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Outline 
Overview of the ESL project and the COGENT code  

Cross-separatrix simulations 
--Ion orbit loss / intrinsic toroidal rotation 

Edge plasma modeling 
  -- Complex geometry / strong gradients, … 

Annular-geometry simulations 
--Verification studies 

Conclusions/Future research 

-- Steep gradients: effects of strong Er 

--Transport solutions / integrated modeling capabilities 
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Edge Simulation Laboratory (ESL) 
COGENT is being developed as part of the ESL collaboration 

Why continuum?  
–  Concerns about PIC noise in the environment where there are large density 

variations and where the full-F approach is required 
–  Exploit advanced numerical methods from the fluids community 
–  Build on successes of continuum core codes (GYRO, GENE) 

 

ESL collaboration: 

–  Physics team: GA, LLNL, UCSD 

–  Math team: LLNL (CASC), LBNL 

                                    COGENT team 

–  ESL is a project to develop gyrokinetic simulation for MFE edge plasmas based 
on continuum (Eulerian) techniques 

   ESL

AToM  CQL 3D
New collaborators welcome! 

COGENT 
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Kinetic modeling of edge plasmas 
Advanced particle-in-cell (PIC) codes 

–  USA: XGC (PPPL) 
–  Internationally: ASCOT (Finland), PARASOL (Japan)  

Developing continuum codes  

COGENT: First (4D) high-order continuum simulations spanning separatrix   
(include the effects of electric fields, Fokker-Plank collisions, …) 

–  USA 
•  ESL pilot code (TEMPEST) 
•  ESL second-generation code (COGENT)  
•  GKEYLL (PPPL) [X-point geometry is not yet included] 
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Continuum gyrokinetic code COGENT 
Currently operates in the long-wavelength (i.e., drift-kinetic) limit  

Advanced numerical  methods  
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4D (axisymmetric) gyrokinetic equation  
for gyroaveraged  fα(R, v||, µ) 

Long wavelength gyro-Poisson equation  

polarization density gyroaveraged density 

Includes the adiabatic option for electrons     
ne=C*exp(eΦ/Te) 

• 4th order finite-volume (conservative) discretization 

• Arbitrarily mapped multiblock grid technology to handle 

- strong anisotropy of plasma transport 
- X-point divertor geometry 
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Tokamak edge is distinguished by complex geometry  

COGENT approach: the use of 
multiblock grid technology 

4-th order convergence has 
been demonstrated 

(McCorquodale, JCP 2015)  

Problem: the metric coefficients 
diverge at the x-point Strong anisotropy of plasma 

transport motivates the use 
of flux-aligned grids 
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Tokamak edge is distinguished by steep plasma gradients  

 [A. W. Leonard, Phys. Plasmas  21, 090501 (2014)]  
 

Radial length scales are comparable 
to particle drift orbit excursions 

Strong deviations from a Maxwellian 
distribution  

•      COGENT: full -F  

Detailed collision operator is required 
•  COGENT: full Fokker-Planck operator*  

Pronounced poloidal variations in 
electrostatic potential 

•     COGENT: 2D gyro-Poisson equation 

*M. Dorf et al., CPP (2014) 
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•  Verification studies 
-  Collisionless relaxation of geodesic acoustic modes (GAMs) 

-  Neoclassical transport 
 

•  Effects of a strong (H-mode) radial electric field 

Annular-geometry simulations 
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Extensive verification studies have been performed 
Neoclassical transport simulations Collisionless damping of GAMs 
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Effects of strong Er: poloidal flow reversal/heat flux mitigation  
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Wave-particle resonance moves 
toward the bulk of ion distribution   

Enhanced GAM relaxation in the presence of strong Er has been 
predicted and observed in COGENT 
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Divertor-geometry simulations 
Model geometry 

10 cm 

 B drift 

Bφ~2 T 

Bθ/Bφ~ 0.1 

•  Ion orbit loss/intrinsic toroidal rotation 

•  Illustrative transport solutions 

•  Integrating modeling capabilities 

 

20M cells 
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Ion orbit loss can provide intrinsic toroidal rotation 

* e.g., Chang et al PoP (2008),  deGrassie et al., NF (2009) 

Schematic 

•  Co-Ip intrinsic toroidal rotation is routinely 
observed in the H-mode pedestal 

•  Important for tokamak performance 

-  Can stabilize the resistive wall mode 

-  It’s shear may regulate turbulence 

•  One of the possible mechanisms* can be 
related to ion orbit loss   

 

COGENT recovers  
loss-cone boundaries 

R-Rsep= 3.2 cm 
T=900 eV  
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Effects of collisions: loss cone repopulation 

•  Magnetic bottles in 
SOL are emptied out 

•  Loss-cones are 
repopulated 

•  Magnetic-bottle effect 
confines particle in SOL 

•  Loss cones are formed 
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Effects of collisions cont’d 

!30$

!25$

!20$

!15$

!10$

!5$

0$

0$ 0.5$ 1$ 1.5$ 2$ 2.5$

V|| (km/s) 

Time (ms) 

No collisions 

FP collisions 

outboard	
  midplane	
  	
  
1.7	
  cm	
  inside	
  LCFS	
  

Collisions provide a mechanism 
for continuous momentum source 

Deviations from a local Maxwellian 
can be pronounced  

V||/VT0  

2µ/T0 (T-1) 
  

outboard	
  midplane	
  	
  
1.7	
  cm	
  inside	
  LCFS	
  

δfi=(fi-FM)/max(FM) 

•  Fully nonlinear FP model may be required  

τtr~qR/Vi,TH ~ 30 μs 

τii ~ 1 ms 



16 

Effects of Er: mitigation of orbit loss and rotation 

Here, consider illustrative parameters to relax grid-resolution requirement: 
T0=1000 eV, Bφ ~ Bθ ~ 0.3 T, mi=2mp, ρi ~ ΛB ~2 cm, collisions – OFF, phase plots – 2.7 cm inside LCFS 
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Illustrative transport solution for DIII-D parameters 
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Advection Anomalous radial transport Collisions 

•  Adopt anomalous transport model •  Assume ambipolar anomalous transport 
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Simulation parameters: 
•  BφR=3.5 Tm 
•  Bθ/Bφ~0.1 
•  mi=2mp  
•  T0=300 eV (initially uniform) 
•  Ad-hoc extrapolation of Er 

into the SOL region 
•  12M cells / 6000 steps 
•  576 cores X 40 h (Edison) 

Radial profiles (outboard midplane) @ 2.6 ms  
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Developing integrated modeling capabilities 

COGENT module 
COGENT 

EFIT 

COGENT grid 

Hypnotoad 
grid generator  

X-point 
handling code 

Initial/Boundary 
conditions 

Anomalous transport (BOUT) 
Neutral model (UEDGE) 

OMFIT framework 

DIII-D Goals:  
•  Model realistic geometries  
•  Improve transport models 

time=1.4 ms 
T0 = 500 eV 
n0 = 3x1019 m-3 

Loss-cone 
calculation for DIII-D 

Velocity space     
outboard mid-plane    
~1.2 cm inside the 

LCFS 
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Conclusions 
•  The continuum gyrokinetic code COGENT is being developed for edge plasma modeling 
 
•  COGENT is distinguished by  

–  4th-order finite-volume discretization 
–  Mapped multiblock grid technology to handle the X-point geometry  

•  Strong plasma gradients are addressed by     
–  Full-F/ 2D gyro-Poisson equation/ nonlinear Fokker-Plank operator 

•  The closed-flux-surface version of the 4D code is extensively verified  
–  Neoclassical transport / GAM-relaxation simulations 
–  Effects of strong Er (characteristic of an H-mode pedestal) are investigated  

•  Cross-separatrix modeling capabilities are being developed  
–  Effects of ion orbit loss and initial transport solutions are discussed 

•  5D COGENT development has begun 


