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COGENT (Continuum Gyrokinetic Edge New Technology) is a kinetic plasma

simulation code that is being developed by the edge simulation laboratory (ESL) col-

laboration. The original version of the code has been developed in a 4D phase space

(2D configuration space and 2D velocity space) to address kinetic plasma phenom-

ena in a complex magnetic field geometry including the core, magnetic separatrix,

and scrape-off layer regions. This work is focused on extending the original 4D phase

space to a 5D phase space (3D2V) to address full kinetic turbulences in a tokamak

edge region. Here, we report on the current status of 5D COGENT, which presently

operates in a shear-less, simple slab geometry. As a verification study, we use the

problems of collision-less drift wave instability (universal instability) including its

modification in the presence of collisional effects. The simulation model includes the

gyrokinetic equations for ion and electron species coupled to the long-wavelength

limit of the gyro-Poisson equation. Collisional effects are represented by the Krook

collision model. Linear analytical results for the drift mode growth rate and real fre-

quency are recovered, and the non-linear stage is modelled and analysed as well. In

addition, extensive 5D runs have been performed to address the effects of the drift

wave instability on blob/filamentary structures characteristic of a tokamak edge. A

helical-shaped potential perturbation is observed to grow exponentially in time while

spinning around the filament axis with electron drift frequency.
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1 INTRODUCTION

The boundary region of a tokamak encompasses the plasma existing between a high-pressure core region and plasma-facing

materials. Plasma transport in the boundary region is dominated by instabilities driven by large gradients of the density or tem-

perature. The collisional mean free path in the plasma boundary region can exceed the wavelength of micro-instabilities (e.g.,

drift wave instabilities), and as a result the plasma species distribution function may deviate from a Maxwellian distribution dur-

ing instability phenomena. Therefore, a hydrodynamic approach, which assumes a Maxwellian distribution function and is often

used to describe axisymmetric edge plasma transport, might not be valid for the edge plasma turbulence. In order to describe

weakly collisional boundary plasmas, we consider a gyrokinetic model employed in the Eulerian (continuum) finite-volume

code, COGENT.[1–4] The code has been successfully used to model 4D axisymmetric plasma dynamics including pilot studies

of the collision-less drift wave instability with a fixed ratio of the parallel and perpendicular wave numbers.[5] Here, we present

the initial results from the 5D version of the code, which has recently become operational in a shear-less slab geometry. Our

studies include verification[6] of electrostatic simulations of the drift wave instability for various collisionality regimes for the

case of a uniform background magnetic field and temperature. In addition, development of the drift wave instability on top of

filamentary/blob structures is analysed.

Contrib. Plasma Phys. 2018;58:445–450 www.cpp-journal.org © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 445



446 LEE ET AL.

TABLE 1 Simulation parameters

Parameter Unit Drift wave simulation Plasma filament simulation

n0 m−3 1× 1020 1× 1019

Ti, Te eV 400 400

B T 3.0 1.5

(Lx, Ly) cm (0.8, 0.8) (4, 4)

Lz m 1.7 ∼ 20 1.6

(Nx,Ny,Nz,Nv‖ ,Nμ) – (12, 32, 16, 64, 48) (64, 64, 32, 36, 12)

In the absence of the magnetic field and temperature gradients, the driving mechanisms for the drift wave instability is

dissipation, which provides the phase shift between the density and potential perturbations and depends on the collisionality

regime of the plasma. If collisions are negligible, the dissipation is provided by the Landau damping, in which case the instability

is sometimes called universal. In the opposite limit of strong collisions, the instability is called resistive drift wave instability.

An analysis of the electrostatic drift wave instability including the effects of Krook collisions can be found in Ref. [7]. The

electromagnetic expansion of this analytical approach can be found in Ref. [8].

The present paper is organized as follows. The governing equations used by the COGENT code are summarized in Section 2.

The drift simulation model used for initial verification studies is introduced in Section 3. Finally, the simulation results are

presented in Section 4.

2 THE GYROKINETIC VLASOV–POISSON MODEL FOR COGENT

The COGENT code uses full-f gyrokinetic model written in the conservative form[9]:

𝜕(B∗‖𝛼f𝛼)

𝜕t
+ 𝛻R ⋅ (Ṙ𝛼B∗‖𝛼f𝛼) +

𝜕

𝜕v‖𝛼 (v̇‖𝛼B∗‖𝛼f𝛼) = B∗‖𝛼C𝛼[f𝛼], (1)

where

Ṙ𝛼 = Ṙ𝛼(R, v‖𝛼, μ, t) = v‖𝛼
B∗‖𝛼 B∗

𝛼 +
1

Z𝛼𝑒𝐵
∗‖𝛼 b × G𝛼, (2)

v̇‖𝛼 = v̇‖𝛼(R, v‖𝛼, μ, t) = − 1

m𝛼B∗‖𝛼 B∗
𝛼 ⋅ G𝛼, (3)

and

B∗
𝛼 = B∗

𝛼(R, v‖𝛼) = B +
m𝛼v‖𝛼
Z𝛼e

𝛻R × b,

(4)

FIGURE 1 Implementation of a 5D phase

space in COGENT. (A) Electron density

distribution in the 3D configuration space.

(B) Electron distribution function in the

2D velocity space. The electron density

and potential are normalized to

n0 = 1020 m−3 and 𝜙0 = 400 V, respectively.

Normalization number (ref_t) for the time

variable in Frame (A) is 5.11× 10−6 s
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FIGURE 2 (A) 3D electrostatic potential

distribution normalized to 𝜙0 = 400 V. The

normalization number (ref_t) for the time

variable is 5.11× 10−6 s. (B) Evaluation of

the linear growth rate (red line) from the

potential perturbation history (blue curve)

obtained in the COGENT simulations of the

drift wave instability

G𝛼 = G𝛼(R, v‖𝛼, μ, t) = Z𝛼e𝛻RΦ + μ𝛻RB⋅ (5)

where f 𝛼 = f 𝛼(R, v‖𝛼 , μ, t) is the distribution function for the species 𝛼 = {i, e} in the gyrocenter phase space coordinate

(R, v‖𝛼 , μ). R is the configuration (physical) space, v‖𝛼 is parallel velocity space component for species 𝛼 in the direction of

magnetic field, and μ is the magnetic moment. The electrostatic potential field Φ is calculated from the long-wavelength limit

of the gyro-Poisson equation:

𝛻 ⋅

{[
𝜀0I + e2

∑
i

Zini

mi𝜔
2
𝑐𝑖

(I − bbT )

]
𝛻Φ

}
= e

(
ne −

∑
i

Zini

)
, (6)

where n is the ion gyrocenter density, 𝜔ci is ion gyro frequency, and b is the unit vector in the direction of magnetic field. The

present version of 5D COGENT operates in the shear-less slab geometry.

3 MODELLING DRIFT WAVE INSTABILITY: SIMULATION SET-UP

The 5D version of the COGENT code is verified with simulations of drift wave instability for the case of a uniform magnetic

field and temperature background. The simulation parameters are summarized in Table 1. The background electron and ion

densities decrease exponentially in the x-direction with gradient scaling length (Ln) in a three-dimensional slab geometry where

the magnetic field (B = 3 T) is aligned along the z-direction (Figure 1A). The three-dimensional Cartesian computational

grid used here has 12× 32× 16 cells. The length of the physical domain in the x- and y-direction (Lx, Ly) is 0.8 cm, and the

length in the z-direction (Lz) varies from 1.7 to 20 m depending on the simulation case. The electron and ion initial distribution

functions are specified by Maxwellian distributions with uniform temperature (Ti = Te = 400 eV) and zero mean velocity. The

two-dimensional velocity space consisting of the parallel velocity and the magnetic moment coordinates is divided into 64× 48

computation cells, where the computational parallel velocity coordinate v‖𝛼 is normalized to
√

T𝛼∕m𝛼 . Here, 𝛼 = {e,i} denotes

the electron (e) and ion (i) species (Figure 1B).

The initial density profiles of electrons and ions include a small perturbation corresponding to the first harmonic in the

periodic (y- and z-) directions. In order to reduce the boundary effect in the x- direction, the initial perturbation is assumed to be

negligible at the x-boundaries (Figure 2A). The boundary conditions in the y- and z-direction are taken periodic for the species

distribution function and electrostatic potential perturbations. The boundary conditions in the x-direction correspond to the zero

Dirichlet boundary condition for the potential, and to the inflow–outflow boundary condition for the species, with f 𝛼(xBC, y, z,

v‖, μ, t)= f 𝛼(xBC, y, z, v‖, μ, t = 0).

The time integration algorithm utilizes the fourth-order explicit Runge–Kutta (RK4) method, restricted by the Courant con-

straint. To speed up the simulations, we consider an artificial ion-to-electron mass ratio of 200. The calculated distribution

functions of electrons and ions are integrated into the velocity space to form a charge density in each cell of the configuration

space. The three-dimensional Poisson solver then calculates the electrostatic potential distribution using this charge distribution.

The electrostatic potential is used to calculate the electric field for the next time step.

Here, we consider a simple Krook collision model for electrons, Ce[f e]=−𝜈e(f e − f e0), where f e0 is the initial electron

distribution, and 𝜈e denotes the collision frequency, which is assumed to be spatially constant, for simplicity purposes. Ion
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FIGURE 3 COGENT simulation results

compared to the analytical predictions in

Equation 7: (A) no collisions and (B)

including the effects of electron collisions

described by the Krook model

collisions are not included. Performing a straightforward linear analysis of Equations 1–6 reported elsewhere,[7,8] we obtain the

following drift wave dispersion relation for the case of a uniform background magnetic field and temperature:
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, (7)

where Z is the plasma dispersion function, 𝜔̂ = 𝜔Ln∕cs, 𝜈e = 𝜈eLn∕cs, k̂y = ky𝜌s, k̂z = kz(Lnvth,e)∕cs and 𝜌s = cs/𝜔ci, and we

have assumed kxLn ≫ 1. We solve this dispersion relation numerically to find the maximum growth rate and the corresponding

real frequency for the parameters of COGENT simulations.

4 RESULT OF NUMERICAL SIMULATIONS

The verification of COGENT code was done by comparing the growth rate and the corresponding real frequency of the drift

wave instability extracted from the simulation results with the approximate theoretical predictions for the maximum growth

rate and the corresponding real frequency from the wave dispersion relation (Equation 7). In order to obtain the linear drift

mode growth rate and frequency from the COGENT simulations, a post-processing of a potential perturbation time history is

performed, as shown in Figure 2B. Figure 3A and B illustrate the excellent agreement with the approximate analytical results

for the collision-less case and the case with the electron Krook collision model (see Section 3), respectively.

We note that collision-less drift wave is driven unstable by the wave–particle interaction mechanism. Figure 4A and B show

the deviation of the electron distribution function from the Maxwellian distribution. Kinetic particles with velocities near the

FIGURE 4 Pronounced deviations of the electron distribution function from the Maxwellian background observed for the collision-less case near the drift

wave phase velocity due to wave–particle resonance. The normalized drift wave phase velocity (vph) is illustrated by the dotted line. The results of the

simulations in Frames (A) and (B) correspond to low (𝛾/𝜔* = 0.1) and high (𝛾/𝜔* = 0.23) values of the growth rate, respectively. v‖ and μ are the normalized

parallel velocity and normalized magnetic moment, respectively
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FIGURE 5 Development of the collision-less drift wave instability on a blob-filamentary plasma structure extended along the magnetic field lines. Plotted is

the normalized plasma density isosurfaces. The time variable is normalized to the reference time (ref_t= 5.11× 10−6 s). The filament structure is shown not

to scale for visualization purposes

drift wave phase speed experience Landau resonances. The width (Δv) of the perturbation of distribution function is consistent

with strength of the instability, 𝛾 ∼ k‖Δv.

We also investigate the development of the collision-less drift wave instability on an isolated plasma filamentary structure

extended along the magnetic field lines (Figure 5). The particle density is set to 1 × 1019 m−3, the species temperature is

Ti = Te = 400 eV, and the magnetic field strength is B = 1.5 T. The domain size along the magnetic field direction (Lz) is

1.6 m, and the domain extent in the perpendicular directions (Lx, Ly) is 4 cm. The computation domain resolution is given by

(Nx,Ny,Nz,Nv‖ ,Nμ) ↔ (64, 64, 32, 36, 12). See Table 1.

An exponential growth of helix-shaped potential perturbations is observed inside the filament. The perturbations spin around

the filament axis with the electron drift frequency. For these simulations, a random-noise perturbation (Figure 6A) is introduced

to the filament equilibrium background, and a perturbation mode (m𝜃 = 2) is observed to be dominant at early stages of the

simulations (Figure 6B). However, later in time, a higher order unstable mode (m𝜃 = 3) takes over (Figure 6C), and its non-linear

saturation is shown in Figure 5D.

5 CONCLUSION

We presented the initial simulations performed with the shearless slab 5D version of the COGENT code. The simulations

included the gyrokinetic modelling of the drift wave instability in the presence of electron collisions described by the Krook

operator. The linear results of COGENT simulations demonstrated excellent agreement with numerical solutions to a the-

oretical model. In addition, the 5D code was applied to investigate the effects of collision-less drift wave instability in a

FIGURE 6 Development of helical electrostatic potential perturbations inside the blob-filamentary structure. The helical perturbations rotate around the

blob axis with the electron drift speed. The time variable is normalized to the reference time (ref_t= 5.11× 10−6 s). The filament structure is shown not to

scale for visualization purposes
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blob-filamentary plasma structure, which is often observed in the boundary region. The linear development and non-linear

saturation of noise-seeded helix-shaped perturbations were observed.
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