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We implement the multi-species linearized model collision operator, based on the approach proposed 
by Kolesnikov [1], in the full-f continuum gyrokinetic code COGENT [2]. We describe the operator and 
use it in several COGENT simulations of highly collisional plasmas. We analyze simulation results with 
the Braginskii fluid model [3] to illustrate that COGENT recovers both friction and thermal forces. Finally, 
we simulate the neoclassical transport of heavy impurities with COGENT and illustrate agreement with 
previously published [4] theoretical results.
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1. Introduction

In recent years, various collision operator models have been 
implemented in numerous gyrokinetic codes in order to simulate 
Coulomb collisions in tokamak plasmas (see [5–11] and references 
therein). The correct expression for the Coulomb operator is well 
known (e.g., Landau form [12]) but often avoided in kinetic model-
ing because of the high computation cost. Accordingly, only some 
gyrokinetic codes [13,14] include the correct collision operator, 
typically referred to as the Fokker-Planck operator. Instead, re-
cent reports [6–11] focus on implementing increasingly complex 
reduced collision operators and extending these operators for the 
case of unlike species. The implemented models differ in physical 
properties, such as, for example, the rate of entropy production 
and the velocity dependence of the collision frequency. Accord-
ingly, proposed operators have different scope of use. In particular, 
some recent implementations of unlike collisions (e.g., [9,10]) pro-
duce no thermal force which is important for impurity transport 
in the tokamak edge [15,16].

In this article, we report on implementation of a multi-species 
linearized collision operator, in the continuum full-f gyrokinetic 
code COGENT [2]. The operator is based on the Landau opera-
tor, and preserves the correct λ ∼ (va − vb)

4 dependence of the 
Coulomb mean free path on a relative velocity va − vb of collid-
ing species a and b. This retained velocity dependence enables 
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to recover thermal force, as well as the friction force as they ap-
pear in the Braginskii fluid model [3], in the COGENT simulations 
of highly collisional plasmas. For the case of equal background 
temperatures of the colliding species, the operator reduces to the 
operators developed by Sugama [5] and Kolesnikov [1] for delta-f
simulations. However, in contrast to the Sugama model, newly 
implemented operator directly retains collisional thermalization 
of background Maxwellians with different temperatures, which is 
consistent with the full-f formulation of the COGENT code. Re-
sulting operator provides a numerically efficient way to simulate 
collisions between unlike species. It is also worth noting an alter-
native approach to include energy exchange between background 
centered Maxwellians implemented in the full-f GYSELA [7] code.

We benchmark this operator in COGENT kinetic simulations of 
a parallel plasma transport in a slab geometry, against the Bra-
ginskii fluid model. We measure values of transport coefficients 
from kinetic simulations results and find that they are close to val-
ues obtained by Braginskii [3] for the Landau operator [12]. Finally, 
we consider a toroidal annulus geometry and simulate radial im-
purity transport in the strongly-collisional Pfirsch-Schlüter regime, 
demonstrating good agreement with the results [4] of the local 
neoclassical theory.

The paper is organized as follows. Section 2 contains an 
overview of the COGENT code and describes the newly imple-
mented collision operator. In Section 3, we review COGENT sim-
ulations of single component plasma in a slab geometry, and the 
heavy impurity transport in toroidal geometry. Section 4 summa-
rizes presented results and gives a conclusion.
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2. Model description

This section describes main aspects of the COGENT code and 
introduces the newly implemented collision model. COGENT is a 
continuum Eulerian full-f gyrokinetic code. The electrostatic ver-
sion of the COGENT code (used for simulations in this article) 
describes coupled evolution of the gyrocenter distribution function 
and the electrostatic potential for plasma in the external mag-
netic field. The code solves for a gyrocenter distribution function 
fa(Ra, v ||, μa, t) for kinetic species a, where Ra is the guiding cen-
ter coordinate, v || = v · B/B is the component of velocity v along 
the magnetic field B of magnitude B , and μa is the adiabatic in-
variant of species a with mass ma. COGENT supports several mag-
netic B field geometries: slab, Miller closed-flux model [17] for 
the core region, and a single-null [18] X-point geometry for cross-
separatrix simulations. The numerical algorithm used in COGENT 
utilizes a high-order finite-volume conservative discretization. Cur-
rent electrostatic implementation of the code adopts a long wave-
length limit kρi � 1, where ρi is the gyroradius of ion species and 
k is the wavenumber for electrostatic potential variations. For sim-
ulations considered in this article, the gyrokinetic full-f equation 
simulated in COGENT can be written for species a as

∂ B∗||a fa

∂t
+ ∇ · (Ṙa B∗||a fa) + ∂

∂v ||
(v̇ ||B∗||a fa) =

= B∗||a (C( fa) + C( fa, fb)) ,

(1)

Ṙa = 1

B∗||a

[
v ||B∗

a + 1

ea
b × (ea∇� + μa∇B)

]
, (2)

v̇ || = − 1

ma B∗||a
B∗

a · (ea∇� + μa∇B), (3)

B∗
a = B + ma v ||

ea
∇ × b, (4)

where b = B/B and B∗||a = Ba · b, � is the long wavelength neo-
classical electrostatic potential, C( fa) is a like-species collision op-
erator, and C( fa, fb) is the newly implemented unlike-species col-
lision operator described in the rest of this section. Further imple-
mentation details for the axisymmetric (4D) and non-axisymmetric 
(5D) versions of the COGENT code are available elsewhere [19,20].

The linearized multi-species collision operator presented in this 
section utilizes the approach described by Kolesnikov in [1]. Specif-
ically, the distribution functions of colliding species fa and fb are 
assumed to be close to Maxwellian distributions with zero bulk 
velocities,

f M
s = ns

π3/2 v3
Ts

exp

(
− v2

v2
Ts

)
; s = a,b, (5)

where v =
√

v2|| + 2μs B/ms is the velocity and vTs = √
2Ts/ms is 

the thermal speed of species s with temperature Ts, mass ms and 
density ns. Collision operator C( f M

a + δ fa, f M
b + δ fb) is then ap-

proximated with a sum of linear operators as

C( fa, fb) = CT( f M
a , f M

b ) + CT(δ fa, f M
b ) + CF( f M

a , δ fb). (6)

The first two terms in Eq. (6) describe collisions of species a with 
the Maxwellian background f M

b of species b. For the background 
species with charge eb and mass mb, the corresponding test particle
operator CT can be expressed in the Landau form [12] as
2

CT( fa, f M
b ) = −maLa/b

8π
×

× ∂

∂vα

∫
dv′{ fa(v)

mb

∂ f M
b (v′)
∂v ′

β

− f M
b (v′)
ma

∂ fa(v)

∂vβ

}
Uαβ,

(7)

Uαβ = 1

u3
(u2δαβ − uαuβ); uβ = vβ − v ′

β, (8)

La/b = ln


(
4πeaeb

ma

)2

, (9)

where ln 
 is the Coulomb logarithm. This test particle operator 
CT can be expressed in COGENT coordinates as a divergence of the 
probability flux � in the velocity space,

CT( fa, f M
b ) = ∇v · � = ∂�v ||

∂v ||
+ ∂�μa

∂μa
=

= ∂

∂v ||

{
νD

(
μa B

ma

∂ fa

∂v ||
− v ||μa

∂ fa

∂μa

)
+

+ ma

ma + mb
νs v || fa + ν||v ||

(
μa

∂ fa

∂μa
+ v ||

2

∂ fa

∂v ||

)}
+

+ ∂

∂μa

{
νD

(
ma

B
v2||μa

∂ fa

∂μa
− v ||μa

∂ fa

∂v ||

)
+

+ 2ma

ma + mb
νsμa fa + ν||μa

(
2μa

∂ fa

∂μa
+ v ||

∂ fa

∂v ||

)}
.

(10)

Expression Eq. (10) contains standard notations [21] for deflec-
tion frequency νD, slow-down rate νs and parallel diffusion rate 
νs, given by expressions

νD = νab
v3

Ta

v3
Tb

(



ζ 3
+ 1

ζ 3

d


dζ 2
− 


2ζ 5

)
, (11)

νs = νab
vTa

vTb

Ta

Tb

(
1 + mb

ma

)



ζ 3
, (12)

ν|| = νab

(
vTa

vTb

)3



ζ 5 , (13)

where ζ = v/vTb, νab is the collision frequency given by

νab = 4πe2
ae2

b ln
nb

m2
a v3

Ta

, (14)

and 
 is the Maxwell integral [22] that gives normalized value of 
integrating the Maxwellian distribution over sphere with radius ζ 2,


 = 2√
π

ζ 2∫
0

√
te−tdt = erf(ζ ) − d


dζ 2
,

d


dζ 2
= 2√

π
ζe−ζ 2

.

As can be seen from the expression Eq. (10), CT( fa, f M
b ) is a dif-

ferential operator, which makes it cheap to evaluate numerically.
The field particle operator CF( f M

a , δ fb) describes collision of 
Maxwellian component f M

a with perturbation δ fb. When written 
in the Landau form (as done for CT in Eq. (7)), the field particle 
operator involves a convolution integral over the velocity space, 
and is, from the numerical viewpoint, as expensive to evaluate as 
the full Landau operator. Accordingly, only some codes [23,24] im-
plement the field particle component of the linearized collision 
operator in the Landau form. Instead, linear collision models typi-
cally [5–7] postulate a reduced field particle operator that is more 
efficient to evaluate numerically. In the collision operator model 
proposed by Kolesnikov [1], the field particle operator is given by 
expressions
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CF( f M
a , δ fb) = δPabRab v || + δEabQab, (15)

δPab = −
∫

dvmb v ||CT(δ fb, f M
a ), (16)

δEab = −
∫

dv
mb v2

2
CT(δ fb, f M

a ), (17)

Rab v || =
CT(ma v || f M

a , f M
b )∫

dvma v ||CT(ma v || f M
a , f M

b )
, (18)

Qab = CT(ma v2 f M
a , f M

b )∫
dv(ma v2/2)CT(ma v2 f M

a , f M
b )

. (19)

Since previous reports [1,25] contain typos in explicit form of the 
field operator CF, corrected expressions are given below. In case of 
equal temperatures Ta = Tb = T ,

Rab = 3
√

π f M
a

4naT

(
1 + mb

ma

)3/2



ζ 3
, (20)

Qab =
√

π f M
a

2naT

(
1 + mb

ma

)3/2 1

ζ

(
ma

mb

 − d


dζ 2

)
. (21)

It can be easily demonstrated that CF provides conservation of mo-
mentum,

d

dt

∫
dvma v || fa =

∫
dvma v ||

(
CF( f M

a , δ fb))+

+ CT(δ fa, f M
b ) + CT( f M

a , f M
b )

)
= δPab − δPba−

−
∫

dvmb v ||CT( f M
b , f M

a ) = − d

dt

∫
dvmb v || fb,

(22)

and energy (as can be shown analogously to Eq. (22)). From ex-
pressions Eqs. (15)-(19), it follows that the field particle CF op-
erator conserves particles if the test particle operator CT does. 
Because of the divergence form Eq. (10) of the test particle op-
erator CT( fa, f M

b ), conservation of the particle number density na

during collisions can be enforced by setting the probability flux to 
zero S · � = 0 through the boundaries of the velocity domain S ,∫

dvCT( fa, f M
b ) =

∫
S

dS · � = 0, (23)

where S is normal to surface S. Since the finite volume discretiza-
tion scheme used in COGENT exactly recovers the Gauss divergence 
theorem, the test particle CT (and, therefore, field particle CF) op-
erator conserves particles up to machine precision if the probabil-
ity flux of CT is adjusted according to Eq. (23).

It is instructive to compare the collision operator given by 
Eq (6) to previously published [7,8,11] linearized collision oper-
ator models. For the case of equal background temperatures, the 
operator described by Eq. (6) is equivalent to the Sugama collision 
operator [5]. Accordingly, in thermal equilibrium Ta = Tb, the test 
and field particle operators satisfy adjointness relations∫

dv
δ fa

f M
a

CT(δga, f M
b ) =

∫
dv

δga

f M
a

CT(δ fa, f M
b ), (24)

Ta

∫
dv

δ fa

f M
a

CF( f M
a , δ fb) = Tb

∫
dv

δ fb

f M
b

CF( f M
b , δ fa), (25)

for arbitrary δga, and it was shown (see [5], [26] and references 
therein) that relations Eq. (24) and Eq. (25) ensure that the oper-
ator Eq. (6) satisfies the H-theorem for case of equal temperatures 
of colliding species. In the case of different background tempera-
tures, Ta �= Tb, the operator given by Eq. (6) is no longer equivalent 
3

to the Sugama [5] operator. This is because the latter operator does 
not include collisions between the Maxwellian backgrounds, and 
modifies the test particle term in order to ensure that the self-
adjointness relation in Eq. (24) holds for unequal temperatures. 
The Sugama model is suitable for a delta-f [8] formulation, where 
collisional thermalization between the (fixed) background distri-
bution functions f M

a,b is not included, and, consequently, additional 
care must be taken to avoid energy transfer from the different-
temperature Maxwellian f M

a,b backgrounds into the δ fa,b pertur-
bations. In contrast to the delta-f approach, the full-f models do 
not assume fixed background distributions. The energy exchange 
between background Maxwellians represented by the CT( f M

a , f M
b )

term drives the system towards an equilibrium temperature T =
Ta = Tb. We note that another approach to a linearized collision 
operator is used in the full-f GYSELA [7,27] code, where a term 
representing the energy exchange between Maxwellians describes 
evolution of the background temperatures, and the field particle 
operator is constructed based on the expansion of a distribution 
function in spherical harmonics and Laguerre polynomials [7] to 
recover the friction and thermal forces that will be discussed in 
Section 3 below.

Finally, we note that the long-wavelength approximation
adopted in the model collision operator [Eqs. (6)-(19)] does not 
account for finite Larmor radius (FLR) effects [8], which, for in-
stance, are required to describe classical transport perpendicular 
to the magnetic field.

2.1. Stable timestep condition

Time integration in COGENT can be done via explicit fourth-
order Runge-Kutta (RK4) or semi-implicit additive Runge-Kutta 
(ARK) scheme. In this section, we analyze the numerical stability 
condition for the explicit time stepping scheme, arising from the 
diffusion in velocity space associated with the test particle opera-
tor. We illustrate that diffusion coefficient Dμμ along μ grows lin-
early with velocity v of colliding species a, and this can cause the 
maximum stable time step δt of the explicit integration scheme to 
be much less than the collision time 1/νab.

Because Maxwellian distribution f M
b is sperically symmetric in 

the velocity space, the Rosenbluth ϕb, ψb potentials associated 
with the test particle operator are easily found to be

∇2
v ϕb = f M

b ⇒ ϕb = − nb

4π vTb

1

ζ

(

 + d


dζ 2

)
, (26)

∇2
v ψb = ϕb ⇒ ψb = −nb vTb

8πζ

[
(ζ 2 + 1)

d


dζ 2
+

(
ζ 2 + 1

2

)



]
.

(27)

Probability fluxes � in Eq. (10) can be expressed in drag-diffusion 
form

�v || = Av || fa + D v ||μ
∂ fa

∂μa
+ D v ||v ||

∂ fa

∂v ||
, (28)

�μ = Aμ fa + Dμv ||
∂ fa

∂v ||
+ Dμμ

∂ fa

∂μa
, (29)

with the diffusion coefficients given by [14]

D v ||v || = −La/b ∂ψ2
b

∂v2||
= 1

2
(νD

2μa B

ma
+ ν||v2||) =

= νab v3
Ta

2vTb

(
sin2(ξ)

(
1

ζ

d


dζ 2
+ 


ζ
− 


2ζ 2

)
+ cos2(ξ)




ζ 3

)
,

(30)
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D v ||μ = −La/b 2ma

B
μa

∂2ψb

∂μa∂v ||
= (ν|| − νD)v ||μa =

= νab
v3

Tama

2B
sin2(ξ) cos(ξ)

(
3


2ζ 2
− 
 − d


dζ 2

)
,

(31)

Dμμ = −La/b 2m2
a

B2
μa

(
2μa

∂2ψb

∂μ2
a

+ ∂ψb

∂μa

)
=

= ma v4

8B2
(νD sin2(2ξ) + 4ν|| sin4(ξ)) = νab

m2
a v3

Ta vTb

8B2
×

×
(

sin2(2ξ)

(
ζ
 + ζ

d


dζ 2
− 


2ζ

)
+ 4 sin2(ξ)




ζ

)
,

(32)

where cos(ξ) = v ||/v . Since 
 → 1 and d
/dζ 2 → 0 for ζ → ∞, 
it follows from Eq. (32) that diffusion Dμμ grows unbounded with 
the velocity v of the species a. Recall that explicit schemes typi-
cally have a numerical stability threshold dFDA, setting stable res-
olution criteria Dμμδt/δμ2

a < dFDA. Therefore, stable timestep δt is 
bounded by condition

νabδt � 2dFDA

(
2Bδμa

ma v2
Ta

)2
vTa

v
, (33)

where δμa is the velocity grid spacing along μa. Condition Eq. (33)
becomes a severe restriction since, on the one hand, the bulk 
of the Maxwellian function f M

a needs to be well resolved in 
the velocity space δv/vTa ∼ 2Bδμa/ma v2

Ta ∼ 10−1, while, on the 
other hand, superthermal particles (with velocities v/vTa ∼ 10 and 
above) make important contributions to current and heat flux [28]
and need to be retained. Note that, unlike Dμμ , other diffusion co-
efficients [given by Eqs. (30) and (31)] are bounded by conditions

D v ||v || <
νab v3

Ta

2
√

π vTb
, D v ||μ <

νab v3
Tama

3
√

3B
, (34)

and the associated stable timestep conditions are independent 
of v . Furthermore, recall that the condition in Eq. (33) is derived in 
the ζ = v/vTb → ∞ limit, yet, in practice, the value of ζ is limited 
by the velocity domain bounds (|v |||max and μmax) of the simula-
tion. Therefore, in general, expressions Eqs. (30)-(32) must be used 
to determine the stable timestep condition from the diffusion in 
velocity space.

2.2. Convergence studies

We verify that the operator is implemented correctly by do-
ing a convergence study. We verify that Rab and Qab computed 
by COGENT from expressions Eqs. (18) and (19) agree with ex-
pressions Eqs. (20) and (21). To confirm correct implementation 
of energy and momentum terms given by Eqs. (16) and (17), we 
consider an analytically given distribution functions f t

a (e.g., f t
a =

(1 + 0.02v ||/vTa + 0.05v2||/v2
Ta) f M

a used in test shown in Fig. 1), 
and compare analytical (δP t

ab, δEt
ab) values to COGENT (δP�

ab, δE�
ab)

values from simulation with the same velocity domain boundaries 
|v |||max and μmax, but with different velocity grid cell sizes δv ||
and δμ. In what follows, we label δv || and δμ velocity grid sizes 
as �. We repeat COGENT simulation with different resolutions, 
simultaneously changing δv || and δμ|| by a factor of two, and mea-
sure the residue as shown in Fig. 1 to verify that |δEt

ab − δE�
ab| ∝

(�/�0)
2 and |δP t

ab − δP�
ab| ∝ (�/�0)

2, where �0 is the velocity 
grid cell size for the COGENT simulation with the velocity resolu-
tion (v ||, μ) of 1024 × 512, as illustrated in Fig. 1. This quadratic 
rate of convergence is consistent with a second-order cell-centered 
finite-volume discretization presently utilized for the newly imple-
mented collision operator Eq. (6) in COGENT. We also verified that 
4

Fig. 1. (Top panel) Example results from the convergence studies, with 
fa = (1 + 0.02v ||/vTa + 0.05v2||/v2

Ta) f M
a , demonstrating quadratic convergence. Grid 

cells �/�0 correspond to (v ||, μ) resolutions 1024 ×512, 512 ×256, 256 ×128, and 
128 × 64, where �0 corresponds to 1024 × 512. Grid cell size �∗ corresponds to 
(v ||, μ) resolution of 2048 ×1024. All shown simulations have the same velocity do-
main boundaries μmax and |v |||max given by 2Bμmax/Ta = 27 and |v |||max/vTa = 8. 
(Bottom panel) Example results of the energy conservation error in simulations 
which include collisions between background collisions. The resolution of the ve-
locity domain corresponds to the data on the top panel.

COGENT satisfies both the particle conservation∫
dvC( fa, fb) = 0, (35)

and the momentum balance∫
dvma v ||C( fa, fb) +

∫
dvmb v ||C( fb, fa) = 0, (36)

up to numerical precision, regardless of the velocity domain reso-
lution. The particle conservation Eq. (35) is obtained by setting the 
probability flux through the |v |||max and μmax boundaries to zero, 
as in Eq. (23).

The energy conservation∫
dv

ma v2

2
C( fa, fb) +

∫
dv

mb v2

2
C( fb, fa) = 0 (37)

is demonstrated in the bottom panel of Fig. (1) as a function of 
the velocity grid resolution. Note that the error in energy conser-
vation comes entirely from the terms describing the background 
Maxwellian interactions, i.e., CT( f M

a , f M
b ) and CT( f M

b , f M
a ). When 

background Maxwellians are in the thermal equilibrium, the cor-
responding collision term vanishes CT( f M

a , f M
b ) = 0 and can be 

excluded from the operator, resulting in energy conservation up 
to machine precision for all velocity resolutions.

Recall that the denominators of the Rab and Qab terms of the 
field operator in Eqs. (18) and (19) are designed to balance mo-
mentum and energy loss caused by the test particle operator for 
species b, as illustrated in Eq. (22). To recover the correspond-
ing discretized energy and momentum conservation properties 
(Eqs. (36), (37)) up to numerical precision, we employ numeri-
cal evaluation and integration of the denominators in expressions 
Eqs. (18) and (19), instead of evaluating them analytically as in 
Eq. (20) and (21).

3. COGENT simulations in the highly collisional regime

In this section, we use the model collision operator to simulate 
transport in case of high mass ratio mb 
 ma and for high enough 
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collisionality to assume small deviations from a Maxwellian dis-
tribution for colliding species a and b, justifying the use of a lin-
earized collision operator. Collisions in such regime produce ther-
mal and friction forces, as was demonstrated by Braginskii [3] for 
electron-ion plasma. In what follows, background Maxwellian dis-
tributions are fixed and have equal temperature Ta = Tb = T , so 
CT( f M

a , f M
b ) = 0.

The friction force along the magnetic field, resulting from oper-
ator Eq. (6), can be expressed as∫

dvma v ||C( fa, fb) = δPab − δPba, (38)

with δPab and δPba defined by Eq. (16).
Our first goal is to verify that, in linear approximation, the fric-

tion force Eq. (38) from the model operator agrees with the result 
from Braginskii’s [3] original work. We consider the bulk velocities 
of electrons ua and ions ub (relative to the velocity of background 
Maxwellians f M

s ) to be much less than their thermal speeds vs. 
We follow Braginskii’s approach and compute the friction force on 
light species by approximating the distribution function to first or-
der as

fa ≈ f M
a

(
1 + 2uav

va

)
. (39)

Since for the test particle collision operator the energy transfer rate 
between the light species a and the heavy species b is a factor of 
ma/mb smaller than the momentum transfer rate, we can calculate 
the δPba as

δPba =
∫

dv
ma v ||nbLa/b

8π

∂

∂vα

v2δαβ − vα vβ

v3

∂δ fa

∂vβ

=

= nbmaLa/b

2π

∫
dv

v ||
v3

uaβ vβ

v2
Ta

f M
a = 4νabmana

3
√

π
ua.

(40)

The δPba obtained in Eq. (40) depends on the ua, yet it is clear 
from the physics of the Coulomb collisions that the friction force 
must depend on the relative bulk velocity ua − ub. Therefore, the 
contribution from δPab must also be considered. To calculate δPab, 
we use the Landau form of the test particle operator given by 
Eq. (7) in the expression Eq. (16), and expand the relative velocity 
tensor defined in Eq. (8) to first order as

Uαβ ≈ v ′2δαβ − v ′
α v ′

β

v ′3
+ vγ

∂

∂v ′
γ

(
v ′2δαβ − v ′

α v ′
β

v ′3

)
, (41)

with the ratio between the velocities of species b and a as the 
expansion parameter. Combining Eqs. (7), (16) and (41), we can 
evaluate δPab as

δPab =
∫

dvmb v ||
mbLb/a

8π

∂

∂vα

∫
dv′ δ fb(v)

ma

∂ f M
a (v′)
∂v ′

β

×
{

v ′2δαβ − v ′
α v ′

β

v ′3
+ vγ

∂

∂v ′
γ

(
v ′2δαβ − v ′

α v ′
β

v ′3

)}

= −m2
bLb/a

8πma

∫
dvδ fb v ||

∫
dv′ v ′2δαβ − v ′

α v ′
β

v ′3

∂ f M
a

∂v ′
β∂v ′||

= 4

3
√

π
νba

√
ma

mb
mbnbub,

(42)

where

ub = 1

nb

∫
dvδ fb v ||. (43)
5

Combining expressions Eq. (40) and Eq. (42) above, we find that 
the linear approximation for friction force∫

dvma v ||C( fa, fb) = δPab − δPba =

= 4νabmana

3
√

π
(ub − ua) = −

∫
dvmb v ||C( fb, fa).

(44)

matches the result of Braginskii. This is to be expected, since, in 
the infinite mass ratio mb/ma → ∞ limit, the operator described 
by Eq. (6) is the same as the Landau operator. Indeed, the test 
particle CT(δ fa, f M

b ) operator in this limit reduces to the Lorentz 
operator, while the field particle operator vanishes for infinitely 
heavy species b.

3.1. Modeling electric conductivity with COGENT

We now simulate the friction force in COGENT with the setup 
described in this paragraph. For simplicity, we consider a slab ge-
ometry with two species (a and b), which are initialized with 
uniform Maxwellian distributions f M

a and f M
b , respectively. We set 

masses of colliding species to ma = mp, mb = 100mp in the units 
of proton mass mp. The charge of species a is set equal to the elec-
tron charge, ea = −|e|. The charge of the heavy species eb = Zb|e|
is varied between simulations. The density na of species a is set 
to 1021 m−3, and the density nb of species b is set by the quasi-
neutrality condition

eana + ebnb = 0. (45)

The temperature of both species is homogeneous and set to 20 eV. 
We consider a slab geometry with a uniform fixed magnetic Bez

and electric Eez fields along the z-axis, and periodic boundary con-
ditions in the z-direction. For the outlined simulation setup, the 
kinetic equation (1) solved in COGENT for the species a reduces to

∂ fa

∂t
+ ea E

ma

∂ fa

∂v ||
= C( fa) + C( fa, fb). (46)

Collisions C( fa, fb) between species a and species b are mod-
eled using the operator described in Section 2. Note that, for a 
finite charge eb of species b, the impact of collisions C( fa) be-
tween light species a on their distribution function fa is com-
patible to the impact of the collisions between species a and b, 
C( fa, fb) ∼ C( fa). Therefore, collisions between species a must be 
included into the simulation with finite charge state of species b, 
Zb ∼ 1. Various like-species collision models are available [29] in 
the COGENT code, including the full Fokker-Planck [14] collision 
operator CFP( fa), and a model collision operator CA( fa) proposed 
by Abel [30] that is similar to the operator C( fa, fb) described 
in Section 2 (both CA( fa) and C( fa, fb) are based on the lin-
earized Landau collision operator). As we mentioned earlier, the 
Fokker-Planck operator gives the highest fidelity, but is expensive 
to evaluate numerically since it requires solving a pair of Pois-
son equations [14] for the Rosenbluth potentials. Therefore, it is 
of interest to assess the impact of replacing the Fokker-Planck op-
erator CFP( fa) with the Abel collision operator CA( fa), which is 
much faster to evaluate. The use of a linearized collision model 
in the considered simulations can be justified for the case where 
the magnitude of the electric field E is much less than the Dre-
icer [31] field ED. Because the role of electrons is assumed here by 
the species a with a mass of a proton, the corresponding Dreicer 
field is ED ∼ 1 kV/m. For E � ED and homogeneous background 
profiles, the deviations from the Maxwellian can be assumed to be 
small and the use of linearized collision operators is justified. In 
what follows, we perform two sets of COGENT simulations, where 
the like-species collisions of the light species a are described with 
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either the Fokker-Planck, CFP, or the model Abel operator, CA. In 
addition to verification purposes, this test elucidates validity limits 
of the reduced Abel operator.

We simulate the described setup in COGENT over hundred col-
lision times 1/νab, allowing the bulk velocities

ub ≡ 1

nb

∫
dvv ||δ fb = − Zbma

Zamb
ua, (47)

ua ≡ 1

na

∫
dvv ||δ fa, (48)

to reach a steady state. Note that the right equality in Eq. (47) fol-
lows from the quasi-neutrality condition Eq. (45) and momentum 
conservation Eq. (36). We then analyze the kinetic simulation re-
sults with the Braginskii [3] fluid model,

msns
dus

dt
+ ∂ Ps

∂z
= esns E + Rs, (49)

3

2
ns

dTs

dt
+ Ps

∂us

∂z
= −∂qs

∂z
+ Q s, (50)

where Ps = nsTs is the pressure, Q s is the heat from friction given 
for species a as

Q a =
∫

dv
ma v2

2
C( fa, fb), (51)

Rs = Ru,s + RT,s is the parallel force combined from friction Ru,s

and thermal RT,s forces expressed for species a as

Ra =
∫

dvmau||C( fa, fb) = Ru,a + RT,a =

= −C1
4νabmana

3
√

π
(ua − ub) − C2na∇||Ta,

(52)

and qs is the parallel heat flux expressed for species a as

qa =
∫

dv
ma

2
(v − uaez)

2(v || − ua) fa = qu,a + qT,a =

= C2naTa(ua − ub) − C3
3
√

πnaTa

4maνab
∇||Ta.

(53)

The transport coefficients C1, C2, C3 depend on details of a col-
lision model and can be inferred from the results of COGENT 
simulation. It is important to emphasize that the thermal force 
RT,a arises from the velocity dependence of the Coulomb colli-
sions λ ∼ (va −vb)

4, and the unlike-species collision operator must 
recover this dependence in order to recover the thermal force in 
Eq. (52). For example, the thermal force RT,a in Eq. (52) cannot be 
recovered from Bhatnagar-Gross-Krook (BGK) [32] collision opera-
tor CBGK( f ) = ν( f − f M) with ν independent of a particle velocity. 
Indeed, the force produced by BGK operator is∫

vCBGK( f )dv = ν

(∫
v f dv −

∫
v f Mdv

)
, (54)

which only depends on the bulk velocities of distributions f and 
f M and does not depend on temperature gradients. Likewise, 
the thermal force RT,a is not recovered by the Lenard-Bernstein-
Dougherty (LBD) [33,34] operator of the form

CLBD( fa) = L
∂

∂vα

[
(v − VLBD) fa + DLBD

αβ

∂ fa

∂vβ

]
, (55)

where L, V LBD and DLBD are some functions independent of veloc-
ity, as in, for example, recently reported GKeyll [9] or GENE-X [10]
implementations. Indeed, the force from the CLBD collision opera-
tor described in Eq. (55) is
6

∫
vCLBD( fa)dv = −L(

∫
v fadv − VLBD), (56)

and in order for this expression to recover the thermal force RT,a
from expression (52) would require for the VLBD function to have a 
particular explicit ∇||T dependence. Current LBD implementations 
often [9,10] disregard the thermal force entirely, despite this force 
being important [16] for the impurity transport.

The multi-species collision operator given by Eq. (6) is based on 
the test particle operator CT which preserves the velocity depen-
dence of Coulomb collisions, and therefore can recover the thermal 
force. For simulations described in Sections 3.1 and 3.2, we mea-
sure the parallel force Ra and the heat flux qa, verify that they 
have the forms given by Eq. (52) and Eq. (53), and compute the 
transport coefficients C1,2,3.

For the simulation setup with a fixed electric field described 
above, a steady-state solution corresponds to a balance between 
the parallel force Ra and the electric force eana E [see Eqs. (49)
and (52)], giving

C1 = 3
√

π |ea|E
4νabmana|ua − ub| .

(57)

From simulation without a-a collisions, we obtain C1 = 0.30 from 
Eq. (57). This value is very close to the value CB

1 = 0.29 reported 
by Braginskii for the case of an electron-ion plasma with Zb → ∞. 
Such agreement is expected since Zb = eb/|e| → ∞ allows to ne-
glect electron-electron collisions in the electron-ion problem, and 
electrons correspond to the species a in the described simulation. 
For finite Zb, collisions between the light species a must also be 
included in the corresponding COGENT simulation. We use Eq. (57)
to measure the transport coefficient in COGENT simulations with 
various values of eb and compare them to the corresponding re-
sults from the Braginskii’s problem for an electron-ion plasma 
[3,4], as shown in the top and bottom left panel in Fig. 2. We also 
perform several additional runs with different values of the elec-
tric field, E , to verify that the measured force is proportional to 
ua − ub, in agreement with the expression for the friction force 
Ru,a in Eq. (52). These runs are illustrated in the bottom right 
panel in Fig. 2. When the Fokker-Planck operator CFP( fa) is used 
to model collisions between the species a, the values of C1 are 
within 3 − 6% of Braginskii’s results for all Zb. Recall that the dif-
ference between the newly implemented operator Eq. (6) and the 
linearized Landau operator vanishes in the limit of high mass ra-
tios, justifying the observed agreement with Braginskii’s results for 
the electron ion plasma since me � mi . Furthermore, in simula-
tions where the Abel collision operators CA( fa) are used instead 
of the Fokker-Planck CFP( fa) operator, the values of C1 are within 
20% of Braginskii’s results. When using the model collision oper-
ator CA( fa) for the like-species collisions, the difference with the 
values reported by Braginskii is the largest for the smallest charge 
of species b, Zb = 1, which is to be expected since, for higher 
charge state Zb, the influence of like-species collisions on the light 
species distribution function fa decreases relative to the influence 
of collisions between the light species a and the heavy species b.

3.2. Thermal force and heat flux coefficients measurement with COGENT

The heat flux qa for species a is given by Eq. (53) in the Bragin-
skii model presented above. We use Eq. (53) to measure C2 in the 
simulation setup from Section 3.1 as

C2 = qa

naT (ua − ub)
, (58)

and present results in Fig. 2. For the simulation corresponding 
to Zb → ∞ (i.e., without self-collisions of species a), Eq. (58)
gives C2 = 1.44, which is close to the heat flux coefficient value 
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Fig. 2. (Top panel): Values of transport coefficients C1 (red circle and diamond la-
bels) and C2 (blue square and star labels) from COGENT simulation of the setup 
described in Section 3.1, measured using Eq. (57) and Eq. (58) for various eb. The 
red dashed line and blue dash-dot line show Braginskii’s values [3,4] for electron-
ion transport coefficients C1 and C2, respectively. For simulations with Abel col-
lision operator CA( fa) for collisions between species a, the transport coefficients 
C1 (diamonds) and C2 (stars) are within 20% of the Braginskii’s values. When 
Fokker-Planck operator is used to model a-a collisions, agreement of C1 (circles) 
and C2 (squares) with Braginskii is within 3 − 6%. (Bottom left panel): Time series 
of the bulk velocity ua (solid line) and heat flux (dashed line) qa for simulation 
with eb = 2|e|, illustrating the steady state. (Bottom right panel) Scaling of steady 
state velocity (top line) and heat flux (bottom line) from COGENT simulations with 
different E , demonstrating that steady state bulk velocity and heat flux scale lin-
early with E , in agreement with theory. Velocity is normalized by vTa, heat flux 
by na Ta vTa, distance by l̃ = 1 m and electric field by Ta/(|e|̃l). The simulation has 
velocity domain boundaries |v |||max/vTa = 8, μmax B/Ta = 12, and velocity grid res-
olution nv|| = nμ = 128. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

of CB
2 = 1.5 reported by Braginskii for the electron-ion problem. 

For the simulations corresponding to finite Zb, the values of C2
are within 3-6% of Braginskii’s results in simulations where the 
Fokker-Planck operator CFP( fa) is used to simulate collisions be-
tween the light species a, as shown in Fig. 2. When the Fokker-
Planck operator is replaced by the Abel linearized collision opera-
tor CA( fa), the observed C2 values are within 20% of Braginskii’s 
results.

Our next goal is to consider a hydrodynamic equilibrium in the 
presence of the temperature gradient along the magnetic field, to 
measure the thermal RT,a force in Eq. (52) and the qT,a component 
of the parallel thermal flux in Eq. (53). We do this in the rest of 
this section.

We consider a slab geometry introduced in Sec. 3.1, although 
we turn off the electric field. For the outlined simulation setup, 
the kinetic equation (1) solved by COGENT for the species a can 
then be simplified to

∂ f

∂t
+ ∂

∂z
(v || fa) = C( fa) + C( fa, fb), (59)

where z is the coordinate along the magnetic field. We set the 
initial temperature profile for both species as

Ts

Ts,0
= 1.05 − 0.05

(
1 + exp

(
2π

z − zmin

zmax − zmin
− π

))−1

(60)

where Ts,0 = 20 eV, zmin = 0 m and zmax = 2 m. The density profile 
for each species is set to ns,0Ts,0/Ts so that the system is in hy-
drodynamic equilibrium ∇ps = 0. We take na,0 = 5 ×1021 m−3 and 
nb,0 is set by the quasi-neutrality condition given by Eq. (45). The 
masses of species are set to ma = mp and mb = 100mp as in the 
setup from the previous section, ea = −|e|, and the value of eb is 
7

Fig. 3. (Top panel): Profiles of the thermal heat flux qT,a and residue qa − qu, as 
defined in Eq. (53). (Bottom panel) profiles of the pressures from friction Ru and 
thermal RT forces at steady state, demonstrating |ua −ub| ∝ ∇||T in agreement with 
Eq. (52). Velocity is normalized by vTa, heat flux by na,0 Ta vTa, distance by ̃l = 1 m, 
pressure by na,0ma v2

Ta/l̃. Simulated velocity grid is bounded by |v |||max/vTa = 8, 
μmax B/Ta = 12 and has resolution nv|| = nμ = 128. Domain resolution along the 
magnetic field is nz = 32.

Fig. 4. (Top panel): Values of the conductive heat flux coefficient C3 (green la-
bels) from COGENT simulation of the setup described in Section 3.2, measured 
using Eq. (53) for various eb. The green dashed line shows heat flux coefficient 
C3 reported by Braginskii [3,4]. Simulations with Abel like-species collision oper-
ator CA( fa) are labeled with stars and agree within 20% of the Braginskii values. 
When the Fokker-Planck CFP operator is used instead to model the like-species col-
lisions, the agreement of C3 values (marked with square labels) with Braginskii’s 
results is improved to within 3 − 6%. (Bottom panel) Time series of relative ve-
locity û = |ûa − ûb| (solid lines), and heat flux q̂a (dashed lines) from simulation 
with eb = 3|e|, illustrating the steady state. Velocity is normalized by vTa, heat flux 
by na,0 Ta vTa.

varied between the simulations. COGENT simulations demonstrate 
that the bulk velocities and heat fluxes reach their quasi-stationary 
state values after about a dozen of collisional times. In this quasi-
stationary state, the thermal force, RT,a, should be balanced by the 
friction force, Ru,a, according to Eqs. (49) and (52). This property 
is confirmed in our simulations, as illustrated in Fig. 3 and bottom 
panel of Fig. 4. From Eq. (52) and Ru,a + RT,a = 0, we can measure 
the C1/C2 ratio. For example, for Zb = 3, in the simulation with 
the Abel collision operator CA, we recover the ratio C2/C1 = 1.92. 
Recall that we previously measured C1 = 0.46 and C2 = 0.9 for the 
case of Zb = 3 in the counterpart simulation which included ex-
ternal electric field (see Sec. 3.1). For that case, we obtained the 
transport coefficients from the steady-state values of the friction 
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force (C1) and the heat flux (C2). It is instructive to note that the 
ratio of those coefficients C2/C1 = 1.96 is within 2% from what 
we obtain here from the force balance. This illustrates the Onsager 
symmetry of the transport coefficients. The Onsager principle fol-
lows from (t, B) → (−t, −B) invariance of underlying equations 
of motion and yields the transport coefficient for the convective 
heat flux [the first term in the right-hand side of Eq. (53)] to be 
the negative of the transport coefficient for the friction force [the 
second term in the right-hand-side of Eq. (52)]. This principle is 
represented in the self-adjointness relations Eqs. (24) and (25) of 
the collision operator (see [26] and references therein). Note that 
the Onsager symmetry is related to the entropy production [26]
rate. Therefore, model operators which do not recover Onsager 
symmetry do not, in general, result in the correct rate of entropy 
production, which can be important [35] for kinetic studies. The 
model operator in Eq. (6) does recover Onsager symmetry for the 
case Ta = Tb considered here, and we verify that the C2/C1 ra-
tio measured from the two different setups described in Secs. 3.1
and 3.2 agree within 2% for all Zb we simulated. We can therefore 
use the value of C2 obtained from Eq. (58) to measure the trans-
port coefficient C3 in the Eq. (48) as illustrated in the top panel 
of Fig. 3. Without the like-species collisions for species a, we ob-
tain C3 = 12.4, which recovers Braginskii’s value CB

3 = 12.5 for the 
Zb → ∞ case in the electron-ion problem. Similarly to previous re-
sults, when we use the Fokker-Planck operator CFP( fa) to simulate 
collisions between the light species a, the values of the conduc-
tive heat flux coefficient C3 from COGENT simulations are within 
3 −6% of Braginskii’s result for all Zb, as illustrated in the top panel 
of Fig. 4. In the corresponding simulations with the Abel collision 
operator CA( fa), we obtain C3 values within 20% of Braginskii’s re-
sult.

In summary, in this section we performed simulations using 
COGENT with the model collision operator given by expression 
Eq. (6) to measure the parallel transport coefficients C1,2,3 in a 
strongly collisional regime for a two-component plasma with a 
large species mass ratio ma/mb = 1/100. For the case where the 
Fokker-Planck operator CFP( fa) is used to model the like-species 
collisions for the light species a, the results of the COGENT simu-
lations for all transport coefficients are found to be in good agree-
ment (within 3-6%) with Braginskii’s results for an electron-ion 
plasma. For the case where the linearized Abel operator CA( fa)

is used to model a-a collisions, the departure from Braginskii’s re-
sults increases to 20%. The maximum difference is observed for 
smaller values of Zb, consistent with a pronounced role of the 
like-species collisions for Zb ∼ 1. We also verified that the On-
sager symmetry relationship is recovered in our simulations for 
the case of equal Ta = Tb, as expected from the self-adjointness of 
the model unlike collision operator.

It is expected that the model unlike-species collision opera-
tor given by Eq. (6) does not, in general, yield physically accurate 
transport coefficient outside the high mass ratio limit addressed in 
this section, since the error from the ad-hoc field particle opera-
tor is significant for ma ∼ mb. This limitation can be addressed by 
utilizing the moment method [36] to further improve a linearized 
collision model as proposed by Sugama in Ref. [6].

3.3. Modeling radial neoclassical transport in the presence of heavy 
impurities with COGENT

In this section, we consider a plasma of electrons, ions, and 
heavy impurities in a concentric circular tokamak geometry. The 
magnetic field geometry is given by

Bφ,θ (r, θ) = BT,p R0

R0 + r cos(θ)
, (61)
8

where r is the minor radius coordinate, θ is the poloidal angle, B T

and B p are the toroidal and poloidal components of the magnetic 
field. We take the major radius of the tokamak to be R0 = 8.5 m. 
The minor radius coordinate ranges from rmin = 0.8075 m to 
rmax = 0.8925 m, so the middle of the simulation domain is lo-
cated at r0 = (rmin + rmax)/2 = 0.85 m and the tokamak aspect 
ratio is ε = r0/R0 = 0.1 We consider plasma transport in a Pfirsch-
Schlüter regime, i.e., for collisionality

ν∗ = νabε
−3/2qR0

vTb

 1, (62)

where q ∼ εBT/Bp ∼ 1.14 is the characteristic safety factor, νab is 
the collision frequency defined in Eq. (14), main plasma ions are 
denoted as species a with mass ma = mp and charge ea = |e|, and 
impurities are denoted as species b with mb = 100mp and charge 
eb = 2|e|. We simulate a strongly magnetized plasma by taking 
BT = 28.9 T, Bp = 2.53 T, and assuming the background temper-
ature T = 500 eV for all species. Initial condition for fa and fb

correspond to a local Maxwellian distribution function with uni-
form temperature and density profiles given by

ns = ns,0

(
1 − 0.05 tanh

(
2π

r − rmin

rmax − rmin
− π

))
, (63)

where na,0 = 2.8 × 1020 m−3 and nb,0 = 7 × 1019 m−3. These 
plasma parameters correspond to ν∗ ≈ 34 
 1. For the outlined 
parameters, plasma is strongly magnetized, with the gyroradius 
much smaller than the mean free path ρa � λa.

The electron density is described by the linear Boltzmann re-
sponse as

ne = 〈na + Zbnb〉
(

1 + e�

T
− e〈�〉

T

)
, (64)

where the angular brackets represent the flux surface average

〈 f 〉 =
∮

f
dlθ
Bθ

/∮
dlθ
Bθ

. (65)

In contrast to the slab geometry simulations presented in 
Secs. 3.1 and 3.2, here we also evolve the electric field. This is done 
in COGENT by including the gyrokinetic Poisson equation [29,37] in 
the long-wavelength limit

∑
s

4πe2
s

ms
2
s
∇⊥ · (ngc

s ∇⊥�) = 4πe

(
ne −

∑
s

ngc
s

)
, (66)

where 
s = es B/msc is the gyrofrequency, ngc
s is the gyrocenter 

density given by

ngc
s = 2π

ms

∫
B∗||s fsdv ||dμs, (67)

and ∇⊥ = ∇ −b(b ·∇). The radial boundary conditions for the Pois-
son equation (66) is〈∑

s

c2nsms

B2
|∇ψ |2

〉
∂�

∂ψ
=

t∫
0

dt〈∇ψ ·
∑

s

js〉, (68)

where ψ denotes the flux surface and js is the gyrocenter current 
density given by

js = 2πes

ms

∫
Ṙs fs B∗||dv ||dμs. (69)

We solve Eq. (66) with Neumann radial boundary conditions 
together with the gyrokinetic equation (1) in the annular toroidal 
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geometry. We run simulation for about 100/νab to allow for colli-
sional GAM [38] relaxation and the establishment of steady radial 
profiles for radial particle fluxes. We analyze simulation results by 
using the analogy [4] between electron-ion and proton-heavy im-
purity transport problems. In the ion-heavy impurity problem, the 
protons (species a) play the role of “electrons”, while the impuri-
ties (species b) play the role of “protons” in the Braginskii treat-
ment. In the electron-ion problem, the electron-electron collision 
operators scale as ne and electron-ion collision operator scale as 
ni Z 2. In the ion-impurity problem considered here, ion-ion colli-
sion operators scale as na and the ion-impurity collision operator 
scales as nb Z 2

b . This suggests [4] that the ion-heavy impurity trans-
port problem is analogous to the electron ion problem of Braginskii 
for the case of the ion charge Zb given by α = nbe2

b/(nae2
a). In the 

high aspect ratio ε = r/R � 1 toroidal geometry, it was shown [4]
that the radial magnetic surface averaged particle 〈�a ·∇r〉 flux can 
be expressed in terms of the parallel transport coefficients C1, C2

and C3 from Eqs. (52)-(53) as

〈�a · ∇r〉 = −2q2 Dana

((
C1 + C2

2

C3

)
×

×
(

∂ ln pa

∂r
− Tb

ZbTa

∂ ln pa

∂r

)
− 5

2

C2

C3

∂ ln Ta

∂r

)
,

(70)

where

Da = Ta

τab

2
ama

. (71)

In a quasi-stationary state, the flux surface averaged impurity flux 
〈�b · ∇r〉 is related to the corresponding main ion flux 〈�a · ∇r〉 by 
the ambipolarity condition

ea〈�a · ∇r〉 + eb〈�b · ∇r〉 = 0, (72)

because of the momentum conservation during the unlike-species 
collisions. The constraint in Eq. (72) is also consistent with the 
quasi-neutrality requirement. Indeed, for a quasi-stationary state 
where the polarization current can be neglected, the total flux sur-
face average neoclassical radial current has to be zero. Recalling 
that a Boltzmann electron response given by Eq. (64) yields a zero 
electron flux-surface average current, we obtain Eq. (72). Since for 
our simulations α = 1, in the radial flux expression Eq. (70) we use 
transport coefficients for Zb = 1, obtained in Sections 3.1 and 3.2
from the simulations with Abel collision operator CA that was used 
to model like-species collisions in the Miller geometry simulations 
discussed in this section. Resulting predicted surface averaged par-
ticle flux profile 〈�a · ∇r〉 agrees with results from the COGENT 
simulation, as illustrated in Fig. 5. The ion and impurity radial 
particle fluxes are related by ambipolarity Eq. (72) condition, as 
expected from analysis above. These results demonstrate the con-
sistency of COGENT neoclassical simulations with theory [4] and 
results from slab geometry simulations discussed in Sections 3.1
and 3.2.

4. Conclusion

In this paper, we report on the implementation and testing of 
a model unlike-particle linearized collision operator in the gyroki-
netic full-f continuum code COGENT. This operator is similar to the 
model operators for unlike-species collisions developed for delta-
f simulations in Refs. [1,5] and it is based on the linearization 
of the Landau operator. However, consistent with the full-f for-
mulation, the newly implemented operator also retains collisional 
thermalization of Maxwellian backgrounds for the case of different 
species temperatures. It conserves particle number, momentum, 
9

Fig. 5. (Top panel): Maximum of 〈�̂a · ∇r〉 along the radius plotted against time, 
showing the steady state. (Bottom panel) Radial profile of 〈�̂a · ∇r〉 is positive and 
shown in solid red curve, and is in good agreement with Eq. (70) shown with a 
black curve. The blue curve shows the radial profile of 〈�̂b ·∇r〉, and the gray dashed 
curve verifies the ambipolarity condition Eq. (72). Particle flux is normalized by 
na,0 vTa, distance by ̃l = 1 m. Simulated velocity grid is bounded by |v |||max/vTa = 6, 
μmax B/Ta = 6. Domain resolution is nv|| = 96, nμ = 48, nθ = 32, nr = 32.

and energy of colliding species, is self-adjoint for equal background 
temperatures of colliding species, and preserves the velocity de-
pendence of the Coulomb mean free path. The latter property is 
critically important to recover the thermal force from the unlike-
species collisions. The model operator is tested in simulations of 
parallel plasma transport in a uniform slab geometry by consid-
ering a large species mass ratio (ma/mb = 100) and a strongly-
collisional regime. This problem is analogous to the electron-ion 
transport problem analyzed by Braginskii, and we analyze our sim-
ulation results by using the Braginskii model. For the case where 
like-particle collisions within the light species are modeled with 
the Fokker-Planck operator, the parallel transport coefficients ob-
tained in the COGENT simulations are within 3 − 6% of the corre-
sponding Braginskii’s results. When we replace the Fokker-Planck 
operator with the previously implemented Abel linearized operator 
for self-collisions, we obtain coefficients within 20% of Braginskii’s 
results. In addition, we verify the Onsager symmetry of the trans-
port coefficients, which follows from the self-adjointness property 
of the collision model for equal background temperatures. Finally, 
we simulate the Pfirsch-Schlüter problem of the radial ion-heavy 
impurity transport in a toroidal geometry, and recover the theoret-
ical expression [4] for radial neoclassical fluxes in terms of parallel 
transport coefficients.

The ability of the implemented operator to recover the thermal 
force is important for simulating experimentally relevant plasma, 
since this force is widely recognized [3,15,16] to play one of the 
major roles in impurity transport in a tokamak edge. We, however, 
note that an ion distribution function can substantially deviate 
from a Maxwellian background in a steep edge region (e.g., under 
H-mode conditions), which affects the applicability limits of the 
linearized collision model. Our future work will focus on extending 
the COGENT’s full Fokker-Planck operator to support unlike-species 
with an arbitrary mass ratio. This first-principle collision model 
will then be used to assess validity limits of the reduced collisional 
model reported here.
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