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Martin (2011) [10] for grids with a single mapping. We consider mapped multiblock
domains for mappings that are conforming at inter-block boundaries. By using a smooth
continuation of the mapping into ghost cells surrounding a block, we reduce the inter-block
communication problem to finding an accurate, robust interpolation into these ghost cells

Ilfienyi\;zo_cisl.ume method from neighboring blocks. We demonstrate fourth-order accuracy for the advection equation
High-order discretization for multiblock coordinate systems in two and three dimensions.
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Hyperbolic partial differential equations

1. Introduction

The solution of partial differential equations using structured-grid-based discretizations can be challenging when the
solution domain has significant geometric structure or is more easily expressed in non-Cartesian coordinates. For instance,
in the simulation of the plasma near the edge of a tokamak fusion reactor, coordinates defined by the magnetic field
are advantageous. As shown in Fig. 1(a), the single-null topology of the magnetic field in the edge region [33,42] (shown
in a poloidal cross-section) possesses both open and closed field lines separated by a separatrix — a flux surface that is
self-intersecting. There is no simple mapping of a single rectangular domain to this edge geometry.

Other examples of solution domains that are more easily expressed in non-Cartesian coordinates include the interior of
a star or planet and the atmosphere, which is effectively a thin shell over a spherical surface. Although spherical coordinates
can be used for both of these cases, they pose difficulties because of the singularities at the center and at the poles.

While mapped-grid approaches based on a single, rectangular Cartesian mesh have the advantage of simplicity and
regular access patterns due to the mesh structure, these approaches are extremely limited in the types of domains they can
represent well. In contrast, fully unstructured approaches can more easily represent complex geometry, but these require
additional storage of mesh associativity data. A popular alternative is to use multiblock meshes (also known as composite
patches or zonal grids), where the domain is decomposed into multiple sub-domains that each map to a rectangular block.
The complicated tokamak edge geometry, for instance, can be mapped to eight rectangular subdomains that connect at the
intersection point of the separatrix, the X-Point, as shown in Fig. 1(b).
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Fig. 1. Poloidal cross section of the single-null magnetic field geometry in a tokamak fusion reactor showing (a) the edge and core regions and the separatrix
that separates open and closed magnetic field lines and (b) the decomposition of the single-null domain into eight blocks.

Mapped multiblock grids and, more generally, composite grids (including overset and patch-based refinement) have been
used in the solution of partial differential equations (PDEs) since the 1970s [22,34]. A substantial amount of development
was done in the computational aerodynamics community for external flows around complex bodies. The Cubed Sphere [31]
is a type of multiblock grid that has also been developed for solving PDEs on a spherical surface; in [39], this grid is used
with a high-order finite-volume method to solve the shallow-water equations. There is a rich literature on the subjects of
mapped and multiblock grids that is too extensive to summarize here; we refer the interested reader to several review
articles [2,35,37].

The starting point for the present work is the high-order finite-volume method in Colella et al. [10]. The advantage of this
approach is that it is strongly conservative in the sense of [40,41], high-order accurate, and freestream-preserving. It also
has the advantage of using a smoothly-varying structured grid for its underlying discretization of space. Discretizations on
such grids preserve many of the desirable properties of discretizations on Cartesian grids, such as cancellation of error in
centered differences, and relatively simple quadrature rules for computing averages over cells and faces. We extend this
method to the case of mapped multiblock grids, in which the computational domain in physical space is represented as the
disjoint union of images of mappings that are conforming, meaning that they are aligned at common boundaries in such
a way that when the maps are discretized, the individual faces of control volumes at those boundaries coincide. To maintain
the mapped-grid formalism constraint that mappings are sufficiently differentiable, we define local mappings for each block
that, beyond being conforming, need not coincide in any other way. By using a smooth continuation of each mapping
beyond its block boundary, we reduce the problem of inter-block communication to that of the accurate interpolation of
solution values from neighboring blocks into the halo regions.

Interpolation between neighboring grids is a common problem in multiblock, overset, and patch- and block-based
adaptive mesh refinement (AMR) methods. A variety of polynomial interpolation techniques on both solution values and
interface fluxes have been developed [9,29,30,32]. A major concern has been interpolation procedures that ensure conser-
vation [6,9,29,30] and stability [5,28,29]. Here, since the blocks share only a lower-dimensional interface (the PDEs are not
solved in the halo regions), conservation is easily ensured by using consistent interface fluxes on the block boundaries. The
main challenge, instead, is identifying a suitable stencil over which to interpolate. As in overset or AMR techniques, the
halo extensions beyond a block may overlap multiple blocks, particularly in the vicinity of mesh singularities. Identifying a
suitable collection of cells from the original block and its neighbors is therefore not trivial. In the fully unstructured and
“mesh-free” computational-fluid-dynamics literature, one technique for reconstruction is least-squares interpolation [3,4,8,
15,19,23,24,27], which does not presume any underlying spatial relationship between the values used in the interpolation.
This is the approach we take here. The K-exact reconstruction of Barth [4] uses averages on a selected number of neigh-
boring cells to reconstruct a polynomial that reproduces exactly polynomials of degree up to K and preserves the average
value within the computational cell, but our procedure, which is used to find that average value within the computational
cell, is not required to be K-exact.

Although less common for structured grids, least-squares reconstruction is intrinsic to the genuinely multi-dimensional,
high-order, Central Essentially Non-Oscillatory (CENO) finite-volume schemes [16-18,36,38] that have been successfully ap-
plied in 2D and 3D to inviscid and viscous compressible flow, reacting turbulent flow, and ideal magnetohydrodynamics on
body-fitted, multiblock grids with block-based adaptive mesh refinement. In particular, the CENO approach has been ap-
plied to a block-adaptive cubed-sphere grid [17,18], where the least-squares reconstruction in the flux calculation produces
a uniformly high-order solution, even at points of reduced connectivity. In contrast, our use of least-squares interpolation
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Fig. 2. A multiblock coordinate system with two blocks, A and B. Left: computational space with disjoint block domains D4 and Djp. Right: physical space
with block ranges R4 and R, intersecting on a shared boundary face. The faces of each block are labeled +&, —&, +n, and —7 to indicate the mappings
of the block boundary faces. In this example, X;l(RA N Rp) is the right-hand (+£&) boundary face of D4, and the composite mapping XE' o X4 is an
isometry from the right-hand (+&) boundary face of D4 to the right-hand (+&) boundary face of Dg.

is not intrinsic to our multidimensional finite-volume algorithm. While we require mappings on blocks to be conform-
ing at block boundaries, these mappings are not required to be conforming beyond the boundaries (in ghost regions).
We therefore use least-squares interpolation to transfer cell-average information between the overlapping, curvilinear grids.
Least-squares interpolation has also been used at block boundaries for embedded-boundary methods in [20,21] and for high-
order coarse-fine mesh interpolation in AMR [25]. The methods of the present paper are applied in [26] to the solution of
the shallow-water equations on the surface of a sphere, using AMR.

In the next section, we define the necessary constraints on mappings and block arrangements within the context of the
high-order finite-volume mapped-grid formalism [10]. The main challenge is the preservation of sufficient accuracy between
adjacent blocks (relative to the that of the interior scheme), and the proposed algorithm for this process is described
in Section 3. Several examples of advection in two and three dimensions are provided and discussed in Section 4, and
these demonstrate the rate of convergence for the procedure. As will be seen, the applicability of the proposed approach
presumes the existence of smooth block mappings with smooth extensions beyond block boundaries. The construction of
such mappings may be clear in some applications, but may require additional effort in others. The motivating edge plasma
application is one such example, which we briefly discuss in Section 5 along with directions for future research.

2. Approach

It is necessary first to introduce several definitions for and assumptions placed on the types of mappings and block
arrangements that we will consider. We briefly review the high-order finite-volume formalism on mapped grids [10] and
the necessary extensions to accommodate multiple blocks.

2.1. Mappings and blocks

In our mapped multiblock framework, computations are performed on an abstract coordinate space in RP, which we call
computational space, with mappings to the real problem space, also RP, which we call physical space. We denote a point in
computational space by &, and a point in physical space by x. In computational space, computations are on a set of separate
blocks, for each of which is specified:

e a rectangular region D c RP in computational space called the domain of the block;
e a region R C RP in physical space called the range of the block; and
e a smooth, one-to-one mapping function X : D — R, whose inverse is also smooth.

A simple example of a mapped, two-block configuration is shown in Fig. 2. In this example, the two blocks share the
same computational coordinate space, but each block has its own mapping to physical space. In general, mappings on
different blocks will be different.

Because we are using a finite-volume method, we further restrict the mapped coordinate system to ensure that the
images of the computational space blocks are disjoint in physical space in a specific way. First, we assume that the ranges
of different blocks may intersect only at their boundaries, i.e., the ranges do not overlap. Furthermore, if the ranges of two
blocks A and B do intersect (at their boundaries), then we impose an additional condition. Consider Fig. 2, where A and B
respectively have domains D4 and Dg, mapping functions X4 and Xp, and ranges R4 and Rp. Then on X;1(RA NRp),

which is a subset of the boundary of Dy, the composite mapping Xgl o X4 to the boundary of Dy must be an isometry
in computational space. This constraint ensures that the mappings are conforming, as will be discussed in the next section.
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Fig. 3. Left: Squared-Disk example of a disk made up of five blocks including a central square block. Right: X-Point example of a stylized version of the
single-null edge-plasma geometry of Fig. 1, made up of eight blocks that all intersect at the central “X” point.

Fig. 4. Cubed-Sphere example: a solid sphere, made up of seven blocks, shown here in cutaway form in order to reveal the central cubic block.

Examples of 2D and 3D mapped multiblock meshes, which will be used later in example calculations, are provided in Figs. 3
and 4.

2.2. Control volumes for finite-volume methods

In the finite-volume approach on mapped grids [10], the computational space in RP is discretized as a union of rectan-
gular control volumes. Each control volume V; takes the form

Vi=[ih, (i+wh], u=(@1,1,...,1), (1)

where i = (i1, iz, ..., ip) € ZP is a multi-index identified with the control volume and h is the grid spacing. For each block,
there is a rectangular subset of ZP that indexes all of the control volumes in the block; if some i € ZP is in this subset,
then the entire control volume V; is within the domain D of the block. This condition imposes a constraint on the choice
of grid spacing h, such that all boundary faces of all block domains must lie along grid lines equally spaced by distance h.
Associated with each control volume V; C D of a block in computational space is its image X(V;) C R in physical space,
where X is the mapping function of the block.

Because of the isometry condition on block-boundary interfaces (see Section 2.1), such interfaces must be conforming,
meaning that whenever a control volume abuts a boundary with another block, the face of its image in physical space on
that block boundary must coincide with the face of the image of some control volume of the other block on that same
block-boundary face. More precisely, let A and B be blocks with, respectively, mapping functions X4 and X, and ranges
Ra and Rp, such that R4 and Rp intersect (on their boundaries). Then for every control volume V, of block A whose
image X4 (Vg) intersects Rp, there is a control volume Vj of block B such that Xg(Vp) NRa = Xa(Vq) NRp.
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2.3. Finite-volume discretization with mapped grids

This work begins with the finite-volume discretization on single mapped grids in [10], in which coordinates x in phys-
ical space are functions of coordinates £ in computational space, mapped by x = X(§). We are solving for U in a scalar
hyperbolic conservation law

ou v..F (2)
a0
where F is a function of U, x, and t. Eq. (2) includes the divergence of the vector field F = (F!,..., FP) in physical space,

which can be written in terms of derivatives in the computational space:

VX-F=%V5-(NTF), 3)

X X
J= det( % ) (NT)M = det(Rp<¥, eq>>, (4)

where R, (M, v) denotes the matrix obtained by replacing the pth row of the matrix M by the vector v, and ed denotes
the unit vector in the dth coordinate direction.

We adopt a method-of-lines approach and integrate the PDE (2) over each control volume V;, obtaining an ordinary
differential equation:

d
— =— Vy - Fdx.
7 / Udx / x - Fdx (5)

X(Vi) X(Vi)

From (3)-(4) and the divergence theorem, we have the exact relationship

fvx Fdx_fVE (NTF)d& = Z > /NT A, (6)

X(Vy) d=1+=+—

where Af are the high (+) and low (—) faces bounding V; with normals pointing in the dth coordinate direction. For grid
spacing h, in [10] the approximation is derived:

D

/ Vi =Y (Fl, )y = 7, ) + O (1), 7)
X(Vy) d=1
where Fi et is an approximation to ((NTF)d>i+%ed- set to
D hz D
B =Y sl yalFli s 15 D (G (Nsa)) s (6-4((F)y, o ®)

s=1 s=1

where the operator (-);, led denotes a fourth-order-accurate average over the face centered at i + 5 led, and where G4 ~

Ve — ed% is a second-order accurate difference approximation to the components of the gradient operator orthogonal

to the dth direction. Computing }"l_d+19d by the formula of (8) requires the integral of U over the set of control volumes
2

{(Vi:j=i+ Z?:] cse®,cqg € {—1,0,1,2}, and ¢s € {—1,0, 1} for s # d}. That is, to find the flux on a face, we need the
integral of U on a rectangular stencil of control volumes, where the extent of the stencil is defined by two control volumes
on each side of the face in the normal direction, and one control volume on each side of the face in every tangential
direction.

2.4. Extension of mapped-grid approach to multiblock

A complication that arises with mapped multiblock grids but not with single-block mapped grids is that in physical
space, a boundary face of a block may be an interface with another block. In Fig. 2, for instance, the +& boundary faces
of the two blocks are interfaces with other blocks, while all of the other boundary faces are external. Coordinate lines
transverse to block boundaries will be continuous if they cross those boundaries, but will generally not be smooth. The
power of a mapped-multiblock approach is the ability to assign a mapping suitable to each separate block. However, the
mapped finite-volume formalism outlined in Section 2.3 assumes that the mapping is sufficiently differentiable so as to
preserve the order of accuracy of the fluxes. To overcome this apparent contradiction at block boundaries, we propose to
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Fig. 5. Interpolation stencils for four sample ghost cells in the 2D multiblock disk geometry of Fig. 3. Two layers of ghost cells of block 2 are shown with
dotted blue lines, and four of these cells, marked (a) through (d), are indicated with thicker blue outlines. The shaded cells around each of these ghost cells
correspond to the interpolation stencil of the ghost cell. Further details on these four stencils are shown in Fig. 6.
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Fig. 6. Close-up views of the stencils of the four ghost cells (a) through (d) shown in Fig. 5. In each case above, the ghost cell is indicated by g and is shown
with a dashed outline in blue, the color of block 2. The center of g is marked with a blue *, and the valid cell that contains this point is vg, defined in
Step 1 of Section 3.1. Here vy is indicated with a thicker outline, as is ¢g, which is defined in Step 2. Stencil cells are shaded the color of their respective
blocks. The cells of the inner set A/I"f(g), defined in Step 3, are marked with a dashed brown outline around the whole set, and the remaining stencil
cells belong to the outer set AN°U®(g) as defined in Step 4. Note that in cases (a), (b), and (c), v¢ and cg are the same cell, and N °U*"(g) has four cells,
but in case (d), cg is a cell adjacent to vg because vg itself is on the external boundary, and N °U**(g) has only three cells for the same reason. Also note
that the inner set A/™€"(g) has nine cells in cases (a), (c), and (d), but only eight cells in case (b), because in case (b), the central cell g is at a corner of
block 0 (colored black), where block 0 meets only two other blocks.

extend the domain of each block smoothly such that the extended grid contains enough control volumes to evaluate fluxes
on all faces of the original block.

We extend the domain of each block D in computational space with ghost cells, which are control volumes of the form V;
of (1) that lie outside D. Figs. 5-6 show two layers of block-boundary ghost cells of block 2 outlined with dotted blue lines
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in the squared-disk geometry. We also extend the corresponding mapping function X with a smooth continuation so that
the images of ghost cells lie within the ranges of neighboring blocks. In this way, the mapped-grid finite-volume formalism
remains valid not only on the interior of each block but also on the boundaries that map to interfaces with other blocks.
In general, the images of ghost cells of a block will not align with images of control volumes in neighboring blocks (see
Figs. 5-6), so we interpolate to the ghost cells of D from control volumes in D and neighboring blocks. This interpolation
is performed to high order using the method of least squares, as detailed in the next section.

When i + %ed is on the interface between two blocks, since we calculate F on each block separately, from cell-averaged
data for the block and interpolated data on its ghost cells, there will be two numerically different results for f,-d+1 ol in (8).
In this case, we set .F'fj+%ed to be the mean of the two values from (8) for the two different blocks. 2

3. Exchange operations on block boundaries

Values in block ghost cells are set by interpolation from values in valid cells, i.e., cells within the physical domain but
perhaps within another block. These exchange operations are based on solving an overdetermined system of equations by the
method of least squares, as in the spatial coarse-fine interpolation in [25]. For the purposes of presentation, this description
is specialized to fourth-order interpolation but can be easily generalized to arbitrarily higher order.

3.1. Determination of the stencil

How the least-squares interpolation stencil is constructed can be critical for providing both accuracy and stability. For in-
stance, an algorithm based solely on considering adjacent blocks across codimension-one boundaries can lead to poor stencil
choices and high condition numbers. Such an algorithm results in poor stencil selection near the interior grid singularity in
the idealized X-Point domain shown in Fig. 3, where eight blocks connect at the X-Point.

The algorithm presented here for stencil selection for a ghost cell g begins with finding the valid cell vg containing the
center of g, using geometry in physical space. This is Step 1 below; subsequent steps depend only on index connectivity.
We include vg and its immediate neighbors (or those of a shifted vg, in case vg itself abuts an external boundary) in an
inner set N'I"€f(g) In general, A"’ (g) will not have a sufficient number of stencil cells, and moreover, in the simplest
case of the mapping being the identity function, the stencil is required to include at least four cells in a row in each
direction in order for interpolation to be fourth-order accurate. Hence, to ensure that there are enough cells and in the
right positions for fourth-order interpolation, in Step 4 we include the outer set N/°U*!(g). Following is the algorithm for
finding the stencil of valid cells A/(g) = N"MeT(g) U AU (g) for fourth-order interpolation to the ghost cell g. The stencil
is independent of the data values being interpolated.

1. Let xg be the point in physical space that is mapped from the center of the rectangular ghost cell g in computational
space. Find the block by® that has xg in its range, and let vg be the valid cell of block by that contains xg.
2. Let cg be the valid cell in block b?“d that is closest to vg in index space and is separated from the external boundary
by at least one cell in every dimension. Then cg will be the same as vg except when vg abuts the external boundary.
3. Let AVinner(g) be the set of all valid cells that have any vertices in common with cell ¢z of block b?“d in physical space.
If cell cg abuts an interface of block b3 with another block, then A" (g) will include valid cells of that other block.
4. Let N°UT(g) be the set of all valid cells vg + 2e? for each dimension d, except for any such cells that are already in
Ninner (g 1f any particular vg =+ 2e? is invalid because it goes beyond a boundary face in dimension d of block by,
then:
o If the boundary face is an interface with another block b’ and vy is separated from that interface by one cell, so that
vg + e is a valid cell in block by® that abuts the interface, then include in A/°"®'(g) the valid cell in block b’ that
shares a face with vg & e in block byld.

o If the boundary face is an interface with another block b’ and vg abuts that interface, then include in A/°"®"(g) the

valid cell in block b’ that shares the opposite face of the valid cell in block b’ that shares a face with vg in block
bvalid
g -

o If the boundary face is external and if vg abuts that face, then include in N°"*®'(g) the valid cell vg F 3ed (that is,
three cells away from vg in the opposite direction from the boundary) of block b‘;‘“d. Otherwise, do nothing.

For the two geometries of Fig. 3, in Figs. 5 and 6 we show four examples of interpolation stencils for ghost cells in the disk
geometry, and in Fig. 7 we show an example of an interpolation stencil for a ghost cell in the X-Point geometry.

3.2. Least-squares interpolation
Once a sufficient number of valid cells for the interpolation stencil have been found (based on the order requirements),

the least-squares interpolation proceeds as follows. Let A/ (g) = A/l (g) U A/OUter(g) be the set of valid cells to be used
for the interpolation stencil of cell g. In what follows, Rg is the mean distance from Xg, the center in physical space of g,
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Fig. 7. Interpolation stencil for a ghost cell near the center of the X-Point geometry of Fig. 3. A ghost cell g of block 0 is shown with a green dashed outline,
and its center, marked by a green =, lies in a valid cell vg which is indicated here with a thicker outline of the violet color of its block b?l‘d = 3. The
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seventeen cells in the stencil A/(g) are shaded with the colors of their respective blocks. Of these, the thirteen cells of the inner set A" (g) are marked
with a dashed magenta outline around the whole set, and include cells in all eight blocks because the central cell ¢g = vg has a vertex at the “X” point
where all eight blocks intersect. The remaining four stencil cells belong to the outer set A/°“®(g), consisting of two cells in block 3, which is the block
that contains vg, and one cell each in blocks 2 and 4, which are the two blocks that have codimension-one interfaces with block 3.

to the centers in physical space of the cells of N'(g), where the center of a cell in physical space is the point mapped from
the center of the rectangular cell in computational space.
We denote the average over control volume V; by (-);, defined by:

fX(V;) f(x)dx

(fi= W
X (Vi)

For clarity, we demonstrate the interpolation procedure in 2D; the extension to higher dimensions is natural. Letting

(xg, yg) = Xg, the idea is to use values of f averaged over stencil cells A'(g) to find coefficients apq (for p,q > 0 and
p +q < 3) of a third-degree Taylor polynomial centered at (xg, yg),

_ Py q
fayn= > apq(xRXg> (%) +o0(nY), (10)
g g

p.q=0; p+q=<3

(9)

and once we have the coefficients a,q, we then evaluate (10) to find an approximation to the average of f over the ghost
cell g. In more detail:

1. Averaging both sides of (10) over each cell in the stencil A/(g) suggests a method of finding values for coefficients ap,.
Since we know the average of f over each stencil cell, we can solve a least-squares problem to find apq satisfying as
closely as possible the overdetermined system of equations

_ p _ q
Z apq<<x Xg> <w> > =(f)j forall jeN(g). (11)
Rg Rg ) I

p.q>0; p+q=<3

2. Using the Taylor coefficients ap,q obtained in step 1, average the evaluation of the Taylor polynomial over ghost cell g,
in order to find a value for (f)g:

_ p _ q
D= 3 af((52) (75, "
g g g

p.q>0; p+q=<3

The cell averages of polynomials in the summands of (11) and (12) may be computed by fourth-order accurate quadrature
rules. Starting with fourth-order accurate (f); on the stencil cells j € AV/(g), since Rg associated with stencils scales linearly
with the grid spacing, as do x — xg and y — yg for (x, y) in stencil cells, the coefficients apq calculated in Step 1 will be
fourth-order accurate approximations to the Taylor coefficients in (10). Then (f)g as calculated in Step 2 will also be
fourth-order accurate.
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If f is constant, then this procedure sets interpolated ghost-cell values to the same constant: if (f); = K for all stencil
cells j € N'(g), then the system (11) has the unique solution of agyp = K and a,q =0 whenever p > 0 or q > 0, and hence

in (12), (f)g =K.
3.3. Constraints on stencils

In general, in a stencil for kth-order interpolation, there must be at least k cells with different projections in each
dimension. The construction of the outer set A/°“®(g) in Step 4 of Section 3.1 for fourth-order interpolation ensures that
there are at least four cells in a row in each dimension.

For the system (11) to be overdetermined, there must be at least as many equations as unknowns. Hence the number
of cells in a kth-order interpolation stencil must be at least the number of coefficients of a Taylor polynomial of degree
k — 1, which is (D+]’;71). In the generic case, the inner set A/I""(g) constructed in Step 3 of Section 3.1 for fourth-order

interpolation has 3P cells. However, if g is near a corner of a block, N i““e_r(g) may have fewer cells, as in the example in
Fig. 6(b). In any case, V™" (g) will include at least 2P cells in block b3i¢ plus at least 2P~ additional cells for each of

the D dimensions, which are extended from the faces of the 2P stencil cells in block bg‘“d. Hence the size of AiMer(g) is

at least 20~1(2 + D). By construction in Step 4, the size of the outer set A°U€T(g) is at least D, and is 2D in the generic
case. The total size of A/(g) is therefore at least 2~1(2 + D) + D, and is 3P + 2D in the generic case. When D =2, N'(g)
has at least 10 cells, and has 13 cells in the generic case. When D = 3, N'(g) has at least 23 cells, and has 33 cells in the
generic case. The number of unknown coefficients is (033) =D+ 3)(D+2)(D+ 1)/6, which is 10 when D =2, and 20
when D = 3. In any dimension, the number of equations is always at least the number of coefficients, thus guaranteeing an
over-constrained system for the fourth-order interpolation stencil of Section 3.1.

3.4. Numerical implementation

The system of Eqs. (11) can be written in matrix form as M(g)a = (f), where M(g) is the matrix with rows indexed by
Jj e N(g) and columns indexed by p,q where p,q>0 and p +q < 3. Let m = [N (g)| be the number of rows (stencil cells),
and n= (D#) be the number of columns (coefficients).

In the Taylor polynomial (10), the reason we divide Xx—xg and y —yg by Rg is to improve the condition number of matrix
M(g). As in [19], we are scaling the columns of the matrix so that they have a similar order of magnitude, independent of
the grid spacing. We find that it is not necessary to scale the rows of the matrix, by methods such as weighting stencil cells
by distance, as is done in [24].

Using (11) and (12), we can compute the interpolated value (f)g as simply a sum of weighted stencil-cell values

(Nlg= Y wi@j (13)
jeN(®)

where the weights w(g) depend only on the grid, and hence can be computed once and stored. We use the thin QR fac-
torization [13] M(g) = Q1R1 where Q1 is the first n columns of an orthogonal m x m matrix, and Ry is an upper-triangular
n x n matrix. If we solve for the n x m matrix X in R1X = QlT, then each column j of X contains coefficients apq ap-
proximating the function that is constant 1 on stencil cell j and 0 on all the other stencil cells. Therefore, the weights in
(13) are

x—xg\ ' (y—yg\?
wj(g) = Z qu,j<< Rgg) (R—gg> >g- (14)

p.q=0; p+q=3

4. Example problems

To demonstrate the least-squares approach to inter-block transfers, we consider solution of the linear advection equation
for scalar u(x, t):

au

at

u(x,0) =uop(x),

+V-uv)=0 onxeR2CRP, t>0; (15)

where v(x) is the prescribed time-independent velocity. We will solve this problem on three different mapped multiblock
domains using similar initial conditions

u(x,0) =uop(x) = B, (x — €o), (16)
where ¢ is a domain-specific offset. The function B, () is a cosine bell with maximum value of one and radius p:
1,1 TIX\y3 .
BMM={9+2mﬂp>) if x| < p; (17)
0, otherwise.

On the circle [x| = p, the first five derivatives of B, are all zero, so B, is C > continuous everywhere.
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With F =uv, (15) is of form (2), and hence the spatial integral of u over each control volume satisfies the ordinary
differential Eq. (5). We evaluate the right-hand side of (5) as outlined in Sections 2.3-2.4, and integrate over time with
the explicit, four-stage, fourth-order classical Runge-Kutta scheme as in [10], but without a limiter. For mapped grids in
physical space, we apply the stability conditions in computational space using the computational-space velocity vector
w = J INTv. As shown in [10], the Runge-Kutta stability condition gives a global limit on the ratio of the time step At to
the grid spacing h:

At D
Tmiax{;]wi-eﬂ}gz.% (18)

On all of these examples, we set homogeneous Dirichlet conditions on the external boundaries, so that u and hence the flux
uv are zero there.

The examples to follow have known exact solutions. If €; is the difference between the exact solution and the calculated
solution over control volume V; C 2, we report the L norm of this error, which is ||€|lc = maxjcz |€i|, where Z C ZP is
the set of indices of valid cells of the domain. We also report the rate at which error diminishes with successive refinements
of the grids by a factor of 2. Writing €" for the error with grid spacing h, this rate from 2h to h is logy(|l€2|loo/l1€" lloo)-
In the examples to follow, the coarsest grid spacing we use is such that each domain block is divided into 32 cells in
each dimension, in order to be close to the asymptotic error regime as well as to avoid complications in some geometries
where singularities arise when extending continuation mappings too far beyond the domain block. These examples were
implemented in the Chombo framework [1].

4.1. Circular advection on the squared-disk

The first example is on the squared-disk multiblock coordinate system shown in Fig. 3. The mappings here are adapted
from the cubed-sphere mappings in Diener et al. [11]. (The full 3D cubed-sphere mapping will be used in the example
in Section 4.3.) The outer boundary of the disk has radius r{, and the central square has length 2rg, where we choose
ro =1 and r; = 3. Each block has domain [—1,1]%2. We define the mappings for each block from computational-space
coordinates (a, b) € [—1, 1]% to physical-space coordinates (x, y) as follows. For the outer blocks (all but block 0), we define
the following:

T=%[To(1 —b)+r1(1+b)]; (19)

s= r\/ f=To . (20)
(r1—1)+ (r—ro)(1+a?)

Then the five blocks are:

Block 0, the central square: x =rpa, y =rob.
Block 1, around positive x-axis: X =5, y =as.
Block 2, around positive y-axis: x = —as, y =s.
Block 3, around negative x-axis: x = —s, y = —as.
Block 4, around negative y-axis: x =as, y = —s.

The purpose of this example is to demonstrate that fourth-order convergence is obtained on a 2D mapped multiblock
geometry that is a surrogate of the 3D cubed-sphere geometry.
On this problem domain, the velocity vector for rotation about the origin is defined to be

v(x,y) =2rw(—Yy,X), (21)

where we take w =1, so that one full rotation takes unit time.

For the initial conditions defined in (17), we take the radius p =1 and center the bell at ¢g = (1, 1). These initial
conditions are plotted in Fig. 8.

At time t, the center of the cosine bell will have rotated though an angle of 6(t) = 2w wt and will be located at

__ [ cosO(t) —sind(t)
Cm_(sine(t) cos0(t) )CO' (22)

The exact solution of (15) is then
ux,t)=B,(x —c(0)). (23)

Over the interval t € [0, 1], the center of the advected cosine bell begins at the point ¢o = (1, 1) at the intersection of the
ranges of blocks 0, 1, and 2; it then passes through the ranges of blocks 2, 3, 4, and 1 (being at a corner of the range of
block O at times t =1/4,1/2, and 3/4), before returning to its initial position at time t = 1.
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1.00 Var: scalarerror
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0.90 N
50 0.050 ] 204
0.80 0.040
0.030 -
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Fig. 8. Left: profile of initial solution for circular advection problem of Section 4.1, with each block having 32 x 32 cells. The final solution after one full
counterclockwise rotation should look the same. Right: profile of error in final solution, after 200 time steps of length At =0.005.

Table 1

L* norms of solution error in circular advection problem of Section 4.1, with each block being divided into N x N cells.
N 32 64 128 256 512 1024
Time steps 200 400 800 1600 3200 6400
Error 5.89e—02 3.73e-03 2.36e—04 1.49e—05 9.33e—-07 5.84e—08
Rate 3.98 3.98 3.98 4.00 4.00

For the grid convergence study, we take grid spacings of h = 1/N, where there are N cells along the length of each
block and where N is a power of 2, from N =32 to N = 1024. With the finest resolution of N = 1024, there are roughly
1000 cells across the nonzero portion of the solution. Since the computational-space velocity w corresponding to v in
(21) satisfies max; Zgzl |w; - e?] <10.49, we choose the time step At such that At/h = 0.16, which corresponds to a CFL
number of 1.68.

Results of a grid convergence study are presented in Table 1, which shows the L*° norm of the difference between
calculated and exact solutions for different resolutions. The convergence rate, computed using two successive resolutions,
is shown to achieve fourth order.

4.2. Uniform advection in X-Point geometry

The X-Point geometry multiblock coordinate system of Fig. 3 serves as an idealized stand-in for the most challenging
feature of the tokamak edge plasma geometry. The blocks are numbered 0 through 7. Each block has domain [0, 1]2. For
each point (a, b) € [0, 1]? in computational space, the physical-space point (x, y) in the range of block B is determined by
the transformation

x\ _ Mg (aB+(1—ab)?)
<y>_T(b(3+(1—aa)2)>’ (24)

where « =3 — +/5, and the matrices My are as follows:

10 1 1 0 1
Mo=<1 1), M1 = Mg, M2=<_1 0), M3=<_1 _1>,

M4:—M0, M5:—M1, Ms:—Mz, and M7:—M3.

In this example, we advect the cosine bell with constant velocity directly through the X-Point to demonstrate the ability of
the approach to obtain fourth-order convergence even at this singular point in the grid.
Consider the uniform velocity to be

v(x) =(0.8,0.4)

and initial conditions (16) of the cosine bell of radius p = 0.4 centered at
co=(—04,-0.2),

with B, as defined in (17). Since v is uniform, the exact solution of (15) is

u(x,t) =ug(x — vt),
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Fig. 9. Profiles of advected quantity in uniform-advection example in X-Point geometry at initial time (left), mid-point (center), and final time (right) as
calculated for blocks of length 128.

Table 2

L*° norms of solution error in uniform-advection problem of Section 4.2 in X-Point geometry with each block being divided into N x N cells.
N 32 64 128 256 512 1024
Time steps 45 90 180 360 720 1440
Error 2.53e—02 1.80e—03 1.16e—04 7.23e—06 4.51e—07 2.82e—08
Rate 3.81 3.96 4.00 4.00 4.00

and hence, from (16),
u(x,t) =B, (x —c(t)), (25)

where ¢(t) = cg + vt.

The computed solution profiles at the initial, mid-point, and final times are shown in Fig. 9. Over the interval t € [0, 1],
the center of the advected cosine bell in physical space begins at the point ¢y = (—0.4, —0.2) in the range of block 5. At the
mid-point in time, the bell is at the X-Point (0, 0), and it ends at —cg = (0.4, 0.2) in the range of block 1.

For the grid convergence study, we take a sequence of grid spacings of size h = 1/N, where there are N cells along the
length of each block and where N is a power of 2, from N =32 to N = 1024. With the finest resolution of N = 1024, there
are roughly 600 cells across the nonzero portion of the solution. Since the computational-space velocity w corresponding to
v = (0.8, 0.4) satisfies max; Z?:] |w; - e < 2.34, we choose the time step At such that At/h =32/45, which corresponds
to a CFL number of 1.67.

Results of a grid convergence study are presented in Table 2, which shows the L° norm of the difference between
calculated and exact solutions for different resolutions. The convergence rate, computed using two successive resolutions,
is shown to achieve fourth order.

4.3. Uniform advection in solid cubed-sphere geometry

The final example is on the cubed-sphere multiblock coordinate system shown in Fig. 4, which is based on the mappings
from Diener et al. [11]. The outer boundary of the sphere has radius ri, and the central cube has length 2ry, where we
choose ro =1 and r; = 3. Each block has domain [—1,1]. We define the mappings for each block from computational-
space coordinates (a, b, c) € [—1, 1]® to physical-space coordinates (x, y, z) as follows. For the outer blocks (all but block 6),
we define the following:

r:%hﬂ—o+ma+o} (26)

_ r —To
S_r\/(rl -+ @ —ro)(1+a2+b2)" (27)

Then the seven blocks are

Block 0, around positive x-axis: x=s, y = bs, z=as.
Block 1, around positive y-axis: x = —bs, y =s, z=as.
Block 2, around negative x-axis: x = —s, y = —bs, z=as.
Block 3, around negative y-axis: x=bs, y = —s, z=as.
Block 4, around positive z-axis: x = —as, y =bs, z=s.
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t = t=1

Fig. 10. Cross-sectional profiles of advected quantity in uniform-advection example in 3D cubed-sphere geometry at initial time (left) and final time (right)
as computed with blocks of length N =128.

Table 3
L*° norms of solution error in uniform-advection problem of Section 4.3 in 3D cubed-sphere geometry with each block being divided into N x
N x N cells.
N 32 64 128 256
Time steps 160 320 640 1280
Error 3.58e—01 5.85e—02 3.78e—03 2.41e—04
Rate 2.62 3.95 3.97

e Block 5, around negative z-axis: x =as, y =bs, z= —s.
e Block 6, the central cube: x =rga, y =rob, z=rgc.

The purpose of this example is to demonstrate that fourth-order convergence is obtained on a 3D mapped multiblock
geometry.
Consider a uniform velocity

v(x) =(2.8,2.8,2.8)
and initial conditions (16) of a cosine bell of radius p = 0.4 centered at
co=(—-1.4,-1.4,-14),

with B, as defined in (17). Since v is uniform, as in the example of Section 4.2, the exact solution of (15) is again given
by (25).

The computed solution at the initial (¢t =0) and final (t = 1) times is shown in Fig. 10. Over this time interval, the center
of the advected cosine bell in physical space begins at ¢p = (—1.4, —1.4, —1.4) on the intersection line of the ranges of
blocks 2, 3, and 5. At the mid-point in time, the bell is at (0,0, 0) in the range of the central block 6. Finally, it ends at
—co = (1.4,1.4,1.4) on the intersection line of the ranges of blocks 0, 1, and 4.

For the grid convergence study, we take a sequence of grid spacings of size h = 1/N, where there are N cells along the
length of each block and where N is a power of 2, from N =32 to N = 256. Note that the maximum number of cells per
dimension is one quarter of that used in the previous 2D examples since the problem size grows as N3. With the finest
resolution of N = 256, there are roughly 160 cells across the nonzero portion of the solution. Since the computational-space
velocity w corresponding to v = (2.8, 2.8, 2.8) satisfies max; 23:1 |w; - e4] <8.36, we choose the time step At such that
At/h = 0.2, which corresponds to a CFL number of 1.67.

Results of a grid convergence study are presented in Table 3, which shows the L°° norm of the difference between
calculated and exact solutions for different resolutions. The convergence rate, computed using two successive resolutions,
is clearly trending to fourth order.

5. Conclusions and further research

Many problems of practical interest are defined on domains that require meshes more complex than can be achieved
with a single, mapped rectangular grid. Mapped multiblock techniques allow the generalization of single mapped rectangular
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grids while retaining the efficiency of the regular grid indexing. This work extends the high-order mapped finite-volume
formulation of [10] by providing an accurate algorithm for communicating between blocks while preserving the requirement
of differentiable mappings on a block. Each block maintains its own mapping that extends smoothly off the block into a halo
of ghost cells. These ghost cells are filled through a least-squares interpolation from cells on the interior of neighboring
blocks. A nearest-neighbors algorithm is used to select the cells from which to construct the interpolation. Grid convergence
studies of advection on three different 2D and 3D mapped multiblock domains demonstrate that the expected fourth-order
convergence rate is achieved. In cases of characteristic curves lying along block boundaries, we expect the loss of one order
of accuracy, but we do not find that to occur in our tests.

Whereas the existence of smooth block mappings with smooth extensions through block boundaries is clear in many
cases, such as the disk and sphere examples in Section 4, the specification of suitable mappings in other instances may
require additional effort due to application-specific features and constraints. Our use of the methodology described herein
to solve the edge-plasma problem in the geometry of Fig. 1 (extending the single-block mapped finite-volume discretiza-
tion of [12] and motivating Example 4.2) provides, in fact, an interesting case study demonstrating both the challenge of a
general solution of the mapping generation problem as well as one possible approach. To accommodate strong anisotropy
in the edge-plasma application, the block mappings (for which the analytic mappings (24) serve as simplified proxies in
Example 4.2) are aligned with magnetic field lines except in a vicinity of the X-Point, where field-aligned mappings become
singular but also where field-induced anisotropy is of less concern. Using the magnetic field as input to a strategy similar
to that employed in [7], we obtain block mappings by solving an optimization problem involving a functional that penalizes
large first derivatives (non-smoothness) and deviation from field alignment away from the X-Point. The solution of the re-
sulting discrete Euler equation system in each block is then smoothly interpolated to obtain continuous mappings with the
desired degree of smoothness. For example, sixth-order B-splines can be employed to obtain the four continuous deriva-
tives needed for a fourth-order discretization, or a spectral interpolation may be considered for additional smoothness. The
specific choice of interpolant is based on its suitability for subsequent smooth extensions beyond block boundaries. A more
detailed description of the implementation of this approach for the edge-plasma application is planned for a forthcoming
paper.

Further work in [26] applies the methods of this paper to the surface of a sphere, which is a 2D manifold in a 3D
space, and hence calculations must be consistent with its metric structure. The work in [26] also incorporates adaptive
mesh refinement. We are also extending the fourth-order single mapped grid algorithm for elliptic problems in [10] to the
mapped multiblock case. The extension to a fourth-order method on multiblock grids would require a fifth-order accurate
interpolation method for the ghost cells. While the derivation of such a method using the least-squares approach described
here is routine, it is nontrivial to verify that the resulting discrete operator has no eigenvalues in the right half-plane.

We have not addressed what, if any, extensions are required to handle the extensions to the mapped-multiblock case to
the case of systems of equations with discontinuities. These issues have been addressed for the single mapped-coordinate
case in [14]. We also note that many of the methods for interpolation of ghost cells at refinement boundaries in adaptive
mesh refinement do not use limiting for that process (e.g. [1,14,25]) while still leading to robust simulations of shocks. The
limiters and other dissipation mechanisms used in computing the fluxes from the ghost cell data are sufficient to obtain
robust calculations of discontinuities, and it is likely that the same will be the case for interpolating ghost cells at block
boundaries.
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