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1. Introduction

In recent years, various collision operator models have been
implemented in numerous gyrokinetic codes in order to simulate
Coulomb collisions in tokamak plasmas (see [5-11] and references
therein). The correct expression for the Coulomb operator is well
known (e.g., Landau form [12]) but often avoided in kinetic model-
ing because of the high computation cost. Accordingly, only some
gyrokinetic codes [13,14] include the correct collision operator,
typically referred to as the Fokker-Planck operator. Instead, re-
cent reports [6-11] focus on implementing increasingly complex
reduced collision operators and extending these operators for the
case of unlike species. The implemented models differ in physical
properties, such as, for example, the rate of entropy production
and the velocity dependence of the collision frequency. Accord-
ingly, proposed operators have different scope of use. In particular,
some recent implementations of unlike collisions (e.g., [9,10]) pro-
duce no thermal force which is important for impurity transport
in the tokamak edge [15,16].

In this article, we report on implementation of a multi-species
linearized collision operator, in the continuum full-f gyrokinetic
code COGENT [2]. The operator is based on the Landau opera-
tor, and preserves the correct A ~ (v — vp)* dependence of the
Coulomb mean free path on a relative velocity v, — vy of collid-
ing species a and b. This retained velocity dependence enables
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to recover thermal force, as well as the friction force as they ap-
pear in the Braginskii fluid model [3], in the COGENT simulations
of highly collisional plasmas. For the case of equal background
temperatures of the colliding species, the operator reduces to the
operators developed by Sugama [5] and Kolesnikov [1] for delta-f
simulations. However, in contrast to the Sugama model, newly
implemented operator directly retains collisional thermalization
of background Maxwellians with different temperatures, which is
consistent with the full-f formulation of the COGENT code. Re-
sulting operator provides a numerically efficient way to simulate
collisions between unlike species. It is also worth noting an alter-
native approach to include energy exchange between background
centered Maxwellians implemented in the full-f GYSELA [7] code.

We benchmark this operator in COGENT kinetic simulations of
a parallel plasma transport in a slab geometry, against the Bra-
ginskii fluid model. We measure values of transport coefficients
from kinetic simulations results and find that they are close to val-
ues obtained by Braginskii [3] for the Landau operator [12]. Finally,
we consider a toroidal annulus geometry and simulate radial im-
purity transport in the strongly-collisional Pfirsch-Schliiter regime,
demonstrating good agreement with the results [4] of the local
neoclassical theory.

The paper is organized as follows. Section 2 contains an
overview of the COGENT code and describes the newly imple-
mented collision operator. In Section 3, we review COGENT sim-
ulations of single component plasma in a slab geometry, and the
heavy impurity transport in toroidal geometry. Section 4 summa-
rizes presented results and gives a conclusion.
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2. Model description

This section describes main aspects of the COGENT code and
introduces the newly implemented collision model. COGENT is a
continuum Eulerian full-f gyrokinetic code. The electrostatic ver-
sion of the COGENT code (used for simulations in this article)
describes coupled evolution of the gyrocenter distribution function
and the electrostatic potential for plasma in the external mag-
netic field. The code solves for a gyrocenter distribution function
fa(Ra, vy, pa, t) for kinetic species a, where R, is the guiding cen-
ter coordinate, v =v-B/B is the component of velocity v along
the magnetic field B of magnitude B, and u, is the adiabatic in-
variant of species a with mass m,. COGENT supports several mag-
netic B field geometries: slab, Miller closed-flux model [17] for
the core region, and a single-null [18] X-point geometry for cross-
separatrix simulations. The numerical algorithm used in COGENT
utilizes a high-order finite-volume conservative discretization. Cur-
rent electrostatic implementation of the code adopts a long wave-
length limit kp; <« 1, where p; is the gyroradius of ion species and
k is the wavenumber for electrostatic potential variations. For sim-
ulations considered in this article, the gyrokinetic full-f equation
simulated in COGENT can be written for species a as

3B fa
ot +V. (RaBHafa)‘f' (VHBHafa)— (1)
Bjj, (C(fa) + C(fa, fb))
R, = TR [VHB +— b>< (eavq>+uav3)] (2)
[la
v =- aBH B} - (eaV® + 1aVB), (3)
B: =B+ 2Vly x b, (4)

€a

where b =B/B and Bﬁa =B, -b, ® is the long wavelength neo-
classical electrostatic potential, C(f) is a like-species collision op-
erator, and C(f,, fp) is the newly implemented unlike-species col-
lision operator described in the rest of this section. Further imple-
mentation details for the axisymmetric (4D) and non-axisymmetric
(5D) versions of the COGENT code are available elsewhere [19,20].

The linearized multi-species collision operator presented in this
section utilizes the approach described by Kolesnikov in [1]. Specif-
ically, the distribution functions of colliding species f, and f; are
assumed to be close to Maxwellian distributions with zero bulk
velocities,

Mo (=) s—ab 5)
S _71'3/2\/%5 p 2 s —d, U

VTS

where v = /vﬁ + 2usB/mg is the velocity and vys = 4/2Ts/ms is

the thermal speed of species s with temperature Ts, mass mg and
density ns. Collision operator C(fM +68fa, f +6f,) is then ap-
proximated with a sum of linear operators as

C(fa, fo) = Cr(fM, fM) 4+ Cr(8 fa, f) + Ce(FM, 5 ). (6)

The first two terms in Eq. (6) describe collisions of species a with
the Maxwellian background f]:',vl of species b. For the background
species with charge e, and mass my, the corresponding test particle
operator Ct can be expressed in the Landau form [12] as
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¥ =InA (%y, (9)
a

where In A is the Coulomb logarithm. This test particle operator
Ct can be expressed in COGENT coordinates as a divergence of the
probability flux IT in the velocity space,

oIIVIl  9IIMa

Cr(fa, fMHy=v, I = o] T =
a

d MaB 8fa afa
= — 3V _ YV
BVH{ D( my 0V ”Maaua +
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Expression Eq. (10) contains standard notations [21] for deflec-
tion frequency vp, slow-down rate vgs and parallel diffusion rate
Vs, given by expressions

%a Q 1de @
R VRS T a
VTa Ta < mb> Q
Vs=Vap—— |14+ — ) =, (12)
ST Ty, my) g3
3
VTa Q
V=V — ) —, 13
= () ()
where ¢ = v /vy, Vap is the collision frequency given by
47re lnAnb
Vab = # (14)
myVvr,

and €2 is the Maxwell integral [22] that gives normalized value of
integrating the Maxwellian distribution over sphere with radius ¢2,

;-2
2 » e de 2 o
== —erf(r) — 28 & L ot
ﬁ/\/fe dt = erf(¢) i’ dc2 ﬁ{e
0

As can be seen from the expression Eq. (10), Cr(fa, fI'DVI) is a dif-
ferential operator, which makes it cheap to evaluate numerically.

The field particle operator Cp(f;v[,be) describes collision of
Maxwellian component faM with perturbation § f,. When written
in the Landau form (as done for Ct in Eq. (7)), the field particle
operator involves a convolution integral over the velocity space,
and is, from the numerical viewpoint, as expensive to evaluate as
the full Landau operator. Accordingly, only some codes [23,24] im-
plement the field particle component of the linearized collision
operator in the Landau form. Instead, linear collision models typi-
cally [5-7] postulate a reduced field particle operator that is more
efficient to evaluate numerically. In the collision operator model
proposed by Kolesnikov [1], the field particle operator is given by
expressions
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Ce(fM, 8 f) = 8PapRab V)| + 8Eab Qab, (15)

8Pap = —/dvmvacT(afb, ™M, (16)

2
aEabz—/dvmb" Cr(8 for FM), (17)

Cr(mavy fM, f3h
[ dvmav Cr(mav) fM, fM)
Cr(mav? M, fi)
[ dv(mav2/2)Crmav2 fM, [

Since previous reports [1,25] contain typos in explicit form of the
field operator Cf, corrected expressions are given below. In case of
equal temperatures Ty =T, =T,

RabV) = (18)

Qap = (19)

NG i mp\? Q

Rab = T T+— m I (20)
M mp\*/* 1 dQ

Qb= 0T (1+ma) §<me_d?>' @0

It can be easily demonstrated that Cg provides conservation of mo-
mentum,

%/dvmavnfaZfdvmaVu(CF(faM,Sfb)H‘
+ Cr(8 fa, fi)H + Cr(fM, f@”)) =8P — 8Ppa— (22)

d
—/dvmvaCT(fév',f;\/l)z—a/d"mbvllfm

and energy (as can be shown analogously to Eq. (22)). From ex-
pressions Eqgs. (15)-(19), it follows that the field particle Cr op-
erator conserves particles if the test particle operator Ct does.
Because of the divergence form Eq. (10) of the test particle op-
erator Ct(fa,, ft’)v'), conservation of the particle number density n,
during collisions can be enforced by setting the probability flux to
zero S - I =0 through the boundaries of the velocity domain S,

/deT(fa,fll)V'):/dS-H =0, (23)
S

where S is normal to surface S. Since the finite volume discretiza-
tion scheme used in COGENT exactly recovers the Gauss divergence
theorem, the test particle Ct (and, therefore, field particle Cg) op-
erator conserves particles up to machine precision if the probabil-
ity flux of Cr is adjusted according to Eq. (23).

It is instructive to compare the collision operator given by
Eq (6) to previously published [7,8,11] linearized collision oper-
ator models. For the case of equal background temperatures, the
operator described by Eq. (6) is equivalent to the Sugama collision
operator [5]. Accordingly, in thermal equilibrium T, = Ty, the test
and field particle operators satisfy adjointness relations

v fa

fa CT((Sgayfb )= fa CT(8féhf (24)
3 fo M
8ac M. d 8f
/ vl (M s fy) = / Vi) (25)

for arbitrary 8g,, and it was shown (see [5], [26] and references
therein) that relations Eq. (24) and Eq. (25) ensure that the oper-
ator Eq. (6) satisfies the H-theorem for case of equal temperatures
of colliding species. In the case of different background tempera-
tures, T, # Ty, the operator given by Eq. (6) is no longer equivalent
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to the Sugama [5] operator. This is because the latter operator does
not include collisions between the Maxwellian backgrounds, and
modifies the test particle term in order to ensure that the self-
adjointness relation in Eq. (24) holds for unequal temperatures.
The Sugama model is suitable for a delta-f [8] formulation, where
collisional thermalization between the (fixed) background distri-
bution functions f is not included, and, consequently, additional
care must be taken to avoid energy transfer from the different-
temperature Maxwellian fM backgrounds into the §f,, pertur-
bations. In contrast to the delta f approach, the full-f models do
not assume fixed background distributions. The energy exchange
between background Maxwellians represented by the Ct( fi"’ , fé"’ )
term drives the system towards an equilibrium temperature T =
Ta = Tp. We note that another approach to a linearized collision
operator is used in the full-f GYSELA [7,27] code, where a term
representing the energy exchange between Maxwellians describes
evolution of the background temperatures, and the field particle
operator is constructed based on the expansion of a distribution
function in spherical harmonics and Laguerre polynomials [7] to
recover the friction and thermal forces that will be discussed in
Section 3 below.

Finally, we note that the long-wavelength approximation
adopted in the model collision operator [Egs. (6)-(19)] does not
account for finite Larmor radius (FLR) effects [8], which, for in-
stance, are required to describe classical transport perpendicular
to the magnetic field.

2.1. Stable timestep condition

Time integration in COGENT can be done via explicit fourth-
order Runge-Kutta (RK4) or semi-implicit additive Runge-Kutta
(ARK) scheme. In this section, we analyze the numerical stability
condition for the explicit time stepping scheme, arising from the
diffusion in velocity space associated with the test particle opera-
tor. We illustrate that diffusion coefficient D, along w grows lin-
early with velocity v of colliding species a, and this can cause the
maximum stable time step §t of the explicit integration scheme to
be much less than the collision time 1/v,p.

Because Maxwellian distribution fé"[ is sperically symmetric in
the velocity space, the Rosenbluth ¢y, ¥}, potentials associated
with the test particle operator are easily found to be

1 dQ
V3¢b=f|]3vl=>§0b=—4;5bz<9+@>» (26)
1
Vﬁwb=<pb:wb=—g’v? [(c +1>d;2 (;2+5>9]
(27)

Probability fluxes IT in Eq. (10) can be expressed in drag-diffusion
form

dfa dfa
m =AV\\fa+DVI\M3—M+DVHVHm’ (28)
Bf 3fa
Mm*=A D 29
with the diffusion coefficients given by [14]
a2 1 2u.B
Dy, = La/ba 5 _E(va—a"'”Hvﬁ):
Vil
3
_ VapVy, 1de Q@ @ 2,00 2
~ 2vm ( ® (: a2 T ) TOTOE )
(30)
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2m 3%y,
Dy, =—L¥P22, — "0 = =
s B MaaMaaVH (V)| = VD)V 1a -
=y v%ama sin® (&) cos(€) 3o de
— TR 202 dc2 )’
2m? %yy Yy
Dy =—1"222 0, (2 =
i BZ‘“(“"‘aufaua)
myv? . 4 m2v3. vy (32)
= 352 (vp sin“(2&) + 4y sin (E)):vabTx
Q Q Q
x [ sin?(2¢) §Q+§d——— +4sin)= |,
¢z 2¢ ¢

where cos(§) = v|/v. Since 2 — 1 and dQ2/d¢? — 0 for ¢ — oo,
it follows from Eq. (32) that diffusion D, grows unbounded with
the velocity v of the species a. Recall that explicit schemes typi-
cally have a numerical stability threshold dgpa, setting stable res-
olution criteria DMMSt/éug < dppa. Therefore, stable timestep §t is
bounded by condition

2
2BS
vapdt < 2dgpa ( @‘a) T (33)

a"Ta v

where § i, is the velocity grid spacing along ;. Condition Eq. (33)
becomes a severe restriction since, on the one hand, the bulk
of the Maxwellian function fM needs to be well resolved in
the velocity space 8v/vr, ~ 2BSpta/mav3, ~ 1071, while, on the
other hand, superthermal particles (with velocities v/vr; ~ 10 and
above) make important contributions to current and heat flux [28]
and need to be retained. Note that, unlike D, other diffusion co-
efficients [given by Eqgs. (30) and (31)] are bounded by conditions

3 3
Vab V1, VabV1Ma
Dy v, < —2-Ta_ <2 d (34)
Vv 2 /_7TVTb Vi 3\/§B

and the associated stable timestep conditions are independent
of v. Furthermore, recall that the condition in Eq. (33) is derived in
the ¢ = v /v, — oo limit, yet, in practice, the value of ¢ is limited
by the velocity domain bounds (|v||max and ptmax) of the simula-
tion. Therefore, in general, expressions Egs. (30)-(32) must be used
to determine the stable timestep condition from the diffusion in
velocity space.

2.2. Convergence studies

We verify that the operator is implemented correctly by do-
ing a convergence study. We verify that R,, and Q,, computed
by COGENT from expressions Eqs. (18) and (19) agree with ex-
pressions Eqs. (20) and (21). To confirm correct implementation
of energy and momentum terms given by Egs. (16) and (17), we
consider an analytically given distribution functions f! (e.g., f!=
(14 0.02v)/vTa + O.OSvﬁ/v%a)f;V[ used in test shown in Fig. 1),
and compare analytical (8P, SE', ) values to COGENT (8P4, SE4)
values from simulation with the same velocity domain boundaries
[V||lmax and pmax, but with different velocity grid cell sizes v
and Su. In what follows, we label §v|| and §u velocity grid sizes
as A. We repeat COGENT simulation with different resolutions,
simultaneously changing 8v|| and &/ by a factor of two, and mea-
sure the residue as shown in Fig. 1 to verify that |(SE;b - 8Eﬁ)| x
(A/Ag)? and [8P!, — 8P4 | o< (A/Ag)?, where Ag is the velocity
grid cell size for the COGENT simulation with the velocity resolu-
tion (v, u) of 1024 x 512, as illustrated in Fig. 1. This quadratic
rate of convergence is consistent with a second-order cell-centered
finite-volume discretization presently utilized for the newly imple-
mented collision operator Eq. (6) in COGENT. We also verified that
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[ avICR G fu iD= [ dvICT* (3 fu i)
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[ avICR (M8 1u)|= [ dvICE* (fa fN)
o4 T avICRO (6 o )= dvICE* (6L )]
3Py,—3P
22 §Pl,—0Py
(SE‘\b—(SEuAb
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Fig. 1. (Top panel) Example results from the convergence studies, with
fa=(140.02v)/vra + O.OSVﬁ/v%a)faM, demonstrating quadratic convergence. Grid
cells A/Ag correspond to (v, ) resolutions 1024 x 512, 512 x 256, 256 x 128, and
128 x 64, where Ag corresponds to 1024 x 512. Grid cell size A, corresponds to
(vy}, w) resolution of 2048 x 1024. All shown simulations have the same velocity do-
main boundaries (tmax and |V|||max given by 2Bmax/Ta =27 and |V ||max/VTa =8.
(Bottom panel) Example results of the energy conservation error in simulations
which include collisions between background collisions. The resolution of the ve-
locity domain corresponds to the data on the top panel.

COGENT satisfies both the particle conservation

[ aveis g =o. 35)
and the momentum balance
/d"maVHC(fa»fb)+/d"meHC(fb,fa):07 (36)

up to numerical precision, regardless of the velocity domain reso-
lution. The particle conservation Eq. (35) is obtained by setting the
probability flux through the |v|||max and pmax boundaries to zero,
as in Eq. (23).
The energy conservation
mpv?2

myv2
/ " C o fo) + f ™ C (i, =0 (37)

is demonstrated in the bottom panel of Fig. (1) as a function of
the velocity grid resolution. Note that the error in energy conser-
vation comes entirely from the terms describing the background
Maxwellian interactions, ie., Cr(fM, fM) and Cr(fM, fM). When
background Maxwellians are in the thermal equilibrium, the cor-
responding collision term vanishes CT(f;V[,féV') =0 and can be
excluded from the operator, resulting in energy conservation up
to machine precision for all velocity resolutions.

Recall that the denominators of the R, and Q. terms of the
field operator in Eqs. (18) and (19) are designed to balance mo-
mentum and energy loss caused by the test particle operator for
species b, as illustrated in Eq. (22). To recover the correspond-
ing discretized energy and momentum conservation properties
(Egs. (36), (37)) up to numerical precision, we employ numeri-
cal evaluation and integration of the denominators in expressions
Egs. (18) and (19), instead of evaluating them analytically as in
Eq. (20) and (21).

3. COGENT simulations in the highly collisional regime

In this section, we use the model collision operator to simulate
transport in case of high mass ratio my, >> m, and for high enough
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collisionality to assume small deviations from a Maxwellian dis-
tribution for colliding species a and b, justifying the use of a lin-
earized collision operator. Collisions in such regime produce ther-
mal and friction forces, as was demonstrated by Braginskii [3] for
electron-ion plasma. In what follows, background Maxwellian dis-
tributions are fixed and have equal temperature T, =T, =T, so
Cr(fM fih =o.

The friction force along the magnetic field, resulting from oper-
ator Eq. (6), can be expressed as

f dvma vy C(far f5) = Pab — Ppa. (38)

with 8P, and 8Py, defined by Eq. (16).

Our first goal is to verify that, in linear approximation, the fric-
tion force Eq. (38) from the model operator agrees with the result
from Braginskii’'s [3] original work. We consider the bulk velocities
of electrons u, and ions uy (relative to the velocity of background
Maxwellians fSM) to be much less than their thermal speeds vg.
We follow Braginskii’s approach and compute the friction force on
light species by approximating the distribution function to first or-
der as

(14 5). (39)

a

Since for the test particle collision operator the energy transfer rate
between the light species a and the heavy species b is a factor of
m,/my, smaller than the momentum transfer rate, we can calculate
the §Pp; as

mavnpLl¥® 9 v28up — v Vg 38
(SPba:/dV a V||l o af aVp fa_

8 Iy v3 vg (40)

b
_ npmaL¥/ /.dvm UagVp Mo 4vabmanau
27 v3 y2

v3, ENC

The §Pp, obtained in Eq. (40) depends on the u,, yet it is clear
from the physics of the Coulomb collisions that the friction force
must depend on the relative bulk velocity u, — uy,. Therefore, the
contribution from §P,, must also be considered. To calculate §P,p,
we use the Landau form of the test particle operator given by
Eq. (7) in the expression Eq. (16), and expand the relative velocity
tensor defined in Eq. (8) to first order as

V/Z(S —v.v P v/28 — vy
of a’p Ly of a’p ’ (41)
v'3 4 v, v/3

Uqlg ~

with the ratio between the velocities of species b and a as the
expansion parameter. Combining Eqs. (7), (16) and (41), we can
evaluate 6P, as

mpl?? 9 [ 8 fow) 3SR
8T dvy m; Bv;g

V280 — VgV 9 [V'?8ap—vyvy
x V'3 +vy v’ V'3
" (42)

271b/a /28 oyl M
meL v VoV 9
=% /de?fbVH/dV' «b ~Ya¥s 9a

(SPab=/dvmva

8mwmy v’3 8v%8vf|
__4 % /mam npu
_3ﬁ ba m bl'bUb,
where
1
up =— [ dvé fpvy. (43)
np

Computer Physics Communications 291 (2023) 108829

Combining expressions Eq. (40) and Eq. (42) above, we find that
the linear approximation for friction force

fdvmavHC(fa,fb):aPab 5P =

4vapman,
N
matches the result of Braginskii. This is to be expected, since, in
the infinite mass ratio my/m,; — oo limit, the operator described
by Eq. (6) is the same as the Landau operator. Indeed, the test
particle Ct(3 fa, féV') operator in this limit reduces to the Lorentz

operator, while the field particle operator vanishes for infinitely
heavy species b.

(44)
(up —ua) = _/d"mbv\lc(fba fa).

3.1. Modeling electric conductivity with COGENT

We now simulate the friction force in COGENT with the setup
described in this paragraph. For simplicity, we consider a slab ge-
ometry with two species (a and b), which are initialized with
uniform Maxwellian distributions f;V[ and fé\’[, respectively. We set
masses of colliding species to my =mp, mp = 100m; in the units
of proton mass mp. The charge of species a is set equal to the elec-
tron charge, e; = —|e|. The charge of the heavy species ey, = Zy|e|
is varied between simulations. The density n, of species a is set
to 102" m~3, and the density ny, of species b is set by the quasi-
neutrality condition

eana + epnp = 0. (45)

The temperature of both species is homogeneous and set to 20 eV.
We consider a slab geometry with a uniform fixed magnetic Be,
and electric Ee; fields along the z-axis, and periodic boundary con-
ditions in the z-direction. For the outlined simulation setup, the
kinetic equation (1) solved in COGENT for the species a reduces to

%+E%=C(fa)+C(fa,fb). (46)
ot m, 8VH

Collisions C(fa, fp) between species a and species b are mod-
eled using the operator described in Section 2. Note that, for a
finite charge ey, of species b, the impact of collisions C(f,) be-
tween light species a on their distribution function f, is com-
patible to the impact of the collisions between species a and b,
C(fa, fo) ~ C(fa). Therefore, collisions between species a must be
included into the simulation with finite charge state of species b,
Zp ~ 1. Various like-species collision models are available [29] in
the COGENT code, including the full Fokker-Planck [14] collision
operator Cgp(f,;), and a model collision operator Ca(f,) proposed
by Abel [30] that is similar to the operator C(f,, fp) described
in Section 2 (both Ca(fs) and C(fa, fp) are based on the lin-
earized Landau collision operator). As we mentioned earlier, the
Fokker-Planck operator gives the highest fidelity, but is expensive
to evaluate numerically since it requires solving a pair of Pois-
son equations [14] for the Rosenbluth potentials. Therefore, it is
of interest to assess the impact of replacing the Fokker-Planck op-
erator Cpp(f;) with the Abel collision operator Ca(f,;), which is
much faster to evaluate. The use of a linearized collision model
in the considered simulations can be justified for the case where
the magnitude of the electric field E is much less than the Dre-
icer [31] field Ep. Because the role of electrons is assumed here by
the species a with a mass of a proton, the corresponding Dreicer
field is Ep ~ 1kV/m. For E « Ep and homogeneous background
profiles, the deviations from the Maxwellian can be assumed to be
small and the use of linearized collision operators is justified. In
what follows, we perform two sets of COGENT simulations, where
the like-species collisions of the light species a are described with
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either the Fokker-Planck, Cgp, or the model Abel operator, Ca. In
addition to verification purposes, this test elucidates validity limits
of the reduced Abel operator.

We simulate the described setup in COGENT over hundred col-
lision times 1/v,},, allowing the bulk velocities

Zymy
Zamb

1
ubz—/dVVHbe:— U,, (47)
np

1
Uy = — /dVV”Sfa, (48)
na

to reach a steady state. Note that the right equality in Eq. (47) fol-
lows from the quasi-neutrality condition Eq. (45) and momentum
conservation Eq. (36). We then analyze the kinetic simulation re-
sults with the Braginskii [3] fluid model,

dug 0Pg

msnsE + E =esnsE + Rs, (49)
3 dTs U 0qs

Ne— 4+ P— =2 , 50
zns dt + Ps 9z 92z +Qs ( )

where Ps =ngTs is the pressure, Qs is the heat from friction given
for species a as

2
Q.= f " C o fo), (51)

Rs = Ry + Rrs is the parallel force combined from friction Ry s
and thermal Rt s forces expressed for species a as

R, = /dvmauHC(fa, fo) =Rua+Rra=

(52)
— oy MabMaa S Cona VT
3ﬁ a aVvita,
and g is the parallel heat flux expressed for species a as
m, 2
qa = dVT(V —U,€;) (VH —Ua)fa= Quatqra=
(53)

3./mn,T,
= ConaTa(ua — up) — C3@
4 Vab

V) Ta.

The transport coefficients C1, C2, C3 depend on details of a col-
lision model and can be inferred from the results of COGENT
simulation. It is important to emphasize that the thermal force
Rt arises from the velocity dependence of the Coulomb colli-
sions A ~ (v; —vp)?4, and the unlike-species collision operator must
recover this dependence in order to recover the thermal force in
Eq. (52). For example, the thermal force R, in Eq. (52) cannot be
recovered from Bhatnagar-Gross-Krook (BGK) [32] collision opera-
tor Cpek(f) = v(f — fM) with v independent of a particle velocity.
Indeed, the force produced by BGK operator is

/ VCpek (f)dv = v ( / vfdv — / v fMdv) , (54)

which only depends on the bulk velocities of distributions f and
fM and does not depend on temperature gradients. Likewise,
the thermal force Rt , is not recovered by the Lenard-Bernstein-
Dougherty (LBD) [33,34] operator of the form

9 af

Cupp(fa) =L— [(v=V*) f, + DI =2 |, (55)
vy ovg

where L, V8P and DBP are some functions independent of veloc-

ity, as in, for example, recently reported GKeyll [9] or GENE-X [10]
implementations. Indeed, the force from the Cipgp collision opera-
tor described in Eq. (55) is

Computer Physics Communications 291 (2023) 108829

/ VCisp (fa)dv = —L( / Vfadv — VI, (56)

and in order for this expression to recover the thermal force Ry,
from expression (52) would require for the VP function to have a
particular explicit V;T dependence. Current LBD implementations
often [9,10] disregard the thermal force entirely, despite this force
being important [16] for the impurity transport.

The multi-species collision operator given by Eq. (6) is based on
the test particle operator Ct which preserves the velocity depen-
dence of Coulomb collisions, and therefore can recover the thermal
force. For simulations described in Sections 3.1 and 3.2, we mea-
sure the parallel force R, and the heat flux g,, verify that they
have the forms given by Eq. (52) and Eq. (53), and compute the
transport coefficients Cq 3 3.

For the simulation setup with a fixed electric field described
above, a steady-state solution corresponds to a balance between
the parallel force R, and the electric force e;n E [see Egs. (49)
and (52)], giving

Ci— ENEACAL (57)

1= .
4vpMana|ua — Up|

From simulation without a-a collisions, we obtain C; = 0.30 from
Eq. (57). This value is very close to the value C? = 0.29 reported
by Braginskii for the case of an electron-ion plasma with Z;, — oc.
Such agreement is expected since Z, = e} /|e|] — oo allows to ne-
glect electron-electron collisions in the electron-ion problem, and
electrons correspond to the species a in the described simulation.
For finite Zy, collisions between the light species a must also be
included in the corresponding COGENT simulation. We use Eq. (57)
to measure the transport coefficient in COGENT simulations with
various values of ey, and compare them to the corresponding re-
sults from the Braginskii’s problem for an electron-ion plasma
[3,4], as shown in the top and bottom left panel in Fig. 2. We also
perform several additional runs with different values of the elec-
tric field, E, to verify that the measured force is proportional to
u, — up, in agreement with the expression for the friction force
Rua in Eq. (52). These runs are illustrated in the bottom right
panel in Fig. 2. When the Fokker-Planck operator Cgp(f,) is used
to model collisions between the species a, the values of C; are
within 3 — 6% of Braginskii’s results for all Z. Recall that the dif-
ference between the newly implemented operator Eq. (6) and the
linearized Landau operator vanishes in the limit of high mass ra-
tios, justifying the observed agreement with Braginskii’s results for
the electron ion plasma since me <« mj. Furthermore, in simula-
tions where the Abel collision operators Ca(f,) are used instead
of the Fokker-Planck Cgp(f,) operator, the values of C; are within
20% of Braginskii's results. When using the model collision oper-
ator Ca(f,) for the like-species collisions, the difference with the
values reported by Braginskii is the largest for the smallest charge
of species b, Zy, = 1, which is to be expected since, for higher
charge state Zy, the influence of like-species collisions on the light
species distribution function f, decreases relative to the influence
of collisions between the light species a and the heavy species b.

3.2. Thermal force and heat flux coefficients measurement with COGENT

The heat flux g, for species a is given by Eq. (53) in the Bragin-
skii model presented above. We use Eq. (53) to measure C; in the
simulation setup from Section 3.1 as

qa

Co=—Fr—r,
naT(ua — up)

(58)
and present results in Fig. 2. For the simulation corresponding
to Zp — oo (i.e., without self-collisions of species a), Eq. (58)
gives Co = 1.44, which is close to the heat flux coefficient value
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Fig. 2. (Top panel): Values of transport coefficients C; (red circle and diamond la-
bels) and C, (blue square and star labels) from COGENT simulation of the setup
described in Section 3.1, measured using Eq. (57) and Eq. (58) for various ep. The
red dashed line and blue dash-dot line show Braginskii's values [3,4] for electron-
ion transport coefficients C; and C,, respectively. For simulations with Abel col-
lision operator Ca(f;) for collisions between species a, the transport coefficients
Cy (diamonds) and C, (stars) are within 20% of the Braginskii's values. When
Fokker-Planck operator is used to model a-a collisions, agreement of C; (circles)
and Cy (squares) with Braginskii is within 3 — 6%. (Bottom left panel): Time series
of the bulk velocity u, (solid line) and heat flux (dashed line) q, for simulation
with e, = 2|e|, illustrating the steady state. (Bottom right panel) Scaling of steady
state velocity (top line) and heat flux (bottom line) from COGENT simulations with
different E, demonstrating that steady state bulk velocity and heat flux scale lin-
early with E, in agreement with theory. Velocity is normalized by vr,, heat flux
by naTavra, distance by I=1m and electric field by Ta/(|e|7). The simulation has
velocity domain boundaries |V|||max/VTa =8, maxB/Ta = 12, and velocity grid res-
olution ny, =n, = 128. (For interpretation of the colors in the figure(s), the reader
is referred to the web version of this article.)

of C‘23 =1.5 reported by Braginskii for the electron-ion problem.
For the simulations corresponding to finite Z, the values of C,
are within 3-6% of Braginskii's results in simulations where the
Fokker-Planck operator Cgp(f,) is used to simulate collisions be-
tween the light species a, as shown in Fig. 2. When the Fokker-
Planck operator is replaced by the Abel linearized collision opera-
tor Ca(fa), the observed C, values are within 20% of Braginskii’s
results.

Our next goal is to consider a hydrodynamic equilibrium in the
presence of the temperature gradient along the magnetic field, to
measure the thermal Rt , force in Eq. (52) and the gr,; component
of the parallel thermal flux in Eq. (53). We do this in the rest of
this section.

We consider a slab geometry introduced in Sec. 3.1, although
we turn off the electric field. For the outlined simulation setup,
the kinetic equation (1) solved by COGENT for the species a can
then be simplified to

a9 )
a_{ + - fa) = CUfa) + Ca o). (59)
z

where z is the coordinate along the magnetic field. We set the
initial temperature profile for both species as

-1
T 105-005 (1 Fexp (2nﬂ —n)) (60)
5,0 Zmax — Zmin

where Ts g =20¢eV, zpin =0 m and zymax = 2 m. The density profile
for each species is set to nsTs0/Ts so that the system is in hy-
drodynamic equilibrium Vpgs = 0. We take n, o =5 x 10*! m~3 and
Np,o is set by the quasi-neutrality condition given by Eq. (45). The
masses of species are set to m, =mp and mp = 100m, as in the
setup from the previous section, e, = —|e|, and the value of ey is
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Fig. 3. (Top panel): Profiles of the thermal heat flux qr, and residue q, — qy, as
defined in Eq. (53). (Bottom panel) profiles of the pressures from friction R, and
thermal Rt forces at steady state, demonstrating |u; —up| o< V| T in agreement with
Eq. (52). Velocity is normalized by vr,, heat flux by n, oTavra, distance by I=1m,
pressure by navomav%aﬂ. Simulated velocity grid is bounded by [v/|max/VTa =8,
MmaxB/Ta =12 and has resolution ny, =n, =128. Domain resolution along the
magnetic field is n, = 32.
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Fig. 4. (Top panel): Values of the conductive heat flux coefficient C3 (green la-
bels) from COGENT simulation of the setup described in Section 3.2, measured
using Eq. (53) for various ep. The green dashed line shows heat flux coefficient
C3 reported by Braginskii [3,4]. Simulations with Abel like-species collision oper-
ator Ca(f,) are labeled with stars and agree within 20% of the Braginskii values.
When the Fokker-Planck Cgp operator is used instead to model the like-species col-
lisions, the agreement of C3 values (marked with square labels) with Braginskii's
results is improved to within 3 — 6%. (Bottom panel) Time series of relative ve-
locity @ = |G, — Up| (solid lines), and heat flux ¢, (dashed lines) from simulation
with e, = 3|e|, illustrating the steady state. Velocity is normalized by vt,, heat flux
by na,0TaVTa.

varied between the simulations. COGENT simulations demonstrate
that the bulk velocities and heat fluxes reach their quasi-stationary
state values after about a dozen of collisional times. In this quasi-
stationary state, the thermal force, Rt 3, should be balanced by the
friction force, Ry, a, according to Egs. (49) and (52). This property
is confirmed in our simulations, as illustrated in Fig. 3 and bottom
panel of Fig. 4. From Eq. (52) and Ry,a + Rt,a =0, we can measure
the C1/C, ratio. For example, for Z, = 3, in the simulation with
the Abel collision operator Ca, we recover the ratio C/C; = 1.92.
Recall that we previously measured C;1 = 0.46 and C; = 0.9 for the
case of Z, =3 in the counterpart simulation which included ex-
ternal electric field (see Sec. 3.1). For that case, we obtained the
transport coefficients from the steady-state values of the friction
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force (C1) and the heat flux (Cy). It is instructive to note that the
ratio of those coefficients C2/C; = 1.96 is within 2% from what
we obtain here from the force balance. This illustrates the Onsager
symmetry of the transport coefficients. The Onsager principle fol-
lows from (t, B) — (—t, —B) invariance of underlying equations
of motion and yields the transport coefficient for the convective
heat flux [the first term in the right-hand side of Eq. (53)] to be
the negative of the transport coefficient for the friction force [the
second term in the right-hand-side of Eq. (52)]. This principle is
represented in the self-adjointness relations Eqs. (24) and (25) of
the collision operator (see [26] and references therein). Note that
the Onsager symmetry is related to the entropy production [26]
rate. Therefore, model operators which do not recover Onsager
symmetry do not, in general, result in the correct rate of entropy
production, which can be important [35] for kinetic studies. The
model operator in Eq. (6) does recover Onsager symmetry for the
case Ty = Ty considered here, and we verify that the C2/Cy ra-
tio measured from the two different setups described in Secs. 3.1
and 3.2 agree within 2% for all Z,, we simulated. We can therefore
use the value of C, obtained from Eq. (58) to measure the trans-
port coefficient C3 in the Eq. (48) as illustrated in the top panel
of Fig. 3. Without the like-species collisions for species a, we ob-
tain C3 = 12.4, which recovers Braginskii’s value C3B =12.5 for the
Zy — oo case in the electron-ion problem. Similarly to previous re-
sults, when we use the Fokker-Planck operator Cgp(f,) to simulate
collisions between the light species a, the values of the conduc-
tive heat flux coefficient C3 from COGENT simulations are within
3—6% of Braginskii's result for all Zy, as illustrated in the top panel
of Fig. 4. In the corresponding simulations with the Abel collision
operator Ca(f,), we obtain C3 values within 20% of Braginskii's re-
sult.

In summary, in this section we performed simulations using
COGENT with the model collision operator given by expression
Eq. (6) to measure the parallel transport coefficients Cq23 in a
strongly collisional regime for a two-component plasma with a
large species mass ratio m,/mp = 1/100. For the case where the
Fokker-Planck operator Cgp(f;) is used to model the like-species
collisions for the light species a, the results of the COGENT simu-
lations for all transport coefficients are found to be in good agree-
ment (within 3-6%) with Braginskii’s results for an electron-ion
plasma. For the case where the linearized Abel operator Ca(fa)
is used to model a-a collisions, the departure from Braginskii’s re-
sults increases to 20%. The maximum difference is observed for
smaller values of Zp, consistent with a pronounced role of the
like-species collisions for Z,, ~ 1. We also verified that the On-
sager symmetry relationship is recovered in our simulations for
the case of equal T, = Ty, as expected from the self-adjointness of
the model unlike collision operator.

It is expected that the model unlike-species collision opera-
tor given by Eq. (6) does not, in general, yield physically accurate
transport coefficient outside the high mass ratio limit addressed in
this section, since the error from the ad-hoc field particle opera-
tor is significant for m, ~ my,. This limitation can be addressed by
utilizing the moment method [36] to further improve a linearized
collision model as proposed by Sugama in Ref. [6].

3.3. Modeling radial neoclassical transport in the presence of heavy
impurities with COGENT

In this section, we consider a plasma of electrons, ions, and
heavy impurities in a concentric circular tokamak geometry. The
magnetic field geometry is given by

Bt pRo

Byo(r,0) = —————r,
06(.0) Ro + rcos(f)

(61)
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where r is the minor radius coordinate, 6 is the poloidal angle, Bt
and B are the toroidal and poloidal components of the magnetic
field. We take the major radius of the tokamak to be Ry =8.5m.
The minor radius coordinate ranges from rpj, = 0.8075 m to
'max = 0.8925 m, so the middle of the simulation domain is lo-
cated at 19 = (min + "max)/2 = 0.85 m and the tokamak aspect
ratio is € =rg/Rop = 0.1 We consider plasma transport in a Pfirsch-
Schliiter regime, i.e., for collisionality

oo Ve aRo (62)

VTb

where q ~ €Bt/Bp ~ 1.14 is the characteristic safety factor, v, is
the collision frequency defined in Eq. (14), main plasma ions are
denoted as species a with mass my =m; and charge e, = |e|, and
impurities are denoted as species b with my, = 100mp and charge
e, = 2|e|. We simulate a strongly magnetized plasma by taking
Br =289T, B, =2.53T, and assuming the background temper-
ature T =500 eV for all species. Initial condition for f, and f},
correspond to a local Maxwellian distribution function with uni-
form temperature and density profiles given by

ns = s, (1 —0.05tanh (Znﬂ - n)) , (63)
'max — "min

where ny0 = 2.8 x 102 m™> and npo = 7 x 10" m—3. These
plasma parameters correspond to v* & 34 > 1. For the outlined
parameters, plasma is strongly magnetized, with the gyroradius
much smaller than the mean free path p; < Aa.

The electron density is described by the linear Boltzmann re-
sponse as

ed e(d>)> (64)

= z 14— ——+
Ne = (N + bnb)< + T T

where the angular brackets represent the flux surface average

dlg/fdlg (65)

In contrast to the slab geometry simulations presented in
Secs. 3.1 and 3.2, here we also evolve the electric field. This is done
in COGENT by including the gyrokinetic Poisson equation [29,37] in
the long-wavelength limit

4 2
Z% (V| @) = 4ne<ne anc) (66)
582§

S

where Qs = esB/msc is the gyrofrequency, nS
density given by

is the gyrocenter

2w
n:;;c_ / \sdeV”dl'LS! (67)
ms

and V; =V —b(b- V). The radial boundary conditions for the Pois-
son equation (66) is

c2ngms
<Z |vw|> 5 Of DY (68)

where ¥ denotes the flux surface and js is the gyrocenter current
density given by

2mes

o = / R, fsBdvdyts. (69)
mg

We solve Eq. (66) with Neumann radial boundary conditions
together with the gyrokinetic equation (1) in the annular toroidal
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geometry. We run simulation for about 100/v,, to allow for colli-
sional GAM [38] relaxation and the establishment of steady radial
profiles for radial particle fluxes. We analyze simulation results by
using the analogy [4] between electron-ion and proton-heavy im-
purity transport problems. In the ion-heavy impurity problem, the
protons (species a) play the role of “electrons”, while the impuri-
ties (species b) play the role of “protons” in the Braginskii treat-
ment. In the electron-ion problem, the electron-electron collision
operators scale as ne and electron-ion collision operator scale as
n;Z%. In the ion-impurity problem considered here, ion-ion colli-
sion operators scale as n, and the ion-impurity collision operator
scales as nbzg. This suggests [4] that the ion-heavy impurity trans-
port problem is analogous to the electron ion problem of Braginskii
for the case of the ion charge Z, given by o = nbeﬁ/(naeg). In the
high aspect ratio € =r/R <« 1 toroidal geometry, it was shown [4]
that the radial magnetic surface averaged particle (I'; - Vr) flux can
be expressed in terms of the parallel transport coefficients Cq, C;
and C3 from Egs. (52)-(53) as

CZ
(Fa-Vr)= _zquana<<Cl + C_2> X
3

(70)
dlnp, Ty, dlnp, 5C,0InT,
x _ _ =z
ar ZpT,  or 2C3 or
where
T

Dy=——3—. (71)

Tah$25Mg

In a quasi-stationary state, the flux surface averaged impurity flux
(T'p - Vr) is related to the corresponding main ion flux (I'y - Vr) by
the ambipolarity condition

ea(l’'y- Vr) +ep(I'p - V) =0, (72)

because of the momentum conservation during the unlike-species
collisions. The constraint in Eq. (72) is also consistent with the
quasi-neutrality requirement. Indeed, for a quasi-stationary state
where the polarization current can be neglected, the total flux sur-
face average neoclassical radial current has to be zero. Recalling
that a Boltzmann electron response given by Eq. (64) yields a zero
electron flux-surface average current, we obtain Eq. (72). Since for
our simulations & = 1, in the radial flux expression Eq. (70) we use
transport coefficients for Z, = 1, obtained in Sections 3.1 and 3.2
from the simulations with Abel collision operator C5 that was used
to model like-species collisions in the Miller geometry simulations
discussed in this section. Resulting predicted surface averaged par-
ticle flux profile (I'y - Vr) agrees with results from the COGENT
simulation, as illustrated in Fig. 5. The ion and impurity radial
particle fluxes are related by ambipolarity Eq. (72) condition, as
expected from analysis above. These results demonstrate the con-
sistency of COGENT neoclassical simulations with theory [4] and
results from slab geometry simulations discussed in Sections 3.1
and 3.2.

4. Conclusion

In this paper, we report on the implementation and testing of
a model unlike-particle linearized collision operator in the gyroki-
netic full-f continuum code COGENT. This operator is similar to the
model operators for unlike-species collisions developed for delta-
f simulations in Refs. [1,5] and it is based on the linearization
of the Landau operator. However, consistent with the full-f for-
mulation, the newly implemented operator also retains collisional
thermalization of Maxwellian backgrounds for the case of different
species temperatures. It conserves particle number, momentum,
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Fig. 5. (Top panel): Maximum of (f“a - Vr) along the radius plotted against time,
showing the steady state. (Bottom panel) Radial profile of (f‘a - Vr) is positive and
shown in solid red curve, and is in good agreement with Eq. (70) shown with a
black curve. The blue curve shows the radial profile of (f‘b -Vr), and the gray dashed
curve verifies the ambipolarity condition Eq. (72). Particle flux is normalized by
n,,0VTa, distance by 1=1m. Simulated velocity grid is bounded by [v|Imax/VTa =6,
maxB/Ta = 6. Domain resolution is ny, =96, n, =48, ng =32, ny =32.

and energy of colliding species, is self-adjoint for equal background
temperatures of colliding species, and preserves the velocity de-
pendence of the Coulomb mean free path. The latter property is
critically important to recover the thermal force from the unlike-
species collisions. The model operator is tested in simulations of
parallel plasma transport in a uniform slab geometry by consid-
ering a large species mass ratio (m,/mp = 100) and a strongly-
collisional regime. This problem is analogous to the electron-ion
transport problem analyzed by Braginskii, and we analyze our sim-
ulation results by using the Braginskii model. For the case where
like-particle collisions within the light species are modeled with
the Fokker-Planck operator, the parallel transport coefficients ob-
tained in the COGENT simulations are within 3 — 6% of the corre-
sponding Braginskii’s results. When we replace the Fokker-Planck
operator with the previously implemented Abel linearized operator
for self-collisions, we obtain coefficients within 20% of Braginskii’s
results. In addition, we verify the Onsager symmetry of the trans-
port coefficients, which follows from the self-adjointness property
of the collision model for equal background temperatures. Finally,
we simulate the Pfirsch-Schliiter problem of the radial ion-heavy
impurity transport in a toroidal geometry, and recover the theoret-
ical expression [4] for radial neoclassical fluxes in terms of parallel
transport coefficients.

The ability of the implemented operator to recover the thermal
force is important for simulating experimentally relevant plasma,
since this force is widely recognized [3,15,16] to play one of the
major roles in impurity transport in a tokamak edge. We, however,
note that an ion distribution function can substantially deviate
from a Maxwellian background in a steep edge region (e.g., under
H-mode conditions), which affects the applicability limits of the
linearized collision model. Our future work will focus on extending
the COGENT'’s full Fokker-Planck operator to support unlike-species
with an arbitrary mass ratio. This first-principle collision model
will then be used to assess validity limits of the reduced collisional
model reported here.
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