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1. Introduction3 

The Python FLEXible object TRacKeR (PyFLEXTRKR) algorithm V1.0 can be used as a generic 
feature tracking software, with two specific capabilities to track 1) convective cells using radar data, 
and 2) mesoscale convective systems (MCSs) using infrared brightness temperature (Tb) and 
precipitation data. 

 

2. Running PyFLEXTRKR 

All tracking parameters are set in a config file (config.yml). Each tracking step produces netCDF file(s) 
as output and can be run separately if consistent output netCDF files from previous steps are available. 
This design allows certain time-consuming steps to be run in parallel and only need to be only once. 
For example, once feature identification and consecutive linking in Step 1 and 2 (see Section 2.2) are 
produced during a period, tracking during any sub-periods only requires running Step 3 and subsequent 
steps. 
 

2.1. Running the tracking code 
To run the code, type the following in the command line: 
Activate PyFLEXTRKR virtual environment (see README.md on how to create a virtual 
environment and install PyFLEXTRKR): 

>conda activate flextrkr 
Run PyFLEXTRKR: 

>python run_mcs_tbpf.py config.yml 
 

2.2. Key parameters in the config file 
The flags in Table 1 and Table 2 control each of the steps to be run, and they should be set to True to 
run the desired steps. For more detail explanations of the steps, refer to Section 3 Algorithm and 
workflow and Figure 1 and Figure 2. 
Table 1. Controls for each tracking steps for all feature tracking. 

Parameter Name Explanation 

run_idfeature Step 1: Identify features from input data 

run_tracksingle Step 2: Link features between consecutive pairs of times 
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run_gettracks Step 3: Assign track numbers to linked features during the tracking period. 

run_trackstats Step 4: Calculate track statistics. 

run_mapfeature Step 5: Map tracked feature numbers to native pixel files. 

 
Table 2. Controls for each tracking steps for MCS tracking. 

Parameter Name Explanation 
run_idfeature Step 1: Identify features from input data 

run_tracksingle Step 2: Link features between consecutive pairs of times 

run_gettracks Step 3: Assign track numbers to linked features during the tracking period. 

run_trackstats Step 4: Calculate track statistics. 

run_identifymcs Step 5: Identify MCS based on Tb data. 

run_matchpf Step 6: Calculate PF statistics within tracked MCS. 

run_robustmcs Step 7: Identify robust MCS based on PF characteristics. 

run_mapfeature Step 8: Map tracked MCS numbers to native pixel files. 

run_speed Step 9: Calculate MCS movement statistics. 

 
The key parameters in the config file that need to be changed before running PyFLEXTRKR are listed 
in Table 3. 
Table 3. Key parameters in the config file. 

Parameter Name Explanation 

startdate Start date/time of tracking. E.g., 20200101.0000 

enddate End date/time of tracking. E.g., 20200901.0000 

time_format Time format of the input data file name. E.g., wrf_tb_rainrate_2020-01-
01_00:00:00.nc, time_format should be 'yyyy-mo-dd_hh:mm:ss'. 

databasename String before the time string in the input data file name. E.g., 
wrf_tb_rainrate_2020-01-01_00:00:00.nc, databasename should be 
“wrf_tb_rainrate_” 

clouddata_path Input data file directory. 

root_path Tracking output files root directory. All files generated by the tracking 
will be written in this directory. 

landmask_filename Land mask netCDF file name (optional). If provided, then tracked MCS 
statistics will have a pf_landfrac variable that can be used to distinguish 
MCS over land or ocean. Set this to an empty string “” if no land mask 
file is available. 
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landmask_varname Land mask variable name (optional).  

pixel_radius Spatial resolution of input data [km]. This is an approximated grid size 
and it is assumed to be the same across the entire domain. 

datatimeresolution Temporal resolution of input data [hour]. 

 

2.3. Parallel options (local cluster & distributed) 
Running the code in parallel mode significantly reduces the time it takes to finish, particularly for 
larger datasets and/or longer continuous tracking period. There are two parallel options, controlled by 
setting the run_parallel value, as explained in Table 4. 
Table 4. Parallel processing options. 

Parameter Name Explanation 

run_parallel 0: run in serial. 

1: use Dask LocalCluster (on multi-CPU computers, workstations) 
2: use Dask distributed (on HPC clusters) 

nprocesses Number of processors to use. Only applicable if run_parallel=1. 

timeout Dask distributed timeout limit [second]. Only applicable if run_parallel=2. 

 
Note that running the code in parallel shares the total system memory available among the number of 
processors. For large datasets, this may result in out-ot-memory error if the number of tracks is too 
large. In that case, reducing the number of processors usually helps. Not all steps in PyFLEXTRKR 
have parallel options, but all codes will run regardless of parallel options. See Figure 3 for which steps 
support parallel option. 
Running Dask distributed is an experimental feature and the capability is still being tested. Setting 
run_parallel=2 requires providing a Dask scheduler json file at run time like this: 

>python run_mcs_tbpf.py config.yml scheduler.json 
The scheduler file can be created by: 
srun -N 10 --ntasks-per-node=16 dask-worker \ 

--scheduler-file=$SCRATCH/scheduler.json \ 
--memory-limit='6GB' \ 
--worker-class distributed.Worker \ 
--local-directory=/tmp & 

Or by using dask-mpi: 
srun -u dask-mpi \ 

--scheduler-file=$SCRATCH/scheduler.json \ 
--nthreads=1 \ 
--memory-limit='auto' \ 
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--worker-class distributed.Worker \ 
--local-directory=/tmp & 

Refer to the slurm script (under /slurm directory) to see an example set up on the DOE NERSC system. 
 

2.4. Preparing input data 
In theory, any input data is supported if a reader code is provided. Currently, PyFLEXTRKR supports: 
1) tracking MCSs using Tb data, with optional collocated precipitation data to identify robust MCS 
(Feng et al., 2021), see run script run_mcs_tbpf.py; 2) tracking convective cells using radar data (Feng 
et al., 2022), see run script run_cacti_csapr.py.  
For using these two specific features, the input data must be in netCDF format, with required variables 
in this order [time, y, x]. PyFLEXTRKR only supports data on a 2D grid, irregular grid such as those in 
E3SM or MPAS must first be regridded to a regular grid before tracking. Additional variable names 
and coordinate names are specified in the config file. 
 

Example input data for supported feature tracking: 
GPM Tb+IMERG precipitation data: 
https://portal.nersc.gov/project/m1867/PyFLEXTRKR/sample_data/tb_pcp/gpm_tb_imerg.tar.gz 
C-SAPR radar data: 
https://portal.nersc.gov/project/m1867/PyFLEXTRKR/sample_data/radar/taranis_corcsapr2.tar.gz  
WRF post-processed Tb + precipitation data: 

https://portal.nersc.gov/project/m1867/PyFLEXTRKR/sample_data/tb_pcp/wrf_tbpcp.tar.gz 
 

Example pre-processing code for WRF 
A pre-processing code for WRF data that produces Tb and precipitation for MCS tracking is provided: 

/pyflextrkr/preprocess_wrf_tb_rainrate.py 
The code works with standard WRF output data that contains OLR, RAINNC and RAINC. It converts 
OLR to Tb using a simple empirical relationship and calculates rain rates between consecutive times. 
An example config file for WRF MCS tracking is provide in 
/config/config_wrfda_goamazon_mcs.yml. Other model simulation outputs can be preprocessed 
following the same procedure.  

 
Generic feature tracking input data requirement 

For tracking generic features, a reader code is needed to produce the variables listed in Table 5. 
Table 5. Variables required for generic feature tracking 

Variable Name in 
config file 

Example 
Generic Name 

Explanation 
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feature_varname feature_mask A 2D array with features of interest labeled by unique 
numbers. A simple example is labeling contiguous 
features with values larger than a threshold, using the 
SciPy function: scipy.ndimage.label. 

nfeature_varname nfeatures Number of features in the file. 

featuresize_varname npix_feature A 1D array with the number of pixels (i.e., size) for each 
labeled feature. 

 time Epoch time of the file. 

 

An example of labeling vorticity features is provided in /pyflextrkr/idvorticity_era5.py 
After providing the reader code, add it to the idefeature_driver.py, and specify the feature_type in the 
config file (see example config_era5_vorticity.yml). Here’s an example for vorticity: 
if feature_type == "vorticity": 
    from pyflextrkr.idvorticity_era5 import idvorticity_era5 as id_feature 
 
With this reader code, PyFLEXTRKR will run for any generic feature tracking and produce track 
statistics and labeled tracked numbers on the native grid (see Section 3 Algorithm and workflow and 
Figure 1). The track statistics contains basic statistics such as track_duration, base_time, meanlat, 
meanlon, area, etc. If more feature-specific statistics is desired, they can be added in 
/pyflextrkr/trackstats_func.py. All added track statistics variables in that function will be written in the 
output track statistics files automatically by the /pyflextrkr/trackstats_driver.py. Refer to the examples 
from feature_type == ‘tb_pf’ or ‘radar_cells’ in that function. 
 

2.5. Expected output data 
Expected output files at the completion of generic feature tracking are listed in Table 6. 
Table 6. Expected output files for generic feature tracking. 

Directory File Names Explanation 

stats_path_name 
(Track Statistics) 

tracknumbers_startdate_enddate.nc Track numbers output file from 
Step 3. 

trackstats_sparse_startdate_enddate.nc Track statistics output file from 
Step 4 (default sparse format). 

trackstats_startdate_enddate.nc Track statistics output file from 
Step 4 (optional dense format). 

pixel_path_name 
(Track mask pixel 
files) 

[pixeltracking_filebase]datetime.nc 
 

Individual pixel files containing 
track number masks from Step 5. 
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3. Algorithm and workflow 

The main workflow of PyFLEXTRKR is illustrated in Figure 1. Explanation on the purpose for each 
of the steps are provided below. 
Step 1. Identify features (parallel) 

Identify and label features of interest from individual time frames (Figure 1a).  
Output: tracking_path_name/cloudid_yyyymmdd_hhmm.nc 

 
Step 2. Link features in pairs (parallel) 
Link features between two consecutive time steps by checking their spatial overlap. If two features 
from consecutive timesteps (e.g., Feature #3 in Time 1 and feature #4 in Time 2) have an overlap 
fraction of more than X (othresh in config), they are connected in time and their numbers are recorded 
in pairs ([3]:[4]). If more than one feature at a time overlaps with a single feature at an adjacent time, 
they are all recorded (Figure 1b). 
Output: tracking_path_name/track_yyyymmdd_hhmm.nc 

 
Step 3. Assign track numbers (serial) 
Extend the linked feature pairs between two consecutive time steps from Step 2 to the entire tracking 
period and assign track numbers. For example, these pairs of feature numbers are linked from time 1 
through time 8: [2]:[2] (time 1-2), [2]:[1] (time 2-3), [1]:[1] (time 3-4), [1]:[2] (time 4-5), [2]:[3] (time 
5-6), [3]:[3] (time 6-7), [3]:[4] (time 7-8), these features are assigned Track #1 (red color track in 
Figure 1c). Track numbers are incremented with time as each pair of consecutively linked features are 
processed. To consider situations when two or more features in one timestep are linked to the same 
feature in another timestep, the largest feature that overlaps is labeled as the continuation of the same 
track, and those smaller features are labeled as merging and/or splitting of the main track. For example, 
Track #4 merges with Track #1 at time 4 (light blue color track in Figure 1c), and Track 5 splits from 
Track #2 at time 5 (dark blue color track in Figure 1c). 
Output: stats_path_name/tracknumbers_startdate_enddate.nc 

 
Step 4. Calculate track statistics (parallel) 
Reorganize tracks to a format [tracks, times]. The “tracks” dimension contains the track number, and 
the “times” dimension is the relative time for each track. That is, times=0 is the initiation time for each 
track. Square dense arrays are created to store various statistics for the tracks, if a track duration is 
shorter than the “times” dimension, they are filled with missing values (hatched color showing “No 
Data” in Figure 1d).  
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For features at the same time, the feature identification file created in Step-1 is processed to calculate 
various statistics and put back to the [tracks, times] format (denoted by color arrows and color blocks 
in Figure 1d), such as location, size, etc.  
In parallel processing, each feature identification file is handled by a task, after the statistics are 
collected when all the tasks are completed, a single netCDF file containing the track statistics is 
written. By default, a sparse array format netCDF is written for 2D variables (those that change by 
[tracks, times], e.g., base_time, area, etc.) to reduce memory usage and output file size. Optional dense 
(square) array format can be written by setting trackstats_dense_netcdf=1 in the config file. A function 
is also provided in ft_functions.py (convert_trackstats_sparse2dense) to convert sparse track statistics 
file to dense format. 

Output: stats_path_name/trackstats_ startdate_enddate.nc 
 

Step 5. Map track numbers to native grid (parallel) 
Writes the track numbers back to the labeled feature masks on the native pixel-level files at each time. 
Each labeled feature from Step-1 is written with a unique track number during the tracking period, so 
that they are the same for the same track across different times (e.g., same color patches denote the 
same tracked feature in Figure 1e).  
In parallel processing, the track numbers belonging to the same time are first read from the trackstats 
file from Step-4, then they are sent to a task to match the feature identification file from Step-1, and a 
netCDF file is written by the task.  

Output: pixel_path_name/pixeltracking_filebase_yyyymmdd_hhmm.nc 
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Figure 1. PyFLEXTRKR key workflow illustration. 
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4. MCS tracking algorithm 
Tracking of MCS consists of nine steps (Figure 3), with the first four steps the same as that shown in 
Figure 1. Tracking is performed primarily on infrared brightness temperature (Tb) defined cold cloud 
systems (CCSs, which include cold cloud cores and cold anvils), with additional information provided 
by precipitation data to improve the identification of robust MCSs. 
Since the first 4 steps are the same as tracking any features, the additional steps 5-9 specifically 
designed for MCSs are explained below: 
 

Step 5. Identify MCS using Tb area and duration (serial) 
Identify MCSs based on the CCS area and duration criteria. A track with CCS area > x km2 and persists 
for longer than x hour, and contains a cold core is defined as an MCS (Figure 3f). Tracks that meet 
MCS criteria are kept in the track statistics file. Smaller CCSs that merge with or split from those 
MCSs are also kept. Other tracks that are not associated with MCSs are removed. The CCS thresholds 
are set in the config file. 
*If there is no precipitation data available with the Tb data, this step is considered the final step of the 
MCS identification. Some modification of the code in Step 8 (see below) is needed to map the tracked 
MCS number to the pixel-level files. 
Output: stats_outpath/mcs_tracks_startdate_enddate.nc 
 

Step 6. Calculate PF statistics within tracked MCS (parallel) 
Match the collocated precipitation data within MCS cloud masks (including merges and splits) and 
calculate associated PF statistics, such as PF area, PF major axis length, mean rain rate, rain rate 
skewness, etc., and record to the track statistics file (Figure 3g). Providing an optional land mask input 
file in this step will yield PF land fraction in the output that can be used to separate land vs. ocean 
MCSs. 
In parallel processing, each cloudid file containing precipitation (produced in Step 1) is handled by a 
task, after all the PF statistics are collected after the tasks are completed, a single netCDF file 
containing the original CCS track statistics and the new PF statistics is written. 
Output: stats_path_name/mcs_tracks_pf_startdate_enddate.nc 

 
Step 7. Identify robust MCS using PF characteristics (serial) 
Identify robust MCSs based on the PF statistics and only keep the tracks that are robust MCSs. A track 
with PF major axis length > 100 km, with PF area, PF mean rain rate, PF rain rate skewness, and heavy 
rain ratio larger than lifetime dependent thresholds is defined as a robust MCS (Figure 3h). The PF 
thresholds are set in the config file. 

Output: stats_path_name/mcs_tracks_robust_startdate_enddate.nc 
 

Step 8. Map track MCS numbers to native grid (parallel) 
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Map the robust MCS track numbers back to original pixel-level domain at each time step (Figure 3i). 
The original pixel-level IR and precipitation data are also stored in the output. 

Output: pixel_path_name/startdate_enddate/mcstrack_yyyymmdd_hhmm.nc 

 
Figure 2. PyFLEXTRKR MCS tracking workflow. The first four steps are the same that in Figure 1. 
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Step 9. Calculate MCS movement (parallel) 
Calculate robust MCS movement statistics such as movement speed, direction, and add it to the MCS 
track statistics file. 

Output: stats_path_name/mcs_tracks_final_startdate_enddate.nc 
 

 
The complete MCS tracking flowchart, the function names and their purpose are shown in Figure 3 
below. 

 
Figure 3. PyFLEXTRKR MCS tracking complete flowchart depicting the functions and purposes of each step. 
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