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OUTLINE
Distinguishing features of edge plasma modeling

Cross-separatrix 4D (axisymmetric) transport 
-- Verification studies

Conclusions

-- Illustrative DIII-D simulations

Cross-separatrix 5D turbulence
-- Locally field-aligned discretization 
-- Verification studies in a toroidal annulus (CBC test, etc) 

Overview of the COGENT code 

-- First ITG simulations in a single-null geometry 
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Tokamak edge plasma simulations can benefit from the 
use of high-order continuum methods

[A. W. Leonard, Phys. Plasmas  21, 090501 (2014)] 

Radial scales are comparable 
to ion drift orbit excursions

F0 strongly deviates from Maxwellian

Motivates the use of continuum methods:

• Free of particle noise (cf. PIC)

• Can take advantage of high-order methods

Requires solving the full-F problem:
• Low-amplitude turbulence (f1) &        

quasi-equilibrium dynamics (F0)

H-mode is distinguished by strong 
edge plasma gradients  

COGENT is the only continuum code for 
cross-separatrix gyrokinetic modeling 
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Continuum gyrokinetic code COGENT has been developed as 
part of the Edge Simulation Laboratory (ESL) collaboration

High-order (4th-order) finite-volume Eulerian gyrokinetic code  

Physics models (LLNL/UCSD) Math algorithms (LLNL/LBNL)
• Multispecies full-F gyrokinetic equations 
• Self-consistent electrostatic potential
• Collisions (including full Fokker-Plank)
• Anomalous transport models (in 4D) 

• High-order mapped-multiblock
technology to handle X-point

• Advanced multigrid solvers
• Advanced time integrators (ImEx) 

COGENT

Tokamak applications 
(AToM, ESL, PSI)

New collaborations welcome!

COGENTLow-Temp Z-pinch 

https://github.com/LLNL/COGENT/
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X-point geometry is handled by using a mapped 
multiblock technology

Problem: the metric coefficients 
diverge at the x-point

COGENT approach: the use of 
a multiblock grid technology

Strong anisotropy of plasma transport 
motivates the use of field-aligned grids

McCorquodale et al., JCP (2015)Colella et al. , JCP (2011);
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X-point high-order discretization has been verified 
with 4D COGENT

COGENT recovers  
loss-cone boundaries
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Parallel velocity (v||)

– Analytic

Collisionless ion losses  Boltzmann Equilibrium

• Uniform n and T Maxwellian is initialized
• Particles are absorbed by divertor plates and 

outer radial boundaries / E-field is turned OFF
• High-order convergence is demonstrated 
• Maximum error is within de-aligned region

Dorf et al, PoP 2016
Dorr et al, JCP 2017
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COGENT E-field models: Gyro-Poisson equation
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Presently, adopt the long-wavelength electrostatic limit

• Gyrokinetic ions and electrons
- Most detailed approach
- Computationally challenging due to stiff electron dynamics 

• Gyrokinetic ions and adiabatic electrons, !! = !",$%& 1 + !'
("
− ! '

("
- Often used in core codes for ITG turbulence, neoclassical transport, etc
- Cannot be straightforwardly extended across the separatrix 

Need a computationally efficient model for ion scale 
turbulence in single-null geometries
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COGENT E-field models: Vorticity model
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Parallel current 

Electron density -- = -(,$% + ∇&
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Hybrid gyrokinetic ion – fluid electron model & ⋅ ( = )

Stiff term (due to the large parallel 
conductivity) – treat implicitly  

Include polarization corrections 
(required for high-k stabilization)

Electron temperature 2- = 6N-O$

Hybrid vorticity model allows for computationally efficient 
cross-separatrix simulations with self-consistent E-fields

Consider a simple isothermal 
electron model

Neglect the pressure 
corrections term
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4D COGENT: qualitative agreement with DIII-D H-
mode co-Ip rotation and Er is observed

• Hybrid vorticity model with isothermal !# = 300 %&
• Full ion-ion Fokker-Planck collisions
• 1 ms ⟷ 64 CPU hours (0.5 h x 128 cores)
• Grid resolution (core: P0 = 22,P1 = 32,P2∥ = 36,P3 = 24)

Near-separatrix DIII-D

U4~20
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9∥~40
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Boedo et al., PoP 2016
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5D COGENT: locally field-aligned multiblock approach

• Toroidal direction is divided into block (wedges)
• Cell volumes are field-aligned (F-A) within each block

To exploit strong anisotropy of microturbulence  

block n+1 block n

The approach is conceptually similar to the FCI approach (Hariri, CPC 2013), 
but maintains flux surfaces (presently, including the X-point region)

)
*

0, [ - fine ⊥ coordinates
M - coarse ∥ coordinate

EDGE (COGENT)

0,M - fine ⊥ coordinates
[ - coarse ∥ coordinate

CORE (GYRO, BOUT)

Efficient for X-point modeling

Efficient for high-n wedge 
modeling
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Interpolation is employed at a block interface

Non-conformal 
block interface

Quadratic, ( Δ$% , 1D interpolation is 
used to compute data in ghost cells

Ghost cell of 
block n

block n
block n+1
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Cyclone Base Case verification
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Full-F toroidal (/, 1, 2) version of the code is used; filtering of toroidal harmonics is applied 

Long-wavelength part of CBC spectrum is recovered 

*$+&

ITG growth rate ITG frequency^_5/96( K_5/96(

CBC
COGENT

- = 5 8 10

ρi/a=1/181, q=1.4, s=0.78, R0/LT=6.9, R0/Ln=2.3, mi=2mp +!, +", +#, +$∥, +& = 24, 8,256,32,24
Simulation parameters

*$+&

Potential ('() )

- = 10

Dorf and Dorr, CPP, 2020

Gyro-Poisson (GP) model with adiabatic electron response is used

Grid resolution
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ITG-driven full-F transport simulation in toroidal annulus 

Spatial resolution studies demonstrate convergence at  ,'~.(

• F-A coordinates,  Δ/)#*+# = 0/2
• GP model with adiabatic electrons* 

• Self-consistent BC is used
no buffer zones required

n=1020 m-3, RBɸ=3.5 Tm. Initialization: local Maxwellian R0/LT0=12, R0/Ln0=2.2, Φ0=0, Te=Ti
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• Linearized model collisions included  
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Field-aligned mapping provides significant computational 
efficiency in full-torus simulations

Convergence in full-torus sims is 
achieved with only 16 toroidal cellsMicroturbulence anisotropy

*4+"~1, *∥~ ⁄1 /0& 1 ≈ / ⋅ !
Toroidal coordinates 

version would require
3T~

3$
4 = 365 7%889

Field-aligned version 
requires only 

3T = 16 7%889

Domain ΔV = 2W, resolution (P*, P), P+∥ , P,) = (48, 256,48,32)

PD = 8
2 blocks
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Vorticity model verification: consistency with gyro-Poisson 
model is confirmed in full-F ITG simulations

Effective electrostatic energy

Initialization: Canonical Maxwellian
• Provides equilibrium for full-F simulations

Gyro-Poisson model Vorticity model

!∥ corresponds to weakly-collisional electrons  ⁄#$]%# &̂ E~10
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F-A code, ΔV = 0.2W ,T0=7 keV, R0/LT0=16, R0/Ln0=5, collisions – OFF, grid res. = (96, 4,512,48,32)

$ = 15 $ = 15
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Vorticity model verification II: resistive-drift mode is 
recovered

Slab test model (B=const) is considered
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Vorticity model: numerical pollution issue 
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Significant numerical pollution can occur if Q ⋅ S∥ ≡ 0 is not discretely enforced on closed field lines 
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Can be important for other codes involving remapping: e.g., BOUT, GBS, GRILLIX, GDB

Magnitude of RS term  

Adopt standard ordering for turbulence 

Consider DIII-D edge (qR0νe/Vte~1)

More strenuous condition than standard (8 ≲ *#

Reynold-Stress
term

Dominant term
determines E||

Determines Er on closed field 
lines, where j ⋅ 5∥ ≡ l

Polarization 
current

⁄Δ1 s( K ≪ 10QF ⁄q_5 x-R
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Deleterious effects of ! ⋅ #∥ ≠ % numerical pollution 
are confirmed in ITG simulations

High-res (-1 = 512) Low-res (-1 = 256) High-res (-1 = 512) Low-res (-1 = 256)

j ⋅ 5∥ fix

{P

Nonlinear stage
Pollution errors can dominate Φ solution 

Linear stage
Pollution errors are insignificant

Consider ITG simulations with N∥ corresponding to moderately-collisional electrons  ⁄4W]I# &̂ E~1

Canonical Maxwellian, T0=7 keV, R0/LT0=16, R0/Ln0=5, collisions – OFF, P*, N-, P+∥,P, = (48,8,32,24)

⁄Φ Z[.

⁄Φ Z[.

⁄Φ Z[.

⁄Φ Z[.

j ⋅ 5∥ fix

{}}
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Proof-of-principle ITG simulation in a single-null geometry

Vorticity model

+!, +", +#, +$∥, +&
52,4,548,32,24
67 = 0.01 ⁄<* =)+

1 step ↔ 4s 
Cori 1344 cores

Model geometry 
_5 = 1.6 ?, q~4, _"D = 3.5 2 ⋅ ?

N∥ ↔ ⁄&̂ E 4W]I#~0.4

Canonical Maxwellian, T0=7 keV  

Boundary conditions (Φ):
• Zero-Dirichlet @ diverter plates
• Zero Neumann @ radial boundaries

Boundary conditions (f):
• Inflow fluxes correspond to the 

initial distribution @ all boundaries 

Resolution

Time step

Performance

Δ?,'-.' = 2@/16F-A version

⁄Φ %!#
Canonical Maxwellian initialization

R

Z

ϕ

Bϕ

B
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ITG-driven full-F transport simulation in a SN geometry

Potential relaxation exhibits GAMs Potential barrier develops 

⁄Φ -..

t = 133

Potential

Temperature relaxation observed

• F-A version,  Δ/)#*+# = 20/8
• Vorticity model, N∥ ↔ ⁄&̂ E 4W]I#~0.4
• Self-consistent BC is used

no buffer zones required

• Collisions are not included 
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-1.6

-1.2

-0.8

-0.4

0

0 20 40 60
time (R0/VTi)

3:;<=>./*?

⁄Φ ,2-

1

1.4

1.8

2.2

2.6

-12 -8 -4 0 4
-1.6

-1.2

-0.8

-0.4

0

-12 -8 -4 0 4

R-Rsep (cm) R-Rsep (cm)

⁄Φ ,2-
2((d,9)

t = 0

t = 133

t = 133

• Local Maxwellian is initialized

• Poloidal resolution, Δ'~+&

,!-!."
∇! "

0"
1"Φ
131!

= 5#
$% ⋅ ∇!



22

Effects of a self-consistent Er on the ITG turbulence

Self-consistent <Φ> is retained: intermittent turbulence behavior

<Φ> is artificially suppressed: stronger steady turbulence  
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⁄Φ − Φ ,2-
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Moving toward implicit kinetic electrons: implicit advection 
capability has been implemented

COGENT employs ImEx time integration capability 
• allows implicit treatment of selected stiff terms
• makes use of the Newton-Krylov methods / requires preconditioning for efficiency 
• here, use hypre’s pAIR AMG solver for a low-order (UW1) passive advection preconditioner 

x20 runtime speed-up is demonstrated

Implicit (dt=25 R0/VTi)Explicit (dt=0.025 R0/VTi )

Passive advection test 

DIII-D

Initially uniform n and T 
plasma absorbed on the 
plates and outer radial 
boundaries 

DIII-D like parameters 

⁄B B* ⁄B B*
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Conclusions

• The first continuum full-F gyrokinetic cross-separatrix simulations of 
– 4D axisymmetric transport 
– 5D ion-scale turbulence 
are performed with the COGENT code

• COGENT is distinguished by 
– High-order finite-volume discretization 
– Mapped multiblock grid technology and locally field-aligned grids

• Present capabilities include
– 2D/3D gyro-Poisson and vorticity models for electrostatic potential
– Various collision models (including nonlinear Fokker-Planck)
– Implicit-Explicit (ImEx) time integration capabilities
– Fluid models for electron and neutral species 

• Future directions: 
– Applications: L-H transition, divertor heat-flux width
– Capabilities: electromagnetics, kinetic electrons, FLRs
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Approximate divertor boundary condition is used

block n block n+1 (!, #) plane

Divertor
plate

Domain 
boundary

BC

Challenges with diverter BCs: divertor plates 
are not aligned with the computational grid  

Present approximation makes use of small parallel 
derivatives in * and Φ.
Example: grounded plates – impose Φ = 0 at the 
simulation domain boundary (shown in red) 

Toroidal angle measures a field-
aligned coordinate 

\ = 7]F9= divertor plates are 
not aligned with the grid


