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Kinetic drift-wave instability (Lee et al.,
Contrib. Plasma Phys., 58, 445-450 (2018))
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High-order drift wave modeling (Dorf et
al., J. Comput. Phys., 373, 446-545 (2018))
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5-D full-f gyrokinetic code COGENT (Dorf
et al., Contrib. Plasma Phys. (2020))
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Tokamak edge plasma is challenging to model
numerically

» Kinetic effects are essential

. . Ed
 Strong deviations from region
Maxwellian distribution

« Large poloidal variations in
electrostatic potential

* Fully nonlinear collision operator

= More complicated geometry
« Magnetic separatrix

Magnetic
flux

region

1.01B) - Te(keV)

« Boundaries

Separatrix

= Collision regimes vary rapidly
» Hot core region — weakly collisional Radius (y)

« Cold outer region — strongly collisional [A. W. Leonard, P(Z‘f;‘} s;asmas 21, 090501

Dynamics in the edge region are characterized by a large range of scales
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Tokamaks and Gyrokinetics

Toroidal

* Tokamak = toroidal magnetic PR E—
confinement fusion device ——

* Strong non-equilibrium behavior
requires kinetic modeling

Banana
Trajectory
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e Strong magnetic field s . oL "

* Asymptotic limit... 6D to 5D R=y B +—bxG G=2Ver®+oVRE

* Anisotropy = 1o o B'=B+p,— L "™l ve x b
* Numerical challenges include: m

e Complex geometry

* High dimensionality * Advection couples to self-consistent field
* (Conservation * Parallel advection >> perpendicular drifts
* Positivity * Leads to strong anisotropy

e Multiple space and time scales
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Design decisions motivated by numerical challenges

High Dimensionality

Conservation

Anisotropy

Complex Geometry

Multiple Scales
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motivates

motivates

motivates

motivates

motivates

High-order
Later, w/ sparse grids

Finite Volume
Mapped, field-aligned grids
Multiblock meshing

IMEX time integration



High-order, mapped finite volume discretization

Mapped coordinates:
Mapping from abstract Cartesian
i( coordinates into physical space

Computational coordinates:
Spatial domain discretized by
rectangular control volumes

D
. h  h
%_E[Zd_§yzd+§]

X=X(), X:[0,1]° —=R"

=X(§), X:[0,1]P 5 QcRP

Fourth-order flux divergence average from fourth-order cell face averages

/ Vx Fdx = Z Zi/ (N"F), dA¢=h"" ) ZiF 100 (1)
X(V;)

=t~ d=1
where 9%
T , .

(N )p’q = det (R (E eq>> R, (A, v):replace p-th row of Awith v

D h2 D

Ff:lt Lod = Z<N§>ii%ed<FS>ii%ed+E Z (Gol’d (<N§>ii%ed)>-<(}é’d (<Fs>i:|:%ed>)

s=1 s=1
1,4 _ second-order accurate g 0 _ 1 A
Gy = centered difference of Ve—e a—fd <q>ii%ed W, q(§)dA¢ + O (h )
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We use multiblock grid technology to discretize the
Edge domain =r  Physical Computational

domain

domain

Separatrix partitions edge into three
regions:

Core, Private flux, Scrape-off

Regions mapped to disjoint union of
uniformly-gridded rectangular blocks

Each block decomposed into boxes

High-order MMB finite-volume formalism
requires extended smooth block
mappings*

Flux-aligned De-aligned

One coordinate of mapping
parameterizes flux surfaces ‘

Flux-surface alighment abandoned near
the X-point to avoid singular metrics**

*[McCorquodale. et al. (2015) J. Comput. Phys. 288 181-195]
**[Dorr. Et al. (2018) J. Comput. Phys. 373 605-630]
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Extended COGENT to 5-D, field aligned coordinates in realistic
geometries

block n+1

i
|

* Existing technology assumed conformality of mesh faces at block boundaries
» Radially varying shears make this conformality impossible
* Approach has been extended to allow non-conformality in one dimension

* Current implementation is 2"9-order, non-conservative

High-order, conservative formulation in progress
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Multiple time-scales arising from multiple physical phenomena
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1 Strategies:
Electron parallel streaming & . .
collisions Vre/aR, ve = Exploit physics-based

closure models

= | ower-order
discretizations
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IMEX methods to address multiple scales

Spatial discretization (] f

yields semi-discrete dt
ODE in time

Explicit time integration:
Runge-Kutta methods

N (A i (§)

Time step constrained by eigenvalues
(time scales) of entire RHS
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R (F) MJF@

Spatially-discretized Vlasov and collisions terms

Implicit-Explicit (IMEX) time integration:
Additive Runge-Kutta (ARK) methods

R (f) = Rstiff (f) + Ruonstitt (f)

\ J \
Y Y
Implicit Explicit
anonstiff (f)
AL A a7 e{z:|R(z)| <1}
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Specifically: Additive Runge Kutta (ARK) Methods
Diagonal implicitness
Stage Solves: O = f, + At {i 5 Rnonstiff (f(j)) T ZZ: a5 Rstift (f(j)) }

Step Completion: fu41 = fn + Ati: bi {Rnonstiff (f(j)> + Ristift (f(j))}
1=1

Stage solves done with Jacobian-Free Newton Krylov

(I — At dRSE“)

df

Matrix to be inverted at each
Newton iteration of the form
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Flexible preconditioning framework

Expectation: Different physics
problems feature different terms
requiring implicitness

Needed: Flexible handling of
arbitrary # of implicit terms

Developed: Multiphysics
operator-split preconditioning
framework

IT+AtY Ay~ ][+ AtA)
k k
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Explicit

15 ]

Implicit

10+

eat flux (x107-6)

Implicit agrees with
explicit reference

mal d h
n

40x reduction in time-steps

5x reduction in wall-clock time

T T T T T
50 100 150 200 250

Independent preconditioning allows physics-
based approaches for individual terms:

Allows better efficiency than a monolithic

strategy ever could, but still need to design

individual preconditioners
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Case Study: Electron Vorticity Model

= Electron dynamics typically faster than ions by factor of
vV mi/me = 60 which motivates
« Implicit treatment of electrons, and/or...
« Reduced models of electron behavior

= Usual adiabatic approximation no good for edge physics, so
made our own reduced model for electrostatic potential:

0 1
StV (VI -V [ (Vi) - evie)| =alf] o
w=—-M¢ Ne = N + e 'w Small (but physically

/ \ important) polarization
correction... makes system
4th order

2"d order elliptic operator
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Without Polarization Correction

= “Freeze” coefficients at previous Newton iterate to make
preconditioning system linear

= Stage preconditioning solve becomes
(OzM — AtVHO'V”) O=r
» Highly anisotropic 2" order elliptic operator

» Solve with hypre AMG solver
* Well-suited to automatically dealing with anisotropy

@ Lawrence Livermore National Laboratory
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Physical Importance of Polarization Correction

= In simplified problem, linear growth rate maximized when

k” wczw L,
ki 0.51v, VTe

(1+k7p;) ~1

.

Due to polarization
correction

Without correction, unstable modes may have arbitrarily short wavelength

$

Grid-scale instabilities in code

t Lawrence Livermore National Laboratory
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With Polarization Correction

Preconditioner stage system becomes

aM — At | VoV -I-VH%V”TeM o=r

7

-~

4th-order piece

Want to avoid direct implementation of 4t order term b/c 4t order stencils
across block boundaries introduce high complexity in multiblock geometry

Instead, introduce auxiliary variable:

alM — AtV”O'VH VHBLMV“Te ¢ _
M I wa/um B

Schur Complement

')

is well-conditioned and already have solver for part we need to invert

I—M(aM - AtV 0V)) " V|—V T
12V1) Vig, Vi

Solved with hypre MGR
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Enabling novel physics results

- 0.07

-

= Combination of many o

technologies enables first- ._0_03

of-kind physics studies I
= First continuum, cross-

separatrix simulation of

ion-scale tokamak

turbulence

Many physics effects still to
be added... opportunities
for optimization

Time=202.685
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Advection

= Another approach to dealing with electron time-scales:

 Step over their fast advection by treating their kinetic equation
implicitly

« CFL restrictions of fine mesh make implicit advection even more
attractive

= Current solver/preconditioning approach: “Freeze”
nonlinearity in advection coefficients

[aum (vx R[]+ Vo -9 [f”])} SFrtl =

J

Time-step
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Implicit electron advection in ELM studies

» Edge-localized modes (ELMs) are a disruptive instability that can

damage wall materials if uncontrolled

= Requires kinetic electrons — vorticity model insufficient — to capture

* |mplicit electron treatment enables time-step closer to ion time-scales
* No artificial modification of electron mass

= Still limited by electrostatic Alfvén wave frequency

krho2 = 0.1
t=234

— Explicit (Vlasov CFL = 0.87)
—— Implicit (Vlasov CFL = 5.27)
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Explicit (Vlasov CFL = 0.87)
— Implicit (Vlasov CFL = 15.75,

krho2 =0.4

t=234

Distance

Work performed as part
of the DOE FES/ASCR
Plasma Surface
Interactions 2 SciDAC
project
https://collab.cels.anl.gov/
display/PSlscidac2
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Open Problem - Electrostatic Alfvén Wave (ESAW)

= Coupling to electric field results in wave with frequency

™m; k”
W = Weg
J Me kJ_
Fast cyclotron frequency

Very fast but physically unimportant

= Stepping over requires implicit treatment of parallel fields

So, need Jacobian of ¢[f] « V¢ but

Mo = / Jdvdp = “semi-dense” Jacobian

= |dea: Use fluid model to approximate Jacobian... work in
progress

“L' Lawrence Livermore National Laboratory 20



We began exploring the utility of sparse grids in COGENT

For a pt"-order discretization on a mesh with cell
size h in d dimensions

Kk oc h™9 € < h? Kk oc e /P

Complexity Error Efficiency

Combination technique: Assume an error
relation of the form

f = f=Ci(ha)hh + Ca(hy)h + C3(hy, hy)hLRY

with C;bounded. Letting

fo= D> fii— D fij

t+j=n+l it+j=n

then

ko h~1log(h)|*! € ox hP|log(h)|4?

|:> K OC e_l/p| log(€)|(d_l)(l+]—/p)
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Q

Sparse grid methods have been investigated
for high-dimensional kinetic simulations

L. F. Ricketson and A. J. Cerfon, Plasma Phys. Contr. F.
59, 2 (2016)
W. Guo and Y. Cheng, SISC (2016)... and others
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We developed a new sparse-grid, high-order finite volume

mEthOd Sample solution in
- 2-D Poisson ,_ tokamak geometry
»—x Full grid
« Standard stencils for »— Sparse grid 3t
high-order FV schemes  10° ]
: . . Speedup already 2t
are incompatible with visible in 2-D... bigger
sparse grids 104} gains expected in 1
- Developed new % higher dimensions ol
stencils that satisfy S 05l ol
the constraints on
error expansion o =2
* Implementationin -3}
COGENT ongoing
1075 T0° 5 00.005 101520253035 40
Total DoF
Old Stencil New Stencil
—
e = Cihy + Cahy + C3hZh? e = C1hy + Cah, + Cshih,,
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Sparse Grid implementation in COGENT

* Framework for combining
solutions on multiple grids
implemented

* Tested on simple problems
with ”old” stencils

* Linear advection
 Drift wave instability

« Confirm 2" order
convergence

* Implementation of new
stencils for 4t" order
convergence in progress,
but buggy...

t Lawrence Livermore National Laboratory
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Conclusions

= COGENT = High-order mapped multblock code for tokamak
edge with flexible IMEX time integration framework

= Multiple stiff physical scales provide unique

preconditioning challenges... need tailored approaches for
each

= Work ongoing, but

« Block-preconditioning of 4t"-order vorticity model shows promising
results

 Implicit advection already aiding physics studies, with additional
ESAW challenges to be tackled
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