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Math (ASCR) Physics (FES) Kinetic drift-wave instability (Lee et al., 
Contrib. Plasma Phys.,  58,  445-450 (2018))

High-order drift wave modeling (Dorf et 
al., J. Comput. Phys., 373, 446-545 (2018))

5-D full-f gyrokinetic code COGENT  (Dorf 
et al., Contrib. Plasma Phys. (2020))

ELM heat pulse (Joseph et al., Nucl. 
Mater. Energy, 19, 330-334 (2019))
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[A. W. Leonard, Phys. Plasmas  21, 090501 
(2014)] 

§ Kinetic effects are essential
• Strong deviations from 

Maxwellian distribution
• Large poloidal variations in 

electrostatic potential
• Fully nonlinear collision operator

§ More complicated geometry
• Magnetic separatrix
• Boundaries

§ Collision regimes vary rapidly
• Hot core region – weakly collisional
• Cold outer region – strongly collisional

Dynamics in the edge region are characterized by a large range of scales
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• Tokamak = toroidal magnetic 
confinement fusion device

• Strong non-equilibrium behavior 
requires kinetic modeling

• Strong magnetic field 
• Asymptotic limit… 6D to 5D
• Anisotropy

• Numerical challenges include:
• Complex geometry
• High dimensionality
• Conservation
• Positivity
• Multiple space and time scales

• Advection couples to self-consistent field
• Parallel advection >> perpendicular drifts

• Leads to strong anisotropy
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§ High Dimensionality

§ Conservation

§ Anisotropy

§ Complex Geometry

§ Multiple Scales
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High-order
 Later, w/ sparse grids

Finite Volume

Mapped, field-aligned grids

Multiblock meshing

IMEX time integration

motivates

motivates

motivates

motivates

motivates
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Spatial domain discretized by 
rectangular control volumes

Mapping from abstract Cartesian 
coordinates into physical space

where

second-order accurate 
centered difference of

: replace  p-th  row of      with

Fourth-order flux divergence average from fourth-order cell face averages

Computational coordinates: Mapped coordinates:
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Physical 
domain

Computational 
domain

§ Separatrix partitions edge into three 
regions: 

§ Core, Private flux, Scrape-off

§ Regions mapped to disjoint union of 
uniformly-gridded rectangular blocks

§ Each block decomposed into boxes

§ High-order MMB finite-volume formalism 
requires extended smooth block 
mappings*

§ One coordinate of mapping 
parameterizes flux surfaces

§ Flux-surface alignment abandoned near 
the X-point to avoid singular metrics**

*[McCorquodale. et al. (2015) J. Comput. Phys. 288 181-195]
**[Dorr. Et al. (2018) J. Comput. Phys. 373 605-630]

Flux-aligned De-aligned 
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• Existing technology assumed conformality of mesh faces at block boundaries

• Radially varying shears make this conformality impossible

• Approach has been extended to allow non-conformality in one dimension

• Current implementation is 2nd-order, non-conservative 

• High-order, conservative formulation in progress
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block n+1 block n
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Time scale ω
Electrostatic Alfven waves

Electron parallel streaming & 
collisions

Ion parallel streaming & 
collisions

⁄𝑉!" 𝑞𝑅 , 𝜈"

Drift  ion-scale turbulence 𝑉#/𝐿

Transport (profile evolution) ⁄𝐷$% 𝐿&,	 ⁄𝜈"𝜌"& 𝐿&	

Faster

Slower
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⁄𝑉!' 𝑞𝑅 , 𝜈'

⁄(𝑉!' 𝑞𝑅) 𝐿/𝜌#
General Preconditioning 
Strategies:

§ Exploit physics-based 
closure models

§ Lower-order 
discretizations
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Spatial discretization 
yields semi-discrete 
ODE in time

Spatially-discretized Vlasov and collisions terms

Explicit time integration:
Runge-Kutta methods

Time step constrained by eigenvalues 
(time scales) of entire RHS

Implicit-Explicit (IMEX) time integration:
Additive Runge-Kutta (ARK) methods

Implicit Explicit
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Diagonal implicitness

Stage Solves:

Step Completion:

Stage solves done with Jacobian-Free Newton Krylov

Matrix to be inverted at each 
Newton iteration of the form

✓
I ��t

dRsti↵

df̃

◆

<latexit sha1_base64="07hMAOr5+Pd9pkIEKpy2AEwo3u4="></latexit>
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Expectation: Different physics 
problems feature different terms 
requiring implicitness

Needed: Flexible handling of 
arbitrary # of implicit terms

Developed: Multiphysics 
operator-split preconditioning 
framework

I +�t
X

k

Ak ⇡
Y

k

(I +�tAk)
<latexit sha1_base64="PtN+v/UK+Gvc/pMPO0w94khJ+VA=">AAACI3icbVDLSgMxFM3UV62vUZdugkWoKGVGBcVVRRe6q2Af0Cklk6ZtaDIzJHfEMvRf3PgrblwoxY0L/8W0nYWtHrjh5NxzSe7xI8E1OM6XlVlYXFpeya7m1tY3Nrfs7Z2qDmNFWYWGIlR1n2gmeMAqwEGweqQYkb5gNb9/Pe7XHpnSPAweYBCxpiTdgHc4JWCkln15h4+wd8MEEAzY07Fs9fGVKY9EkQqfsGfOtrkXZozGcdiy807RmQD/JW5K8ihFuWWPvHZIY8kCoIJo3XCdCJoJUcCpYMOcF2sWEdonXdYwNCCS6WYy2XGID4zSxp1QmQoAT9TfEwmRWg+kb5ySQE/P98bif71GDJ2LZsKDKAYW0OlDnVhgCPE4MNzmilEQA0MIVdz8FdMeUYSCiTVnQnDnV/5LqidF97To3p/lS8dpHFm0h/ZRAbnoHJXQLSqjCqLoGb2id/RhvVhv1sj6nFozVjqzi2Zgff8AIbihaw==</latexit>

Independent preconditioning allows physics-
based approaches for individual terms:

Allows better efficiency than a monolithic 

strategy ever could, but still need to design 

individual preconditioners

40x reduction in time-steps

5x reduction in wall-clock time

Implicit agrees with 
explicit reference
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§ Electron dynamics typically faster than ions by factor of
     which motivates
• Implicit treatment of electrons, and/or…
• Reduced models of electron behavior 

§ Usual adiabatic approximation no good for edge physics, so 
made our own reduced model for electrostatic potential:

13

2nd order elliptic operator

Small (but physically 
important) polarization 
correction… makes system 
4th order
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§ “Freeze” coefficients at previous Newton iterate to make 
preconditioning system linear

§ Stage preconditioning solve becomes

14

§ Highly anisotropic 2nd order elliptic operator

§ Solve with hypre AMG solver
§ Well-suited to automatically dealing with anisotropy
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§ In simplified problem, linear growth rate maximized when

15

Due to polarization 
correction

Without correction, unstable modes may have arbitrarily short wavelength

Grid-scale instabilities in code
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§ Preconditioner stage system becomes

§ Want to avoid direct implementation of 4th order term b/c 4th order stencils 
across block boundaries introduce high complexity in multiblock geometry

§ Instead, introduce auxiliary variable:

§ Schur Complement 
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is well-conditioned and already have solver for part we need to invert

§ Solved with hypre MGR
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§ Combination of many 
technologies enables first-
of-kind physics studies

§ First continuum, cross-
separatrix simulation of 
ion-scale tokamak 
turbulence

Many physics effects still to 
be added… opportunities 
for optimization
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§ Another approach to dealing with electron time-scales:
• Step over their fast advection by treating their kinetic equation 

implicitly
• CFL restrictions of fine mesh make implicit advection even more 

attractive

§ Current solver/preconditioning approach: “Freeze” 
nonlinearity in advection coefficients

18

Time-step
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Work performed as part 
of the DOE FES/ASCR 
Plasma Surface 
Interactions 2 SciDAC 
project 
https://collab.cels.anl.gov/
display/PSIscidac2

§ Edge-localized modes (ELMs) are a disruptive instability that can 
damage wall materials if uncontrolled

§ Requires kinetic electrons – vorticity model insufficient – to capture
§ Implicit electron treatment enables time-step closer to ion time-scales
§ No artificial modification of electron mass
§ Still limited by electrostatic Alfvén wave frequency……
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§ Coupling to electric field results in wave with frequency

§ Very fast but physically unimportant

§ Stepping over requires implicit treatment of parallel fields

§ So, need Jacobian of             but

§ Idea: Use fluid model to approximate Jacobian…work in 
progress

20

Fast cyclotron frequency
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Complexity Error

+ +

- -

=

For a pth-order discretization on a mesh with cell 
size h in d dimensions

Efficiency

Combination technique: Assume an error 
relation of the form

with Ci bounded.  Letting

then

L. F. Ricketson and A. J. Cerfon, Plasma Phys. Contr. F. 
59, 2 (2016)

W. Guo and Y. Cheng, SISC (2016)… and others

Sparse grid methods have been investigated 
for high-dimensional kinetic simulations
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• Standard stencils for 
high-order FV schemes 
are incompatible with 
sparse grids

• Developed new 
stencils that satisfy 
the constraints on 
error expansion

• Implementation in 
COGENT ongoing

Speedup already 
visible in 2-D… bigger 
gains expected in 
higher dimensions

Old Stencil New Stencil

Sample solution in 
tokamak geometry
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• Framework for combining 
solutions on multiple grids 
implemented

• Tested on simple problems 
with ”old” stencils
• Linear advection
• Drift wave instability

• Confirm 2nd order 
convergence

• Implementation of new 
stencils for 4th order 
convergence in progress, 
but buggy…
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§ COGENT = High-order mapped multblock code for tokamak 
edge with flexible IMEX time integration framework

§ Multiple stiff physical scales provide unique 
preconditioning challenges… need tailored approaches for 
each

§ Work ongoing, but
• Block-preconditioning of 4th-order vorticity model shows promising 

results
• Implicit advection already aiding physics studies, with additional 

ESAW challenges to be tackled
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