinear systems of equations that are computationally expensive to solve. While the cost
of a naive algorithm would scale as O

(
N2
)

(where N is the number of grid points), fast methods30–33 have
been proposed where the cost scales as O (N logN).

The Fokker–Planck–Rosenbluth form expresses the relationship between the advection–diffusion coeffi-
cients and the distribution function through Poisson equations for the Rosenbluth potentials. Assuming that
a fast solver for the Poisson solve is available, the computational expense of evaluating the collision term
scales as O (N). There have been several approaches in the literature to solving the Poisson equation on
an infinite domain in the velocity space, including the James–Lackner method,34 the decomposition of the
distribution function with Legendre polynomials of the parallel velocity coordinate,35–37 a spectral method
involving a fast Fourier transform in the parallel velocity dimension,38 a residual formulation,39 and multigrid
methods.40 In this paper, the Rosenbluth form is used, and a second-order finite-difference discretization of
the Poisson equations is implemented and solved iteratively.3 A drawback of the Fokker–Planck–Rosenbluth
form is the difficulty in enforcing mass, momentum, and energy conservation in the discretized form of the
collision term. If discretized by a conservative numerical scheme, mass is conserved; however, additional steps
are required to conserve momentum and energy to the level of round-off errors.21,41 These considerations
are beyond the scope of this paper, which concerns the efficient treatment of the fast time scales.

Collisional time scales are significantly smaller than the advective time scales in the cold edge region. The
spatially discretized Fokker–Planck operator is numerically stiff, and, when coupled with the Vlasov operator,
the overall system exhibits significant scale separation. Explicit time integration methods are therefore
inefficient, since their time steps are constrained by the collisional time scale for linear stability. Linearly
implicit methods27,31,39,42–45 and fully (nonlinearly) implicit methods21,25,26,40,46 have been proposed for
the Fokker–Planck operator; however, these methods treat the collision term in isolation. Several algorithms
have also been proposed that apply fully implicit time integration methods to the VFP equation.47–50

Semi–implicit or implicit–explicit (IMEX) time integration methods were developed51–53 for multiscale
simulations where the stiff components are integrated implicitly in time, while the nonstiff components
are integrated explicitly. The time step for the resulting algorithm is constrained by the time scales of the
nonstiff components, and larger time steps are possible compared with an explicit method. Such an approach
is advantageous when the stiff terms are relatively inexpensive to compute compared with the nonstiff terms;
thus an IMEX formulation will result in a nonlinear or linear system of equations that is significantly less
expensive to solve than that arising from a fully implicit method. IMEX methods have been successfully
applied to multiscale systems, for example, atmospheric flows.54–57 In the context of gyrokinetic algorithms,
operator-split semi–implicit algorithms have been proposed58–61 where the Vlasov term is partitioned and
where parallel advection is integrated implicitly in time.

In this paper, we propose an IMEX method for the VFP equation, where the Vlasov term is integrated
explicitly in time and where the Fokker–Planck term is integrated implicitly. A semi–implicit algorithm is
chosen instead of a fully implicit one to resolve unsteady advective processes accurately; thus, the time step
will be of the same order as the Vlasov time scale. Semi–implicit, multistage additive Runge-Kutta (ARK)
methods53 are implemented in COGENT,2,3, 62 a finite-volume mapped multiblock gyrokinetic code for
complex geometries. The nonlinear system of equations arising from the implicit integration of the Fokker–
Planck term is solved using the “Jacobian-free” Newton-Krylov method.63 We verify the implementation of
the IMEX methods on test problems that are representative of tokamak edge plasma dynamics and compare
their performance with explicit Runge–Kutta methods.

The paper is organized as follows. Sec. II describes the VFP equation. Sec. III discusses the numerical
methodology; specifically, Sec. III C discusses the implementation of the ARK time integration methods.
Numerical results and verifications are presented in Sec. IV, and conclusions are summarized in Sec. V.

II. Governing Equations

The governing equations are the full–f gyrokinetic model2,19 expressed as

∂f̃α
∂t

+∇R ·
(
Ṙαf̃α

)
+

∂

∂v‖

(
v̇‖,αf̃α

)
=

Ns∑
β=1

cFP
β

(
f̃α

)
, α = 1, · · · , Ns, (1)
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where α, β denote the charged species indices, Ns is the number of species, f̃α = B∗‖,αfα, and

Ṙα ≡ Ṙα

(
R, v‖, µ, t

)
=

1

B∗‖,α

[
v‖B

∗
α +

1

Zαe
b̂× (ZαeE + µ∇RB)

]
, (2a)

v̇‖,α ≡ v̇‖,α
(
R, v‖, µ, t

)
= − 1

mαB∗‖,α
B∗α · (ZαeE + µ∇RB) , (2b)

are effective velocities and accelerations in the configuration and velocity space, respectively. The distribution
function fα is defined on the phase space

(
R, v‖, µ

)
, where R ≡ (r, θ) is the spatial gyrocenter position

vector in the configuration space with r as the radial coordinate and θ as the poloidal coordinate; v‖ is the
parallel velocity, and µ = mαv

2
⊥/2B is the magnetic moment. COGENT is currently implemented for a

two-dimensional configuration space, so Eq. (1) represents a four-dimensional (2D–2V) PDE. The species
mass and charge state are given by mα and Zα, respectively, and e is the electron charge. The magnetic
field is denoted by B = Bb̂, where B and b̂ are its magnitude and a unit vector along B, respectively, and
where

B∗α ≡ B∗α
(
R, v‖

)
= B +

mαv‖

Zαe
∇× b̂; B∗‖,α = B∗α · b̂ (3)

is the Jacobian of the transformation from the lab frame to the gyrocentric coordinates. The electric field is
E = −∇Rφ, where φ is the electrostatic potential that is computed using some form of Maxwell’s equations.
In COGENT, the long wavelength approximation is used to calculate the electrostatic potential from the
species charge densities,2,62 where a Boltzmann model is used for the electrons.2,64 However, in the test
problems presented in this paper, the electric field is explicitly specified as E ≡ E (R).

The Fokker–Planck collision operator cFP
β

(
f̃α

)
in Eq. (1) is implemented in the Rosenbluth form,3 which

is given by

cFP
β

(
f̃α

)
= λc

(
4πZαZβe

2

mα

)2(∂Γv‖
∂v‖

+
∂Γµ
∂µ

)
, (4)

where λc is the Coulomb logarithm and

Γv‖ = σβ,v‖fα + κβ,v‖v‖
∂fα
∂v‖

+ κβ,v‖µ
∂fα
∂µ

, (5a)

Γµ = σβ,µfα + κβ,µv‖
∂fα
∂v‖

+ κβ,µµ
∂fα
∂µ

, (5b)

with the coefficients defined as follows:

σβ,v‖ =
∂ϕβ
∂v‖

, σβ,µ = 2µ
mβ

B

∂ϕβ
∂µ

,

κβ,v‖v‖ = −∂
2%β
∂v2
‖
, κβ,v‖µ = κβ,µv‖ = −2µ

mβ

B

∂2%β
∂v‖∂µ

, κβ,µµ = −2µ
(mβ

B

)2
[
2µ
∂2%β
∂µ2

+
∂%β
∂µ

]
. (6)

The Rosenbluth potentials, ϕβ and %β , are related to the distribution function through the following Poisson
equations in the two-dimensional velocity space

(
v‖, µ

)
:

∂2ϕβ
∂v2
‖

+
mβ

B

∂

∂µ

(
2µ
∂ϕβ
∂µ

)
= fβ , (7a)

∂2%β
∂v2
‖

+
mβ

B

∂

∂µ

(
2µ
∂%β
∂µ

)
= ϕβ . (7b)

In this paper, we only consider a single species (Ns = 1), and the subscripts α, β are dropped in the
subsequent discussions.
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The number density and temperature are defined as

ρ (R) =
2πB (R)

m

∫
f
(
R, v‖, µ

)
dv‖dµ, (8)

T (R) =
2πB (R)

ρ (R)

∫
1

3

[(
v‖ − v‖

)2
+

2Bµ

m

]
f
(
R, v‖, µ

)
dv‖dµ, (9)

respectively, where

v‖ ≡ v‖ (R) =
1

ρ

2πB (R)

m

∫
v‖f

(
R, v‖, µ

)
dv‖dµ (10)

is the average parallel velocity. The Maxwellian distribution function is defined as

fM

(
R, v‖, µ

)
=

(
m

2πT (R)

) 3
2

exp

(
mv2
‖ + 2µB (R)

2T (R)

)
. (11)

These quantities are used in the description of the test cases and in the analysis of the numerical results
obtained in Sec. IV.

III. Numerical Methodology

COGENT implements a high-order finite-volume method on mapped, multiblock grids for the discretiza-
tion of the spatial derivatives in Eq. (1).65,66 Although we present examples that involve Cartesian grids
in this paper, our algorithm is implemented for general geometries that can be represented by multiblock
curvilinear grids. We define a four-dimensional Cartesian domain of unit length in each dimension,

Ω = {ξ : 0 ≤ ξd ≤ 1, 1 ≤ d ≤ D} ; ξd = ξ · ed, (12)

where ed is the unit vector along dimension d, and D = 4 is the total number of dimensions. A uniform grid
is used to partition Ω with a computational cell defined as

Vi =

D∏
d=1

[(
i− 1

2
ed

)
h,

(
i +

1

2
ed

)
h

]
, (13)

where i is an integer vector representing a four-dimensional grid index. The nonsingular mapping x = X (ξ)
defines the transformation of the unit Cartesian domain to the physical domain, where x ≡

(
R, v‖, µ

)
.

Integrating Eq. (1) over the computational cell X (Vi), we get

∂

∂t

 ∫
X(Vi)

f̃dx

 =

∫
X(Vi)

V
(
f̃
)
dx +

∫
X(Vi)

C
(
f̃
)
dx, (14)

where the Vlasov and collision terms are

V
(
f̃
)
≡ −

[
∇R ·

(
Ṙf̃
)

+
∂

∂v‖

(
v̇‖f̃
)]
, C

(
f̃
)

= cFP
(
f̃
)
. (15)

We define the computational cell-averaged conserved quantity as

f̄i =
1

Vol (Vi)

∫
Vi

f̃Jdξ; J ≡
∣∣∣∣∂x∂ξ

∣∣∣∣ , (16)

where Vol (Vi) is the volume of the computational cell Vi, such that the physical cell-averaged solution is

f̆i =
1

Vol (X (Vi))

∫
X(Vi)

f̃dx =

∫
Vi

Jdξ

−1 ∫
Vi

f̃Jdξ = J̄−1
i f̄i, (17)
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and note that

V
(
f̃
)

= ∇x ·V
(
f̃
)

; V
(
f̃
)

= −
[
Ṙf̃ v̇‖f̃ 0

]T
, (18a)

and C
(
f̃
)

= ∇x ·C
(
f̃
)

; C
(
f̃
)

= λc

(
4πZ2e2

m

)2 [
0 0 Γv‖ Γµ

]T
. (18b)

Therefore, using the divergence theorem, we obtain

∂f̄i
∂t

=
1

Vol (Vi)

 ∫
∂X(Vi)

V
(
f̃
)
· n̂ds +

∫
∂X(Vi)

C
(
f̃
)
· n̂ds



=
1

Vol (Vi)

D∑
d=1

 ∫
Ad

i+ 1
2
ed

NTVdAξ −
∫

Ad
i− 1

2
ed

NTVdAξ +

∫
Ad

i+ 1
2
ed

NTCdAξ −
∫

Ad
i− 1

2
ed

NTCdAξ

 , (19)

where n̂ is the outward normal, and N = J∇xξ. The spatially discretized equation can be written for the
i-th computational cell as

∂f̄i
∂t

=
1

h

D∑
d=1

[(
V di+ 1

2ed
− V di− 1

2ed

)
+
(
Cdi+ 1

2ed
− Cdi− 1

2ed

)]
; V d = V · ed, Cd = C · ed, (20)

where, due to our computational cell being a Cartesian hypercube with length h in each dimension, Vol (Vi) =
hD, and the area of each face is Ad

i± 1
2ed

= hD−1 ∀d. Defining the solution vector as consisting of the cell-

averaged distribution function at the computational cells,

f̄ =
[
f̄i
]
, i ∈ G; G = {j : Vj ∈ Ω}, (21)

Eq. (20) can be expressed for the entire computational domain as a system of ordinary differential equations
(ODEs) in time,

df̄

dt
= V̂

(
f̄
)

+ Ĉ
(
f̄
)
. (22)

Here, V̂ and Ĉ denote the spatially discretized Vlasov and collision terms:

V̂
(
f̄i
)

=
1

h

D∑
d=1

(
V di+ 1

2ed
− V di− 1

2ed

)
= V

(
f̃
)

+O
(

∆Rp,∆vp‖ ,∆µ
p
)
, (23a)

Ĉ
(
f̄i
)

=
1

h

D∑
d=1

(
Cdi+ 1

2ed
− Cdi− 1

2ed

)
= C

(
f̃
)

+O
(

∆Rq,∆vq‖,∆µ
q
)
, (23b)

where p, q are the order of the schemes used to discretize the Vlasov and collision terms, respectively. In the
current implementation, p = 4 but q = 2 (this will be explained subsequently).

In the following subsection, we describe the computation of the Vlasov and collision terms at the cell
faces (V d

i± 1
2ed

and Cd
i± 1

2ed
) in Eq. (23), while in Sec. III C, we discuss the methods used to evolve Eq. (22)

in time.

A. Flux Calculation

Equation (20) requires the approximation of face-averaged V d
i± 1

2ed
and Cd

i± 1
2ed

, and these are computed in

the physical space to fourth-order accuracy as65

V di± 1
2ed

=

D∑
s=1

〈Ns
d 〉i± 1

2ed
〈V s〉i± 1

2ed
+ h2

D∑
s=1

{
G⊥,d0 〈Ns

d 〉i± 1
2ed

}
·
{
G⊥,d0 〈V s〉i± 1

2ed

}
+O

(
h4
)
, (24a)

Cdi± 1
2ed

=

D∑
s=1

〈Ns
d 〉i± 1

2ed
〈Cs〉i± 1

2ed
+ h2

D∑
s=1

{
G⊥,d0 〈Ns

d 〉i± 1
2ed

}
·
{
G⊥,d0 〈Cs〉i± 1

2ed

}
+O

(
h4
)
, (24b)
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where G⊥,d0 ≈ ∇ξ − ed ∂
∂ξd

; 〈Ns
d 〉i± 1

2ed
; s = 1, · · · , D are the column vectors of the face-averaged metric

quantities,65 and

〈(·)〉Γ =
1

Area (Γ)

∫
Γ

(·) dΓ (25)

denotes the average of (·) over the face Γ. Equation (24a) requires the computation of the face-averaged
〈V s〉i± 1

2ed
, s = 1, · · · , D in the computational space. The Vlasov flux term is of the form

V
(
f̃
)

= af̃ , a = −
[
Ṙ v̇‖ 0

]
⇒ V d = adf̃ , d = 1, · · · , D, (26)

and the face-averaged flux is computed from the discrete convolution as

〈V s〉i± 1
2ed

= 〈as〉i± 1
2ed

〈
¯̄f
〉
i± 1

2ed
+
h2

12

∑
d′ 6=d

(
∂as

∂ξd′

∂ ¯̄f

∂ξd′

)
ξ
i± 1

2
ed

+O
(
h4
)
, (27)

where ¯̄f is the cell-averaged distribution function in the computational space,

¯̄fi =
1

Vi

∫
Vi

f̃dξ ⇒ ¯̄fi = J−1
i

[
f̄i −

h2

12
∇ξ f̄ · ∇ξJ

]
+O

(
h4
)
, (28)

and where ∇ξf̃ is computed to second-order accuracy at the cell centers as(
∇ξf̃

)d
i

=
1

2h

[
f̄i+ed

J̄i+ed

− f̄i−ed
J̄i−ed

]
+O

(
h2
)
. (29)

The evaluation of 〈as〉i± 1
2ed

requires the evaluation of
〈
Ṙ
〉
i± 1

2ed
and

〈
v̇‖
〉
i± 1

2ed
, which are obtained by

evaluating Eq. (2) at the face centers and by computing the face-averaged quantities as

〈(·)〉i± 1
2ed

= (·)i± 1
2ed

+
h2

24

∑
d′ 6=d

∂2 (·)
∂ξ2
d′

∣∣∣∣
i± 1

2ed

+O
(
h4
)
. (30)

Finally, the derivatives ∂ (·) /∂ξ′d in Eqs. (27) and (30) are computed to second-order accuracy using cen-

tral finite-differences, and
〈

¯̄f
〉
i± 1

2ed
is computed using the fifth-order weighted essentially nonoscillatory

(WENO) scheme67 with upwinding based on the sign of 〈as〉i± 1
2ed

.

Equation (24b) requires the computation of the face-averaged 〈Cs〉i± 1
2ed

, s = 1, · · · , D, in the computa-

tional space,

〈Cs〉i± 1
2ed

= λc

(
4πZ2e2

m

)2


〈
Γv‖
〉
i± 1

2ed
, s = dv‖ ,

〈Γµ〉i± 1
2ed

, s = dµ,

0, otherwise.

(31)

The face-averaged collisional fluxes are computed from the cell-averaged collision fluxes to fourth-order
accuracy as 〈

Γ(·)
〉
i+ 1

2ed
=

1

h

[
7

12

(
Γ̄(·),i + Γ̄(·),i+ed

)
− 1

12

(
Γ̄(·),i+2ed + Γ̄(·),i−ed

)]
+O

(
h4
)
, (32)

and similarly for
〈
Γ(·)
〉
i− 1

2ed
. The cell-averaged collisional fluxes Γ̄(·),i are computed from their cell-centered

values as

Γ̄(·),i = Γ(·),i +
h2

24

D∑
d=1

∂2Γ(·)

∂ξ2
d

∣∣∣∣
ξi

+O
(
h4
)
. (33)
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The cell-centered collisional fluxes have the following form:

Γv‖,i = σv‖,ifi + κv‖v‖,i
∂f

∂v‖

∣∣∣∣
i

+ κv‖µ,i
∂f

∂µ

∣∣∣∣
i

, (34a)

Γµ,i = σµ,ifi + κµv‖,i
∂f

∂v‖

∣∣∣∣
i

+ κµµ,i
∂f

∂µ

∣∣∣∣
i

. (34b)

The cell-centered values of the advection and diffusion coefficients σ(·),i, κ(·),i are related to the Rosenbluth
potentials by Eq. (6) and are computed using fourth-order accurate finite-differences:

∂ (·)
∂v‖

∣∣∣∣
i

=
(·)i−2edv‖

− 8 (·)i−edv‖
+ 8 (·)i+edv‖

− (·)i+2edv‖

12∆v‖
+O

(
∆v4
‖

)
, (35a)

∂ (·)
∂µ

∣∣∣∣
i

=
(·)i−2edµ

− 8 (·)i−edµ + 8 (·)i+edµ
− (·)i+2edµ

12∆µ
+O

(
∆µ4

)
, (35b)

∂2 (·)
∂v2
‖

∣∣∣∣∣
i

=
− (·)i−2edv‖

+ 16 (·)i−edv‖
− 30 (·)i + 16 (·)i+edv‖

− (·)i+2edv‖

12∆v2
‖

+O
(

∆v4
‖

)
, (35c)

∂2 (·)
∂µ2

∣∣∣∣
i

=
− (·)i−2edµ

+ 16 (·)i−edµ − 30 (·)i + 16 (·)i+edµ
− (·)i+2edµ

12∆µ2
+O

(
∆µ4

)
, (35d)

∂2 (·)
∂v‖∂µ

∣∣∣∣
i

≡ ∂

∂v‖

(
∂ (·)
∂µ

∣∣∣∣
i

)∣∣∣∣
i

+O
(

∆v4
‖, µ

4
)
. (35e)

Equation (34) requires the cell-centered distribution function, which is obtained from the computational
cell-averaged conserved variable f̄i as

fi =
1

B∗‖

(
f̄i −

h2

24

D∑
d=1

∂2f

∂ξ2
d

∣∣∣∣
ξi

)
+O

(
h4
)
, (36)

and the v‖– and µ–derivatives of the distribution function are computed as fourth-order centered finite-
differences given by Eqs. (35a) and (35b).

B. Rosenbluth Potentials

The advection and diffusion coefficients, σ(·) and κ(·), are computed from the Rosenbluth potentials, ϕ and
%, using the finite-difference approximations given by Eq. (35). The Rosenbluth potentials are obtained
by solving Eq. (7) numerically. Equation (7) represents Poisson equations on an infinite velocity space
Ωv,∞ ≡ [−∞,∞] × [0,∞]; however they are solved on a finite domain Ωv ≡

[
−v‖,max, v‖,max

]
× [0, µmax].

The algorithm implemented in COGENT to solve Eq. (7) was previously reported3 and is summarized in
this section. The boundary values can be computed using the Green’s function method as

ϕ (v∂Ωv) =
1

4π

∫
Ω∞

f (v′)

|v∂Ωv − v′|
dv′, (37a)

% (v∂Ωv) =
1

8π

∫
Ω∞

|v∂Ωv − v′| f (v′) dv′, (37b)

where v∂Ωv is the velocity vector at the computational domain boundary ∂Ωv and where Ω∞ is the infinite
three-dimensional velocity space. The direct computation of Eq. (37) is very expensive, and an asymptotic
method3 is used. The Green’s function is expanded as68

1

|v − v′|
= 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

vl<
vl+1
>

Y ∗lm (θ′, ψ′)Ylm (θ, ψ) , (38)
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where Ylm is the spherical harmonic function, θ = arccos
(
v‖/v

)
is the pitch angle, ψ is the gyro-angle,

v> = max (|v| , |v′|), and v< = min (|v| , |v′|). Therefore,

ϕ (v∂Ωv) = − 1

4π

∞∑
l=0

hl

|v∂Ωv |
l+1

Pl (cos θ) ; hl =
2πB

m

∫
Ωv

f
(
v‖, µ

)
vlPl (cos θ) dv‖dµ, (39)

where Pl denotes the Legendre polynomials, v = |v| is the particle speed, and f
(
v‖, µ : v > min |v∂Ωv |

)
= 0.

Similar to Eq. (37a), the second Rosenbluth potential % can be expressed on the domain boundary as

% (v∂Ωv) =
1

4π

∫
Ω∞

ϕ (v′)

|v∂Ωv − v′|
dv′; (40)

however, the analysis for ϕ above does not apply to % because the assumption that ϕ
(
v‖, µ : v > min |v∂Ωv |

)
=

0 (corresponding to f
(
v‖, µ : v > min |v∂Ωv |

)
= 0) is not true. Thus, Eq. (40) is decomposed as

1

4π

∫
Ω∞

ϕ (v′)

|v∂Ωv − v′|
dv′ =

min |v∂Ωv |∫
0

v2dv

π∫
0

dθ

2π∫
0

ϕ̂ (v′)

|v∂Ωv − v′|
dψ +

min |v∂Ωv |∫
0

v2dv

π∫
0

dθ

2π∫
0

ϕ̃ (v′)

|v∂Ωv − v′|
dψ,

(41)

where ϕ̂ (v) is the numerical solution to Eq. (7a), and

ϕ̃ (v) = − 1

4π

∞∑
l=0

hl

|v|l+1
Pl (cos θ) . (42)

Therefore,

min |v∂Ωv |∫
0

v2dv

π∫
0

dθ

2π∫
0

ϕ̂ (v′)

|v∂Ωv − v′|
dψ =

∞∑
l=0

gl

|v∂Ωv |
l+1

Pl (cos θ) ; gl =
2πB

m

∫
Ωv

ˆ̂ϕ
(
v‖, µ

)
vlPl (cos θ) dv‖dµ,

(43)

where ˆ̂ϕ (v) = ϕ̂ (v) , v ≤ min |v∂Ωv |, ˆ̂ϕ (v) = 0, v > min |v∂Ωv |, and

min |v∂Ωv |∫
0

v2dv

π∫
0

dθ

2π∫
0

ϕ̃ (v′)

|v∂Ωv − v′|
dψ = −

∞∑
l=0

hlPl (cos θ)

2l + 1

(
1

2 |v∂Ωv |
l−1
− 1

2 |v∂Ωv |
l+1

+
1

(2l − 1) |v∂Ωv |
l−1

)
.

(44)

These manipulations result in the following expression for the second Rosenbluth potential at the computa-
tional domain boundary:

% (v∂Ωv) = − 1

4π

∞∑
l=0

[
gl

|v∂Ωv |
l+1
− hl

2 (2l + 1)

(
2l + 1

2l − 1 |v∂Ωv |
l−1
− {min |v∂Ωv |}

2

|v∂Ωv |
l+1

)]
Pl (cos θ) . (45)

The Poisson equations for the Rosenbluth potentials, Eq. (7), are thus solved with the boundary conditions
given by Eqs. (39) and (45). Evaluation of the integral in Eq. (43) introduces cut-cell issues,3 which can
be solved to second order accuracy using linear interpolations. Therefore, the current implementation uses
second-order central finite differences to discretize the derivatives in Eq. (7), and the computation of the
collision term is, overall, second-order accurate (q = 2). The fourth-order accurate implementation of this
algorithm is non-trivial and will be investigated in the future. The resulting system of equations is solved
using the conjugate gradient method with a structured multigrid preconditioner from the hypre library.69
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C. Time Integration

Equation (22) is a multiscale ODE with a nonstiff Vlasov term and a stiff collision term, i.e.,∣∣∣∣∣λ
[
∂V̂
(
f̄
)

∂ f̄

]∣∣∣∣∣�
∣∣∣∣∣λ
[
∂Ĉ
(
f̄
)

∂ f̄

]∣∣∣∣∣ , (46)

where λ denotes the eigenvalues. Explicit time integration methods are inefficient because the time step
is constrained by the eigenvalues of the stiff collision operator. We therefore adopt a semi–implicit time
integration method where the Vlasov term V̂ is integrated explicitly in time while the collision term Ĉ is
integrated implicitly in time. Consequently, the time step of the resulting algorithm is constrained by the
eigenvalues of the nonstiff Vlasov term, and significantly larger time steps are possible compared with an
explicit time integration method. An alternative is a fully implicit method with unconditional stability;
however, to resolve unsteady advective processes accurately, time steps must be comparable to the Vlasov
time scales. Thus, implicit integration of the Vlasov term would yield no additional benefits.

High-order multistage, semi–implicit ARK methods53,56 can be expressed in the Butcher tableaux70 form
as: (

ci aij

bj
,
c̃i ãij

b̃j
; i, j = 1, · · · , s

)
, ci =

s∑
j=1

aij , c̃i =

s∑
j=1

ãij , (47)

where aij , bj , ci define the explicit integrator for the nonstiff (Vlasov) term, ãij , b̃j , c̃i define the implicit
integrator for the stiff (collision) term, and s is the number of stages. The coefficients satisfy

aij = 0, j ≥ i; ãij = 0, j > i. (48)

In addition, the methods implemented are conservative with ESDIRK (explicit first-stage, single-diagonal
coefficient), L–stable implicit parts. Thus,

bi = b̃i,∀i; ã11 = 0; ãii = γ, i = 2, · · · , s, (49)

where γ is a constant. A time step of the ARK methods applied to Eq. (22) is expressed as follows:

f̄ (i) = f̄n + ∆t


i−1∑
j=1

aijV̂
(
f̄ (j)
)

+

i∑
j=1

ãij Ĉ
(
f̄ (j)
) , i = 1, · · · , s, (50a)

f̄n+1 = f̄n + ∆t

s∑
i=1

{
biV̂

(
f̄ (i)
)

+ b̃iĈ
(
f̄ (i)
)}

, (50b)

where ∆t is the time step, n denotes the time level (f̄n = f̄ (tn) , tn = t0 + n∆t), and f̄ (i,j) are the stage
solutions. The following ARK methods are implemented in COGENT: a second–order (three–stage) method
(ARK 2e),56 a third-order (four-stage) method (ARK 3),53 and a fourth-order (six-stage) method (ARK
4).53

Equation (50a) represents a nonlinear system of equations that, if ãii 6= 0, can be expressed as

F (y) ≡ αy − Ĉ (y)− r = 0, (51)

where y ≡ f̄ (i) is the unknown stage solution, and

α =
1

ãii∆t
, r =

1

ãii∆t

f̄n + ∆t

i−1∑
j=1

{
aijV̂

(
f̄ (j)
)

+ ãij Ĉ
(
f̄ (j)
)} . (52)

A Jacobian–Free Newton-Krylov method63 is used to solve Eq. (51), where the nonlinear equation is solved

using Newton’s method:71 Given an initial guess y0 ≡ f̄
(i)
0 , the k-th Newton iteration updates the k-th guess

yk as

yk+1 = yk − J (yk)
−1 F (yk) ; J (y) =

dF (y)

dy
, (53)
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Figure 1. Illustration of the edge region of the tokamak–type fusion reactor and the correspondence between
the cases presented in this paper and the tokamak edge plasma dynamics.

where J is the Jacobian of F . The exit criterion for the Newton iterations is given by

‖F (yk) ‖2 ≤ max (ε̂r‖F (y0) ‖2, ε̂a) or ‖J−1F (yk) ‖2 ≤ ε̂s, (54)

where ε̂a and ε̂r are the absolute and relative tolerances for the Newton solver, and ε̂s is the step size
tolerance. The initial guess for solving (50a) is taken as the solution of the previous stage f̄ (i−1) if i > 1 or
the current time step f̄n if i = 1. The Newton update, given by Eq. (53), requires the solution to the linear
system of equations,

[J (yk)]x = F (yk) , (55)

which is solved using the generalized minimum residual (GMRES) method.72,73 The GMRES solver does
not require the matrix J ; it only requires the definition of the action of this matrix on a vector. Thus, the
Jacobian matrix is not assembled. We use a Jacobian-free approach, where the action of the Jacobian on a
given vector is approximated using a directional derivative,74

J (yk)x ≈ 1

ε
[F (yk + εx)−F (yk)] = αx− 1

ε

[
Ĉ (yk + εx)− Ĉ (yk)

]
, ε =

√
εm (1 + ‖yk‖2)

‖x‖2
, (56)

where εm is machine round-off error (taken as 10−14 in our algorithm). The exit criterion for the GMRES
solver is given by

‖rl‖2 ≤ max (ε̃a, ε̃r‖r0‖2) , rl = J (yk)xl + F (yk) , (57)

where xl is the solution at the l-th GMRES iteration, and r0 = F (yk) since x0 = 0. The implementation in
this paper does not include a preconditioner, and development of an efficient preconditioner will be reported
in future papers.

IV. Results and Verification

In this section, we test the performance of the semi-implicit ARK methods and compare them with
the explicit Runge-Kutta methods in the context of the VFP equation. In particular, we compare the
fourth-order, six-stage ARK4 method with the fourth-order, four-stage RK4 method. The test problems are
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representative of the plasma dynamics at the tokamak edge. Figure 1 illustrates the two-dimensional cross-
section of the edge region (marked by the darker shade of blue) of a tokamak–type fusion reactor. The lighter
shade of blue is the hot core region. The geometry is defined by the magnetic flux surfaces; the separatrix
(shown as a blue line) separates the open and closed magnetic field lines. The diverter plates are shown at the
bottom. Although COGENT is capable of simulating complicated geometries with the mapped, multiblock
finite-volume algorithm, we consider problems with a Cartesian geometry in this paper; thus, R ≡ (x, y)
in Eq. (1). We consider two cases. The first case is an essentially one-dimensional (in configuration space)
slab with uniform collisionality; the parameters are chosen such that the case is representative of the highly
collisional cold plasma at the tokamak edge. The second case consists of a two-dimensional slab with the
collisionality varying along one dimension. At one end, the collisional mean free paths are comparable to
the density and temperature gradient length scales, while at the other end, the collisional mean free paths
are much smaller. This variation in the collisionality is similar to the one observed in the tokamak edge
region along the radial direction away from the X-point. The electrostatic potential is prescribed for both
the cases, and thus, a self-consistent electric field is not computed from the charge densities.

A. Case 1: Uniform Collisionality

The first test problem simulates the plasma dynamics over a two-dimensional slab with uniform collisionality.
The dynamics are essentially one-dimensional in the configuration space, simulated using a two-dimensional
slab by enforcing zero gradients in the x direction. The configuration space domain is a square of length
L = 1 m, while the velocity domain is taken as [−3.5v̄, 3.5v̄] × [0, 10µ̄] where v̄ = 4.377 × 106 cm/s and
µ̄ = 1.602 × 10−15 g cm2 s−2 G−1 are the reference velocity and magnetic moment. The initial solution is a
Maxwellian in the velocity space with uniform density ρ (x, y, t = 0) = ρref and a temperature distribution
given by

T (x, y, t = 0) ≡ T0 (y) = Tref

{
1.0 + 0.1 cos

(
2π

y

L

)}
. (58)

The electrostatic potential is specified throughout the simulation as

φ (x, y, t) = −0.1 cos
(

2π
y

L

)
, (59)

and the electric field is computed as E = −∇Rφ. A constant external magnetic field By = 0.2 T, Bz = 2 T
is applied normal to the slab (z-dimension) and along the y dimension, representative of the magnetic field
lines at the tokamak edge. The species charge and mass correspond to ionized hydrogen. Periodic boundary
conditions are applied along y, while inflow/outflow boundary condition are applied along x. The reference
density and temperature are specified as ρref = 1020 m−3 and Tref = 20 eV, respectively. Consequently, the
ratio of the particle mean free path length to the characteristic length scale is

k‖λ = 0.065; k‖ =

(
By
B

)(
2π

L

)
(length scale), λ = vthτ =

√
2T

m
τ (mean free path), (60)

where

τ =
3
√
mT 3

4
√
πρe4λc

= 2.4× 10−6 s (λc = 11) (61)

is the collision time. Thus, the plasma is highly collisional and is representative of the cold edge of a tokamak.
In the subsequent discussion, the solutions are obtained on a grid with 6 (x)×64 (y)×72

(
v‖
)
×48 (µ) points.

The solution times and time step sizes are reported in terms of the time scale defined as

tref =
L√

Tref/mref

= 2.3× 10−5 s, (62)

where mref = 1.6726 × 10−24 g is the proton mass. Thus, a simulation time or time step size of unity
corresponds to a physical time of 2.3× 10−5 s.

This case exhibits dynamics at two time scales. The thermal diffusion of the initially sinusoidal tempera-
ture to a constant and the evolution of the initially constant density to a sinusoidal variation (to satisfy the
prescribed electrostatic potential) occur on the slow transport time scale. At any given time during these
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(a) Density ρ (y)
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Figure 2. Cross-sectional (a) density and (b) temperature at different times. The initially constant density
develops a sinusoidal profile consistent with the prescribed electrostatic potential while the initially sinusoidal
temperature diffuses to a constant value.
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Figure 3. Parallel heat flux as a function of time at y = 0.25 m. The heat flux rapidly saturates to its “quasi–
steady” value consistent with the initial temperature gradient on the collisional time scale. Thereafter, it
gradually decays to zero as diffusion drives the temperature towards a uniform profile.
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Table 1. Wall times (in seconds) and number of function calls to the right-hand-side

functions V̂ and Ĉ for the RK4 and ARK4 methods for a final simulation time of 10.0.

Name ∆t N σ̄V̂ σ̄Ĉ η (seconds) ηmin,RK4/η NV̂ NĈ
RK4 0.0008 12500 0.02 0.8 4.66× 104 1 50000 50000

ARK4 0.005 2000 0.1 4.8 6.24× 104 0.75 12000 93810

0.01 1000 0.2 9.6 3.01× 104 1.55 6000 45665

0.02 500 0.5 19 1.73× 104 2.69 3000 25883

0.05 200 1.1 48 7.05× 103 6.62 1200 10485

processes, the collisions drive the parallel heat flux at all points in the domain towards its “quasi–steady”
value that is consistent with the local temperature gradients at that time. This evolution happens on the
collisional time scale that is significantly faster than the advective and transport time scales. The time
step of an explicit time integration method, for example RK4, is bounded by the collisional time scale, thus
making it inefficient for simulating the advective and transport dynamics. The time step of a semi-implicit
method is bounded by the advective time scale for linear stability since the collisional term is integrated
implicitly in time. Figure 2 shows the cross-sectional density ρ(y) and temperature T (y) at the initial time
and subsequent times until a normalized final time (t/τ) of 1238.9, where t is the simulation time. Figure 3
shows the evolution of the parallel heat flux Γ/ΓB at y = 0.25 m as a function of time, where Γ is computed
as

Γ (R) =

∫ ∫ {
v‖ − v‖ (R)

}({
v‖ − v‖ (R)

}2
+

2µB

m

)
f
(
R, v‖, µ

)
dv‖dµ (63)

and ΓB is the heat flux computed by the Braginskii model.75 The solutions are obtained using the ARK4
time integration method at a time step size of 0.05.
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Figure 4. Temperature and parallel heat flux as a function of time at y = 0 m and y = 0.25 m, respectively:
Comparison of the solutions obtained with RK4 and ARK4 methods. A good agreement is observed.

The computational cost of the semi-implicit ARK4 method is compared with that of the explicit RK4
method in Table 1. The wall times and the number of function calls (to the right-hand-side functions V̂ and
Ĉ) for the ARK4 method with several values of the time step ∆t are compared with that of the RK4 method
with its largest stable time step. Table 1 shows these metrics for solutions obtained with RK4 and ARK4 at
a final simulation time of 10.0 where N is the number of time steps, σ̄V̂ and σ̄Ĉ are the Vlasov and collision
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Figure 5. The difference in the temperature and parallel heat flux between solutions obtained with the ARK4
method, plotted in Fig. 4, and that obtained with the RK4 method as a function of time: The differences
between the explicit and the semi-implicit solutions are relatively small.

CFL numbers defined here as,

σ̄V̂ = max


(
Ṙ · r̂

)
∆t

∆r
,

(
Ṙ · θ̂

)
∆t

∆θ
,
v̇‖∆t

∆v‖

 , (64)

σ̄Ĉ = max

{
σv‖∆t

∆v‖
,
σµ∆t

∆µ
,
κv‖v‖∆t

∆v2
‖

,
κµµ∆t

∆µ2
,
κv‖µ∆t

∆v‖∆µ

}
, (65)

η is the wall time, ηmin,RK4 = 4.66× 104 s is the wall time for the fastest RK4 solution, NV̂ is the number of
times the Vlasov operator is called, and NĈ is the number of times the collision operator is called. The sixth
numerical column shows ratio of the wall time of the ARK4 method with a given time step to the wall time
of the RK4 method with its largest stable time step; it thus represents the “speedup” achieved by the ARK4
method. The number of function counts for an explicit time integration method is the number of time steps
multiplied by the number of stages of the time integration method,

NV̂ = NĈ = N × s, (66)

where s is the number of stages. The ARK methods integrate the Vlasov operator explicitly and the collision
operator implicitly, and

NV̂ = N × s; NĈ = N × s+NNewton +NGMRES (67)

because the implicit system is solved using the Jacobian-free Newton–Krylov method as described in Sec. III C
(and thus each GMRES iteration involves a function evaluation).

The maximum stable time step for the RK4 method results in a Vlasov CFL number of σ̄V̂ ∼ 0.02 and a
collision CFL number of σ̄Ĉ ∼ 0.8, indicating that the largest stable time step is of the order of the collisional
time scale and significantly smaller than the advective time scale. The ARK4 method can be used with time
steps larger than the largest stable time step for RK4. The wall time and the number of function counts for
the collision operator are larger for the ARK4 method at a time step size of 0.005 even though the number of
time steps is smaller. Thus, at this time step, the additional cost of solving the nonlinear system outweighs
the benefits of the larger time step. At larger time steps, the cost of the ARK4 method reduces, and it is
faster than the RK4 method (both in terms of the wall time and number of function counts). At the largest
stable time step for the ARK4 methods (∆t = 0.05), the Vlasov CFL is σ̄V̂ ∼ 1.1. Thus the time step is
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comparable to the advective time scale, and the wall time is approximately six times smaller than the RK4
method. Figure 4 shows the time evolution of the temperature at y = 0 m and the parallel heat flux at
y = 0.25 m for the solutions compared in Table 1, while Fig. 5 plots the difference between the solutions
obtained with the ARK4 method at various time steps and that obtained with the RK4 method at its largest
stable time step. Good agreement is observed between the solutions obtained with the ARK4 at the larger
time steps and that obtained with the RK4 with the collisional time-scale-constrained time step.

B. Case 2: Varying Collisionality

The second test problem simulates the dynamics over a two-dimensional slab with strongly varying collision-
ality along one dimension. This is representative of a small patch in the toroidal plane of the edge region of
the plasma. The setup is identical to the previous case except that the initial density is specified as

ρ (x, y, t = 0) ≡ ρ0 (x) = ρref {1− δ + δ tanh (2πx− π)} , (68)

where δ = 0.475. Figure 6 shows the density variation along x and the resulting variation of k‖λ (ratio of
the mean free path to the characteristic length scale). Near x = 0, the plasma is weakly collisional with
the mean free path comparable to the length scale while the plasma is strongly collisional as x → 1 with
the mean free path much smaller than the length scale. Thus, the collisional times scales are comparable to
Vlasov time scales as x → 0 but are much smaller as x → 1. In the subsequent discussions, the numerical
solutions are obtained on a grid with 32 (x) × 32 (y) × 72

(
v‖
)
× 48 (µ) points, and 1 simulation time unit

corresponds to a physical time of 2.3× 10−5 s, computed using Eq. (62).
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Figure 6. The initial density variation for case 2 and the consequent variation in collisionality along x. The
plasma is highly collisional for x→ 1 while it is weakly collisional for x→ 0.

The dynamics of this case are similar to the previous case: There are two time scales. Thermal equilibra-
tion of the initially sinusoidal (along y) temperature to a constant occurs on the transport time scale, while
collisions drive the parallel heat flux to its “quasi-steady” value on the collisional time scale. The collisions
are weak as x → 0 and the transport time scale is shorter, while strong collisions as x → 1 results in a
longer transport time scale. Figure 7 shows the cross-sectional temperature T (y) at x = 0.1, 0.9 for various
times. The solution is obtained with the ARK4 method with a time step of 0.1. The reference collision time
τref = 2.4×10−6 s is the collision time computed by Eq. (61) at x = 1. Figure 8 shows the normalized parallel
heat flux Γ/ΓB as a function of the normalized time t/τref . We observe faster equilibration at x = 0.1 where
the collisions are weak than at x = 0.9 where the collisions are strong.
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Figure 7. Normalized cross-sectional temperature T (y) /Tref at x = 0.1, 0.9 at various times. The temperature
equilibrates faster at x = 0.1 where the plasma is weakly collisional compared with x = 0.9 where the plasma is
strongly collisional.

The computational costs of the ARK4 and RK4 methods are compared in Table 2. The columns are the
same as Table 1 and are reported for solutions at a simulation time of 4.0. The largest stable time step for
the RK4 method corresponds to a Vlasov and collisional CFL numbers of σ̄V̂ ∼ 0.01, σ̄Ĉ ∼ 0.8, respectively
and shows that the collisional time scale severely constrains the explicit time integrator. The ratio of the wall
time for the fastest RK4 solution to the wall time for the ARK4 solutions (ηmin,RK4)/η (seventh column) is
the speedup. The largest stable time step for the ARK4 method and corresponds to a Vlasov CFL of ∼ 1.1.
The wall time is ten times smaller than that of the RK4 method with its largest time step. Figure 9 shows
the evolution of the temperature at y = 0 and x = 0.1, 0.9 for the cases in Table 2, while Fig. 10 plots the
difference between the solutions obtained with the ARK4 method at various time steps and that obtained
with the RK4 method at its largest stable time step. A good agreement is observed between the solution
obtained by the RK4 with the collisional-time-scale constrained time step and the ARK4 methods with time
steps comparable to the Vlasov time scale.

V. Conclusions

The gyrokinetic VFP equations describe the dynamics of tokamak edge plasma, which is characterized by
disparate temporal scales. Near the hot core, the mean free paths are much smaller than the characteristic
length scales, defined as the temperature and density gradient length scales. In the intermediate region near
the separatrix, the mean free paths are comparable to the characteristic length scales, while at the cold edge,
the mean free paths are much smaller. The collisional time scale varies from being much larger than the
Vlasov time scale near the core to being significantly smaller near the edge, thus rendering the governing
equations stiff. This paper presents a semi-implicit algorithm for the VFP equations where the collision term
is integrated implicitly in time while the Vlasov term is integrated explicitly. The algorithm is developed
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Figure 8. Parallel heat flux as a function of time at x = 0.1, 0.9 and y = 0.25 m. The heat flux decays to zero
faster at x = 0.1 where the plasma is weakly collisional.

Table 2. Wall times (in seconds) and number of function calls to the right-hand-side

functions V̂ and Ĉ for the RK4 and ARK4 methods for a final simulation time of 4.0.

Name ∆t N σ̄V̂ σ̄Ĉ η (seconds) ηmin,RK4/η NV̂ NĈ
RK4 0.0008 5000 0.01 0.8 3.78× 104 1 20000 20000

ARK4 0.01 400 0.1 9.6 2.96× 104 0.78 2400 22905

0.05 80 0.6 48 7.42× 103 0.20 480 5744

0.10 40 1.1 96 3.72× 103 0.10 240 2950

within COGENT, a high-order finite-volume code for tokamak edge simulations that solve the gyrokinetic
VFP equations on mapped multiblock grids. High-order, multistage ARK methods are implemented for the
semi-implicit time integration of the governing equations, and their performance is compared with that of
the explicit RK methods. The test problems simulate parallel ion heat transport and are representative of
the tokamak edge region. The ARK methods are observed to achieve their theoretical orders of convergence.
Wall times of the ARK4 method with time steps comparable to the Vlasov time scale are compared with those
of the RK4 method with its largest stable time step, and a significant speedup is observed. The solutions
obtained with the semi-implicit approach agree well with those obtained with explicit time integration.

The results presented in this paper do not use any preconditioning while solving for the implicit stages in
the ARK time integrators. The implementation of an efficient preconditioner for the Fokker–Planck collision
term is an area of current research. Future work will aim to incorporate other numerically stiff terms in to
the IMEX formulation, such as electrostatic plasma waves, ion acoustic modes, and parallel electron and ion
transport.
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Figure 9. Comparison of the temperature T (x, y) /Tref evolution at x = {0.1, 0.9} , y = 0 for cases reported in
Table 2. A good agreement is observed between the explicit (RK4) and the semi-implicit (ARK4) solutions.
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