
SNAP: SN (Discrete Ordinates) Application Proxy, Version 1.05

User’s Manual

Joseph Zerr (rzerr@lanl.gov) and Randal Baker (rsb@lanl.gov)
Los Alamos National Laboratory

Computational Physics and Methods, CCS-2
Updated: 19 February 2015

1. Introduction

SNAP is a proxy application to model the performance of a modern discrete ordinates neutral
particle transport application. SNAP may be considered an update to Sweep3D [1], intended for
hybrid computing architectures. It is modeled off the Los Alamos National Laboratory code
PARTISN. PARTISN solves the linear Boltzmann transport equation (TE), a governing equation
for determining the number of neutral particles (e.g., neutrons and gamma rays) in a multi-
dimensional phase space. [2] SNAP itself is not a particle transport application; SNAP
incorporates no actual physics in its available data, nor does it use numerical operators
specifically designed for particle transport. Rather, SNAP mimics the computational workload,
memory requirements, and communication patterns of PARTISN. The equation it solves has
been composed to use the same number of operations, use the same data layout, and load
elements of the arrays in approximately the same order. Although the equation SNAP solves
looks similar to the TE, it has no real world relevance.

The solution to the time-dependent TE is a “flux” function of seven independent variables: three
spatial (3-D spatial mesh), two angular (set of discrete ordinates, directions in which particles
travel), one energy (particle speeds binned into “groups”), and one temporal. PARTISN, and
therefore SNAP, uses domain decomposition over these dimensions to coherently distribute the
data and the tasks associated with solving the equation. The parallelization strategy is expected
to be the most efficient compromise between computing resources and the iterative strategy
necessary to converge the flux.

The iterative strategy is comprised of a set of two nested loops. These nested loops are
performed for each step of a time-dependent calculation, wherein any particular time step
requires information from the preceding one. No parallelization is performed over the temporal
domain. However, for time-dependent calculations two copies of the unknown flux must be
stored, each copy an array of the six remaining dimensions. The outer iterative loop involves
solving for the flux over the energy domain with updated information about coupling among the
energy groups. Typical calculations require tens to hundreds of groups, making the energy
domain suitable for threading with the node’s (or nodes’) provided accelerator. [3] The inner
loop involves sweeping across the entire spatial mesh along each discrete direction of the angular
domain. The spatial mesh may be immensely large. Therefore, SNAP spatially decomposes the
problem across nodes and communicates needed information according to the KBA method. [4]
KBA is a transport-specific application of general parallel wavefront methods. Nested threads,
spawned by energy group threads, are available to use in one of two ways. Per one approach,

nested threads may be used to further parallelize the work to sweep different energy groups
assigned to a main-level thread. This option is still experimental and has only been implemented
to work in the case of using a single MPI process. Alternatively, nested threads are used to
perform “mini KBA” sweeps by concurrently operating on cells lying on the same diagonal of
spatial sub-domains already decomposed across the distributed memory architecture (i.e.,
different MPI ranks). Lastly, although KBA efficiency is improved by pipelining operations
according to the angle, current chipsets operate best with vectorized operations. During a mesh
sweep, SNAP operations are vectorized over angles to take advantage of the modern hardware.

SNAP is written to the Fortran 90/95 standard primarily. The retrieval of command line
arguments, which contain file names, is handled with a standard Fortran 2003 intrinsic
subroutine. Modules are used to provide explicit interfacing among the different procedures.
Distributed memory communications are performed using MPI commands, and threading is
achieved with OpenMP directives.

2. Input

SNAP uses a single Fortran namelist for its input: invar. All variables are optional and default
parameters are provided at compilation. An input check is performed to ensure logical
consistency among the inputs and to ensure the variables are set to permissible values. Table 1
lists the available input parameters, a brief description of the variable, their range of acceptable
values (absent consideration of logical consistency and other rules applied for simplifying SNAP
coding), and the default value. A sample input also is provided.

Table 1. List of available SNAP inputs.

Variable Description Acceptable Values Default
npey number of y-processes # ≥ 1 1
npez number of z-processes # ≥ 1 1
ichunk number of x-planes for single work chunk 1 ≤ # ≤ nx 4
nthreads number of parallel threads per MPI rank # ≥ 1 1
nnested number of nested “mini-KBA” threads # ≥ 0 0
ndimen number of spatial dimensions 1–3 1
nx number of uniformly-sized cells in x-direction # ≥ 4 4
lx length of x-dimension # > 0.0 1.0
ny number of uniformly-sized cells in y-

direction, ny=1 if 1-D
≥ 4 1

ly length of y-dimension, ly=0.0 if 1-D # > 0.0 0.0
nz number of uniformly-sized cells in z-

direction, nz=1 if 1-D or 2-D
≥ 4 1

lz length of z-dimension, lz=0.0 if 1-D or 2-D # > 0.0 0.0
nmom order of the scattering expansion 1 ≤ # ≤ 4 1
nang number of discrete ordinates per octant # ≥ 1 1
ng number of energy groups # ≥ 1 1
epsi convergence criterion 0.0 < # < 1.0E-2 1.0E-04
iitm number of inner iterations per energy group # ≥ 1 5

Variable Description Acceptable Values Default
per outer

oitm number of outer iterations per time step # ≥ 1 100
timedep no/yes time-dependent calculation 0/1 0
tf total simulation time, 0.0 if timedep=0 # ≥ 0.0 0.0
nsteps number of uniformly-sized time steps # ≥ 1 1
mat_opt material layout flag –

homogeneous/center/corner
0/1/2 0

src_opt source layout flag –
everywhere/center/corner/MMS

0/1/2/3 0

scatp no/yes print scattering matrix to file 0/1 0
it_det no/yes print full iteration details 0/1 0
fluxp print flux moments to file flag – no/scalar/all 0/1/2 0
fixup no/yes perform negative flux fixup 0/1 0
soloutp no/yes print single k-plane solution to output

file
0/1 0

kplane print specified k-plane to print with soloutp
– 0 = default mid-plane, 1–nz = specified
plane

0/1+ 0

popout no/final cycle only/all cycles print population
data to output file

0/1/2 0

swp_typ standard order/mini-KBA sweep per spatial
work chunk

0/1 0

2.1 Sample SNAP Input

! Input from namelist
&invar
 npey=2
 npez=2
 ichunk=4
 nthreads=2
 nnested=1
 ndimen=3
 nx=12
 lx=0.6
 ny=12
 ly=0.6
 nz=12
 lz=0.6
 nmom=1
 nang=20
 ng=20
 epsi=1.0E-4
 iitm=5
 oitm=30
 timedep=1
 tf=1.0
 nsteps=10
 mat_opt=0

 src_opt=0
 scatp=1
 it_det=1
 fluxp=2
 fixup=1
 soloutp=1
 kplane=2
 popout=1
 swp_typ=0
/

SNAP will process the given input through a series of checks that enforce logical consistency
and other pre-determined rules. Some input errors may trigger program termination, while others
will simply give a warning and reset the offending value. In either case, the SNAP output will
inform the user of problems encountered during the input check.

2.2 Command Line Instruction for Running SNAP

For a standard implementation of MPI, SNAP can be run with the mpirun command in the
following way:

mpirun [–cpus-per-proc nthreads] –np npey×npez path_to/executable infile outfile

For example, assuming the executable snap is placed in the working directory (with the input file
inp), the above instruction would be specifically translated to run the code and produce the
output file, out:

mpirun –cpus-per-proc 2 –np 4 ./snap inp out

3. Code Structure

SNAP has been developed with Fortran 90/95 modular programming techniques. Starting with
the main subroutine, SNAP establishes the MPI environment. It then calls for input, setup,
solution, and output in that order.

SNAP is comprised of Fortran modules, each containing data and/or subroutines built for
specific tasks. The following is a list of the modules and standalone subroutines in logical order
to their first use. Each module is briefly described by the data contained and the functionality of
the subroutines also contained. A complete flowchart for SNAP is provided in Section 10.

• snap_main: main program; no data; controls overall flow of the program, including
input, setup, solution, output

• global_module: global data and variable kind type declarations/definitions
• utils_module: input/output file control, error handling, program termination

• plib_module: parallel environment control data; wrapper containing subroutines for
point-to-point and collective communications, MPI initialization/finalization, and
communicator setup

• version_module: version data; subroutine for printing version information
• time_module: program execution timing data; subroutine for printing timing

information
• input_module: subroutines for reading input, echoing input, checking input for

logical consistency and preselected input bounds
• geom_module: spatial geometry data; runtime array allocation/deallocation; solution

data setup
• sn_module: discrete ordinates, angular data; runtime array allocation/deallocation
• data_module: miscellaneous problem data; runtime array allocation/deallocation
• control_module: problem execution/iteration control data; runtime array

allocation/deallocation
• setup_module: setup runtime data after allocation; establish material map, source

distribution
• mms_module: method of manufactured solutions data; compute manufactured source;

compare computed/manufactured solutions
• translv (subroutine): control the iterative solution process; call for solution array

allocation, data setup; control outermost loop (temporal) of solution method
• solvar_module: runtime solution array data; allocation/deallocation of arrays
• expxs_module: expand data packed by material to a larger array sized by the spatial

grid
• outer_module: control outer iterative loop; compute iteration-dependent sources; call

for inner iterative loop; convergence checking
• inner_module: control inner iterative loop; compute iteration-dependent sources; call

for spatial mesh sweep; convergence checking
• sweep_module: control spatial mesh sweep
• thrd_comm_module: establish task lists for threaded operations; handle MPI

communications from spatial mesh sweep
• octsweep_module: call for appropriate sweep kernel depending on spatial

dimensionality and time-dependence flag
• dim1_sweep_module: transport-like kernel for 1-D slab problems
• dim3_sweep_module: transport-like kernel for 2-D and 3-D Cartesian problems
• mkba_sweep_module: transport-like kernel for 2-D and 3-D Cartesian problems

using mini-KBA sweeps over the spatial work chunks
• output_module: print information to output file and optional flux file; call for

verification of computed source if manufactured solution option has been selected
• dealloc_module: call deallocation routines contained in other modules
• analyze_module: contains subroutines for additional data analysis/editing

4. Modules with Data of Non-Local Scope

The following modules are a list of those that contain data that takes on non-local scope. For
each item, a brief description of their variable contents is also listed.

• global_module: numeric kinds, file names and unit numbers, oft-used floating
numbers

• version_module: version information, including number and date
• plib_module: parallel processing control variables
• geom_module: geometry input and solution variables
• sn_module: discrete ordinates input and solution variables
• data_module: pseudo cross section/nuclear data/group data input and solution

variables
• control_module: time-dependence and convergence criterion input and solution

variables
• solvar_module: variables necessary for solution, including flux and group source

arrays
• time_module: variables for execution time measurements
• mms_module: variables storing the reference manufactured solution flux moments

5. Numerical Equation Solved

SNAP solves a numerical equation that mimics the TE. Specifically, SNAP begins with the
analytic equation of the following 1-D form,

1
𝑣𝑣𝑔𝑔

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑓𝑓𝑛𝑛,𝑔𝑔(𝑟𝑟, 𝑡𝑡) + Ω�𝑛𝑛 ∙ ∇��⃗ 𝑓𝑓𝑛𝑛,𝑔𝑔 + 𝜎𝜎𝑡𝑡,𝑔𝑔(𝑟𝑟)𝑓𝑓𝑛𝑛,𝑔𝑔

= 𝑞𝑞𝑛𝑛,𝑔𝑔(𝑟𝑟, 𝑡𝑡)

+ � �𝜎𝜎𝑠𝑠,1,𝑔𝑔′→𝑔𝑔(𝑟𝑟) � 𝑤𝑤𝑛𝑛′𝑓𝑓𝑛𝑛′,𝑔𝑔′
𝑁𝑁

𝑛𝑛′=1

+ � 𝑃𝑃�𝑙𝑙�Ω�𝑛𝑛�𝜎𝜎𝑠𝑠,𝑙𝑙,𝑔𝑔′→𝑔𝑔(𝑟𝑟) � 𝑤𝑤𝑛𝑛′𝑃𝑃�𝑙𝑙�Ω�𝑛𝑛′�𝑓𝑓𝑛𝑛′,𝑔𝑔′
𝑁𝑁

𝑛𝑛′=1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑙𝑙=2

�
𝑛𝑛𝑛𝑛

𝑔𝑔′=1

.

(1)

In Eq. (1), 𝑛𝑛 is an angular index—i.e., Eq. (1) is solved for discrete directions that sum according
to preset quadrature rules. A problem is solved along 𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, where 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 2, 4, 8
for 1-D, 2-D, 3-D problems, respectively. 𝑔𝑔 is an energy group index, 1 ≤ 𝑔𝑔 ≤ 𝑛𝑛𝑛𝑛, where the
energy group is a range of energies over which particle populations are summed. 𝑟𝑟 is the spatial
location, and 𝑡𝑡 refers to the time for a time-dependent problem.

Other variables in Eq. 1 are defined as follows:

• 𝑓𝑓𝑛𝑛,𝑔𝑔(𝑟𝑟, 𝑡𝑡): pseudo-flux, unknown SNAP solves
• Ω�𝑛𝑛 = 𝜇𝜇𝑛𝑛𝚤𝚤̂ + 𝜂𝜂𝑛𝑛𝚥𝚥̂ + 𝜉𝜉𝑛𝑛𝑘𝑘�: unit vector discrete direction, sum of directional cosines
• 𝑣𝑣𝑔𝑔: group 𝑔𝑔 speed
• 𝜎𝜎𝑡𝑡,𝑔𝑔(𝑟𝑟): total particle-medium interaction probability

• 𝜎𝜎𝑠𝑠,𝑙𝑙,𝑔𝑔′→𝑔𝑔(𝑟𝑟): particle-medium scattering probability for moment 𝑙𝑙, from 𝑔𝑔′ to 𝑔𝑔
• 𝑞𝑞𝑛𝑛,𝑔𝑔(𝑟𝑟, 𝑡𝑡): inhomogeneous source
• 𝑤𝑤𝑛𝑛: discrete directions’ weights in the angular quadrature
• 𝑃𝑃�𝑙𝑙: scattering expansion basis function

Note that the weights and the angles are defined by the quadrature, which is hardcoded in SNAP,
depending on the number of angles per octant, selected by the user via nang.

The 1-D expansion function is

𝑃𝑃�𝑙𝑙�Ω�𝑛𝑛� = �
1, 𝑙𝑙 = 1

(𝜇𝜇𝑛𝑛)2𝑙𝑙−3, 𝑙𝑙 > 1. (2)

The 𝑙𝑙 = 1 case is the special case of no directional dependence, i.e., “isotropic,” and therefore
has an expansion function of unity.

To correctly simulate the number of operations, the multi-dimensional cases require
modifications to the scattering expansion function. For the 2-D case, the scattering term—second
right hand side (RHS) term of Eq. (1)—is rewritten as

� �𝜎𝜎𝑠𝑠,1,𝑔𝑔′→𝑔𝑔(𝑟𝑟) � 𝑤𝑤𝑛𝑛′𝑓𝑓𝑛𝑛′,𝑔𝑔′
𝑁𝑁

𝑛𝑛′=1

+ � � 𝑃𝑃�𝑙𝑙𝑙𝑙�Ω�𝑛𝑛�𝜎𝜎𝑠𝑠,𝑙𝑙,𝑔𝑔′→𝑔𝑔(𝑟𝑟) � 𝑤𝑤𝑛𝑛′𝑃𝑃�𝑙𝑙𝑙𝑙�Ω�𝑛𝑛′�𝑓𝑓𝑛𝑛′,𝑔𝑔′
𝑁𝑁

𝑛𝑛′=1

𝑙𝑙

𝑚𝑚=1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑙𝑙=2

�
𝑛𝑛𝑛𝑛

𝑔𝑔′=1

. (3)

Note that the scattering expansion basis function now has two indices and two sums are required.
This is to account for the added dimensionality of the problem. However, the scattering cross
section 𝜎𝜎𝑠𝑠 still varies with 𝑙𝑙 only. The 2-D expansion function is

𝑃𝑃�𝑙𝑙𝑙𝑙�Ω�𝑛𝑛� = �
1, 𝑙𝑙 = 1,𝑚𝑚 = 1

(𝜇𝜇𝑛𝑛)2𝑙𝑙−3(𝜂𝜂𝑛𝑛)𝑚𝑚−1, 𝑙𝑙 > 1, 1 ≤ 𝑚𝑚 ≤ 𝑙𝑙. (4)

Lastly, for 3-D calculations, Eq. (3) is modified in the number of values for 𝑚𝑚:

� �𝜎𝜎𝑠𝑠,1,𝑔𝑔′→𝑔𝑔(𝑟𝑟) � 𝑤𝑤𝑛𝑛′𝑓𝑓𝑛𝑛′,𝑔𝑔′
𝑁𝑁

𝑛𝑛′=1

+ � � 𝑃𝑃�𝑙𝑙𝑙𝑙�Ω�𝑛𝑛�𝜎𝜎𝑠𝑠,𝑙𝑙,𝑔𝑔′→𝑔𝑔(𝑟𝑟) � 𝑤𝑤𝑛𝑛′𝑃𝑃�𝑙𝑙𝑙𝑙�Ω�𝑛𝑛′�𝑓𝑓𝑛𝑛′,𝑔𝑔′
𝑁𝑁

𝑛𝑛′=1

2𝑙𝑙−1

𝑚𝑚=1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑙𝑙=2

�
𝑛𝑛𝑛𝑛

𝑔𝑔′=1

. (5)

Finally, the 3-D expansion function is similar to that of Eq. (4), but includes the z-direction
cosine and is valid for the larger 𝑚𝑚-range:

𝑃𝑃�𝑙𝑙𝑙𝑙�Ω�𝑛𝑛� = �
1, 𝑙𝑙 = 1,𝑚𝑚 = 1

(𝜇𝜇𝑛𝑛)2𝑙𝑙−3(𝜂𝜂𝑛𝑛𝜉𝜉𝑛𝑛)𝑚𝑚−1, 𝑙𝑙 > 1, 1 ≤ 𝑚𝑚 ≤ 2𝑙𝑙 − 1. (6)

The remainder of SNAP’s documentation will rely on the 3-D case.

The expansion function is used to determine angular moments of the function 𝑓𝑓𝑚𝑚,𝑔𝑔,

𝐹𝐹𝑔𝑔,𝑙𝑙,𝑚𝑚 = �𝑤𝑤𝑛𝑛𝑃𝑃�𝑙𝑙𝑙𝑙�Ω�𝑛𝑛�
𝑁𝑁

𝑛𝑛=1

𝑓𝑓𝑛𝑛,𝑔𝑔. (7)

In multi-dimensional systems, the 𝑙𝑙 = 1,𝑚𝑚 = 1 case is isotropic. All other cases are considered
anisotropic—the angular moment has some dependence on the direction of particle travel.

The analytic expression of Eq. (1) and its multi-dimensional analogs undergo numerical
treatment. Namely, the time-derivative is approximated with Crank-Nicholson differencing, and
the spatial relationship is treated by spatially integrating Eq. (1) (or the analogs) and then
applying a closure relation. Eq. (1) is modified for the 3-D (x-y-z) case by substituting Eqs. (5)
and (6) into the second RHS term (i.e., the scattering source). The numerical equation then
solved by SNAP is given by

1
𝑣𝑣𝑔𝑔∆𝑡𝑡ℎ

�𝑓𝑓𝑛𝑛,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑔𝑔
ℎ+1 2⁄ − 𝑓𝑓𝑛𝑛,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑔𝑔

ℎ−1 2⁄ � +
𝜇𝜇𝑛𝑛
∆𝑥𝑥𝑖𝑖

�𝑓𝑓𝑛𝑛,𝑖𝑖+1 2⁄ ,𝑗𝑗,𝑘𝑘,𝑔𝑔
ℎ − 𝑓𝑓𝑛𝑛,𝑖𝑖−1 2⁄ ,𝑗𝑗,𝑘𝑘,𝑔𝑔

ℎ � +
𝜂𝜂𝑛𝑛
∆𝑦𝑦𝑗𝑗

�𝑓𝑓𝑛𝑛,𝑖𝑖,𝑗𝑗+1 2⁄ ,𝑘𝑘,𝑔𝑔
ℎ − 𝑓𝑓𝑛𝑛,𝑖𝑖,𝑗𝑗−1 2⁄ ,𝑘𝑘,𝑔𝑔

ℎ �

+
𝜉𝜉𝑛𝑛
∆𝑧𝑧𝑘𝑘

�𝑓𝑓𝑛𝑛,𝑖𝑖,𝑗𝑗,𝑘𝑘+1 2⁄ ,𝑔𝑔
ℎ − 𝑓𝑓𝑛𝑛,𝑖𝑖,𝑗𝑗,𝑘𝑘−1 2⁄ ,𝑔𝑔

ℎ � + 𝜎𝜎𝑡𝑡,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑔𝑔𝑓𝑓𝑛𝑛,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑔𝑔
ℎ

= 𝑞𝑞𝑛𝑛,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑔𝑔
ℎ

+ � �𝜎𝜎𝑠𝑠,1,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑔𝑔′→𝑔𝑔 � 𝑤𝑤𝑛𝑛′𝑓𝑓𝑛𝑛′,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑔𝑔′
ℎ

𝑁𝑁

𝑛𝑛′=1

𝑛𝑛𝑛𝑛

𝑔𝑔′=1

+ � � (𝜇𝜇𝑛𝑛)2𝑙𝑙−1(𝜂𝜂𝑛𝑛𝜉𝜉𝑛𝑛)𝑚𝑚−1𝜎𝜎𝑠𝑠,𝑙𝑙,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑔𝑔′→𝑔𝑔 � 𝑤𝑤𝑛𝑛′(𝜇𝜇𝑛𝑛′)2𝑙𝑙−1(𝜂𝜂𝑛𝑛′𝜉𝜉𝑛𝑛′)𝑚𝑚−1𝑓𝑓𝑛𝑛′,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑔𝑔′
ℎ

𝑁𝑁

𝑛𝑛′=1

2𝑙𝑙−1

𝑚𝑚=1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑙𝑙=2

�,

(8)

with the closure relations,

2𝑓𝑓𝑛𝑛,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑔𝑔
ℎ = �𝑓𝑓𝑛𝑛,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑔𝑔

ℎ+1 2⁄ + 𝑓𝑓𝑛𝑛,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑔𝑔
ℎ−1 2⁄ � = �𝑓𝑓𝑛𝑛,𝑖𝑖+1 2⁄ ,𝑗𝑗,𝑘𝑘,𝑔𝑔

ℎ + 𝑓𝑓𝑛𝑛,𝑖𝑖−1 2⁄ ,𝑗𝑗,𝑘𝑘,𝑔𝑔
ℎ �

= �𝑓𝑓𝑛𝑛,𝑖𝑖,𝑗𝑗+1 2⁄ ,𝑘𝑘,𝑔𝑔
ℎ + 𝑓𝑓𝑛𝑛,𝑖𝑖,𝑗𝑗−1 2⁄ ,𝑘𝑘,𝑔𝑔

ℎ � = �𝑓𝑓𝑛𝑛,𝑖𝑖,𝑗𝑗+1 2⁄ ,𝑘𝑘,𝑔𝑔
ℎ + 𝑓𝑓𝑛𝑛,𝑖𝑖,𝑗𝑗−1 2⁄ ,𝑘𝑘,𝑔𝑔

ℎ �.
(9)

Equation (9) closes Eq. (8) by assuming the flux shape in a space-time cell is linear between any
opposing edges. Eq. (9) is substituted into Eq. (8) and solved for each discrete direction via
iterative mesh sweeps previously mentioned in Section 1.

5.1 Negative Flux Fixup

SNAP spatial and temporal discretizations can be shown to be second-order accurate. A
consequence of these discretizations is the possibility that outgoing edge fluxes are computed to
be negative values according to Eq. (9). Negative flux values are unphysical and often avoided to
maintain solution accuracy.

SNAP is equipped with a costly, non-linear fixup routine that is applied at each spatial cell (for a
given time step and group) across all angles of the octant being swept. The fixup algorithm
involves checking for a negative edge flux first. If one exists, the outgoing edge flux is set to

zero. Then Eq. (8) is resolved with the known (zero) value and without the appropriate closure
relation according to Eq. (9). The fixup algorithm is multi-pass; after the center flux value is
recomputed any non-fixed-up outgoing edges are again checked for negativities. This loop
continues until no more fixup operations are necessary for each angle being swept.

6. Hardwired Data Descriptions

Within the setup_module of SNAP, several subroutines are called to assign values to the
factors in Eq. (8). The user has flexibility in setting some problem parameters, as described in
Section 2. With that input, SNAP has been programmed with preset rules to assign data values.
These rules are not derived from any physical properties; rather they are simple constructs that
provide SNAP with proper array sizes to mimic PARTISN operations.

Note that Eq. (8) is independent of units. SNAP data is unitless, and the values presented below
are done so absent any relation to physical measures.

6.1 Phase-space cell sizes

The phase space of the analytic domain is discretized to yield the numerical equation given by
Eq. (8). In Eq. (8), as many as four phase-space cell sizes are required, three spatial cell sizes and
one time step size: Δ𝑥𝑥𝑖𝑖, Δ𝑦𝑦𝑗𝑗, Δ𝑧𝑧𝑘𝑘, Δ𝑡𝑡ℎ. In SNAP, the mesh spacing is uniform for all dimensions.
These factors are computed with the input variables lx, nx, ly, ny, lz, nz, tf, nsteps. For
example,

Δ𝑥𝑥𝑖𝑖 = Δ𝑥𝑥 ≡ 𝑙𝑙𝑙𝑙 𝑛𝑛𝑛𝑛⁄ . (10)

Δ𝑦𝑦 and Δ𝑧𝑧 are analogously defined. Moreover,

Δ𝑡𝑡ℎ = Δ𝑡𝑡 ≡ 𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛⁄ . (11)

6.2 Group speeds

The group speeds 𝑣𝑣𝑔𝑔 are stored in an array of ng elements. The values are set according to the
value of ng, simply using reverse ordering of the group indices as the speed. For group 𝑔𝑔,

𝑣𝑣𝑔𝑔 = 𝑛𝑛𝑛𝑛 − 𝑔𝑔 + 1. (12)

For a simple one-group problem, 𝑣𝑣1 = 1. For a ten-group problem 𝑣𝑣1 = 10, 𝑣𝑣2 = 9, and so on,
up to 𝑣𝑣10 = 1.

6.3 Angular quadrature

The angular quadrature is defined as a set of discrete ordinates (or “angles”) and corresponding
weights. The information is used to determine streaming terms, scattering sources, and leakages.
With the user inputs nang and ndimen, SNAP creates an angular quadrature. nang informs

SNAP how many ordinates are to be used per “octant.” The number of “octants” is determined
by the spatial dimensionality of a problem: 2 (left-right half-slabs) for ndimen=1 (1-D), 4
(quadrants) for ndimen=2, 8 (actual octants) for ndimen=3 (3-D). The quadrature is set only
for the all positive, principal “octant,” and angles for all other “octants” are known by enforced
full symmetry of the set.

The discrete ordinates are unit vectors. Each ordinate is given by three directional cosines, 𝜇𝜇𝑛𝑛,
𝜂𝜂𝑛𝑛, 𝜉𝜉𝑛𝑛:

Ω�𝑛𝑛 = 𝜇𝜇𝑛𝑛𝚤𝚤̂+ 𝜂𝜂𝑛𝑛𝚥𝚥̂ + 𝜉𝜉𝑛𝑛𝑘𝑘� . (13)

As the name implies, a directional cosine is the cosine of the geometric angle between the
ordinate and the positive axis of any of the spatial dimensions. Because the discrete ordinate is a
unit vector, the directional cosines must satisfy

𝜇𝜇𝑛𝑛2 + 𝜂𝜂𝑛𝑛2 + 𝜉𝜉𝑛𝑛2 = 1. (14)

These directional cosines are stored as the required angular quadrature information. Each
directional cosine is stored in an array of size nang. To create the angular quadrature, SNAP
first determines some angular spacing between the 𝜇𝜇𝑛𝑛 values. Using nang, SNAP sets

Δ𝑛𝑛 ≡ 1 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛⁄ . (15)

With this, SNAP can compute the 𝜇𝜇𝑛𝑛 values according to

𝜇𝜇𝑛𝑛 =
1
2
Δ𝑛𝑛 + (𝑛𝑛 − 1)∆𝑛𝑛, 1 ≤ 𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. (16)

The y directional cosines are similarly spaced, but in reverse order,

𝜂𝜂𝑛𝑛 = 1 −
1
2
Δ𝑛𝑛 − (𝑛𝑛 − 1)∆𝑛𝑛, 1 ≤ 𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. (17)

Lastly, the z directional cosines are used by applying Eq. (14). Explicitly,

𝜉𝜉𝑛𝑛 = �1 − 𝜇𝜇𝑛𝑛2 − 𝜂𝜂𝑛𝑛2 . (18)

This algorithm for setting 𝜇𝜇 and 𝜂𝜂 values can be easily shown to produce only real (i.e., non-
complex) corresponding 𝜉𝜉 values.

To complete the quadrature set, SNAP creates an array of angular weights, length nang.
Although the weights could vary, for simplicity SNAP sets each weight as

𝑤𝑤𝑛𝑛 = 𝑤𝑤 ≡
1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
, (19)

Where again 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is determined by the level of spatial dimensionality: 2, 4, or 8 for 1-D, 2-D, or
3-D, respectively.

6.4 Material Layout

The material layout in SNAP is determined by the input variable mat_opt. Setting
mat_opt=0 instructs SNAP to use a single material (Material 1) everywhere (i.e.,
homogeneous problem). When mat_opt=1, SNAP creates two materials and places Material 2
in the middle of the problem. For every spatial dimension, SNAP determines the range of cells
that will be assigned Material 2. Mathematically, this range is a closed set,

��
𝑛𝑛
4�

+ 1, �
3𝑛𝑛
4 ��, (20)

where 𝑛𝑛 is the number of cells in the x, y, or z direction, and ⌊𝑥𝑥⌋ is the floor function, which is
equivalent to integer division.

When mat_opt=2, a similar procedure is applied, by now the slab, square, cube region of
Material 2 is positioned in the left half, bottom-left corner, or front-bottom-left corner of the 1-D,
2-D, 3-D domain, respectively. That is, the range analogous to Eq. (20) for mat_opt=2 is

�1, �
𝑛𝑛
2��

. (21)

SNAP output will inform the user of the range of cells that are assigned Material 2. All other
cells are Material 1.

6.5 Material Data

The material data needed by Eq. (8)—𝜎𝜎𝑡𝑡,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑔𝑔 and 𝜎𝜎𝑠𝑠,𝑙𝑙,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑔𝑔′→𝑔𝑔—is set by SNAP with some
flexibility by the user. The previous section discussed how the user can choose to use one or two
materials and set their layout on the 𝐼𝐼 × 𝐽𝐽 × 𝐾𝐾 (𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛) grid. Moreover, the values stored
by the 𝜎𝜎 arrays will vary with the user inputs ng and nmom. Otherwise, SNAP controls the
setting of material data.

First, the Material 1 total interaction probabilities for each group are set,

𝜎𝜎𝑡𝑡,1,𝑔𝑔 = 1 + (𝑔𝑔 − 1)0.01, 1 ≤ 𝑔𝑔 ≤ 𝑛𝑛𝑛𝑛. (22)

The spatial index has been suppressed for brevity, and a material index has been added. The set
of cells whose 𝜎𝜎𝑡𝑡,1,𝑔𝑔 are defined by Eq. (22) is determined by the rules documented in Section
5.4. The data is stored by SNAP in an array sized number of materials times 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑧𝑧. If
Material 2 is present, the total interaction array is set as

𝜎𝜎𝑡𝑡,2,𝑔𝑔 = 2 + (𝑔𝑔 − 1)0.01, 1 ≤ 𝑔𝑔 ≤ 𝑛𝑛𝑛𝑛. (23)

The total interaction probability is divided into two components, an absorption/loss probability
and a scattering probability. The two components must sum to the total:

𝜎𝜎𝑡𝑡 = 𝜎𝜎𝑎𝑎 + 𝜎𝜎𝑠𝑠,𝑙𝑙=1. (24)

SNAP automatically chooses how total interaction is divided between these components. For
Material 1,

𝜎𝜎𝑎𝑎,1,𝑔𝑔 = 0.5 + (𝑔𝑔 − 1)0.005, 1 ≤ 𝑔𝑔 ≤ 𝑛𝑛𝑛𝑛, (25)

and

𝜎𝜎𝑠𝑠,1,1,𝑔𝑔 = 0.5 + (𝑔𝑔 − 1)0.005, 1 ≤ 𝑔𝑔 ≤ 𝑛𝑛𝑛𝑛. (26)

For Material 2,

𝜎𝜎𝑎𝑎,2,𝑔𝑔 = 0.8 + (𝑔𝑔 − 1)0.005, 1 ≤ 𝑔𝑔 ≤ 𝑛𝑛𝑛𝑛, (27)

and

𝜎𝜎𝑠𝑠,1,2,𝑔𝑔 = 1.2 + (𝑔𝑔 − 1)0.005, 1 ≤ 𝑔𝑔 ≤ 𝑛𝑛𝑛𝑛, (28)

Equations (26) and (28) are used to determine total scattering from group 𝑔𝑔 to any other group.
However, Eq. (8) requires known coupling from each group to all other groups. If ng=1, then
the above equations are sufficient. However, for multigroup problems SNAP automatically sets
group-to-group scattering probabilities, 𝜎𝜎𝑠𝑠,𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚,𝑔𝑔′→𝑔𝑔.

For Material 1, scattering into the same group, 𝑔𝑔′ to 𝑔𝑔’, is 20% of all scattering. All scattering
𝑔𝑔’ → 𝑔𝑔, 1 ≤ 𝑔𝑔 ≤ 𝑔𝑔′ − 1, is 10% of all scattering [Eq. (26)], divided evenly among those 𝑔𝑔’ − 1
groups. If 𝑔𝑔’ = 1, this 10% of scattering is included in the scattering 𝑔𝑔′ → 𝑔𝑔′. Lastly, scattering
𝑔𝑔’ → 𝑔𝑔, 𝑔𝑔′ + 1 ≤ 𝑔𝑔 ≤ 𝑛𝑛𝑛𝑛, is 70% of all scattering, divided evenly among the 𝑛𝑛𝑛𝑛 − 𝑔𝑔’ groups. If
𝑔𝑔’ = 𝑛𝑛𝑛𝑛, this 70% of scattering is added to the 𝑔𝑔’ → 𝑔𝑔′ scattering.

A similar prescription is applied to Material 2. Scattering into the same group is 50% of total.
Scattering 𝑔𝑔’ → 𝑔𝑔, 1 ≤ 𝑔𝑔 ≤ 𝑔𝑔′ − 1 is 10%. Scattering 𝑔𝑔’ → 𝑔𝑔, 𝑔𝑔′ + 1 ≤ 𝑔𝑔 ≤ 𝑛𝑛𝑛𝑛 is 40%. The
same rules apply when 𝑔𝑔’ is 1 or 𝑛𝑛𝑛𝑛.

The scattering probabilities also vary with the angular moments 𝑙𝑙, 0 ≤ 𝑙𝑙 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 1. After the
data has been set for the group-to-group couplings, SNAP modifies all values for all groups for
the varying 𝑙𝑙. The above data-setting algorithm is applied initially to the 𝑙𝑙 = 1 moment. nmom
may be set as high as 4 in the input file. For Material 1, SNAP sets the other moments data as

𝜎𝜎𝑠𝑠,𝑙𝑙,1,𝑔𝑔′→𝑔𝑔 = �
𝜎𝜎𝑠𝑠,1,1,𝑔𝑔′→𝑔𝑔 × 0.100, 𝑙𝑙 = 2
𝜎𝜎𝑠𝑠,1,1,𝑔𝑔′→𝑔𝑔 × 0.050, 𝑙𝑙 = 3
𝜎𝜎𝑠𝑠,1,1,𝑔𝑔′→𝑔𝑔 × 0.025, 𝑙𝑙 = 4.

 (29)

Likewise, for Material 2, the angular moment scattering data is set as

𝜎𝜎𝑠𝑠,𝑙𝑙,2,𝑔𝑔′→𝑔𝑔 = �
𝜎𝜎𝑠𝑠,1,2,𝑔𝑔′→𝑔𝑔 × 0.800, 𝑙𝑙 = 2
𝜎𝜎𝑠𝑠,1,2,𝑔𝑔′→𝑔𝑔 × 0.480, 𝑙𝑙 = 3
𝜎𝜎𝑠𝑠,1,2,𝑔𝑔′→𝑔𝑔 × 0.288, 𝑙𝑙 = 4.

 (30)

6.6 Source Layout

The source layout (𝑞𝑞𝑛𝑛,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑔𝑔) for SNAP is selected by the user with the src_opt input variable.
Setting src_opt=1 instructs SNAP to supply all spatial cells and all energy groups with a
volumetric isotropic source of unity. When src_opt=1, the same flat source is applied to all
groups for the same range of cells given by Eq. (20). The remaining cells have zero source.
Likewise, when src_opt=2, the flat source for all groups is applied to the range of cells
determined by Eq. (21), and the remaining cells have zero source.

A fourth option, src_opt=3, is available to the user. src_opt=3 instructs SNAP to construct
the source that corresponds to a preset manufactured solution. SNAP’s method of manufactured
solutions implementation is described in Section 7.

7. Method of Manufactured Solutions Implementation

Because SNAP is a proxy application, it has been developed in a manner that should allow fast
implementation of varying parallel programming models. SNAP uses the method of
manufactured solutions (MMS) to ensure that any modification to SNAP’s solution algorithms
does not affect the resulting solutions. The benefit of MMS is that a manufactured solution can
be defined for an arbitrarily sized problem. This is important, because it is impossible to predict
the type and size of problems users will be interested in running to test SNAP.

The basic premise of MMS is to choose an analytic solution, insert it into the analytic equation of
interest, and determine the corresponding analytic inhomogeneous source. This source must then
undergo the same approximations/discretizations applied to attain the numerical equation
actually solved by the program. While MMS is typically used in a full verification study, in
SNAP the implementation is only designed to help the user/future developer determine if code
modifications have affected adversely the solution algorithms.

For MMS in SNAP, several properties of the manufactured solution are chosen for simplifying
the implementation. First, SNAP has only vacuum boundary conditions and has not been
equipped to handle any boundary sources. Therefore, the manufactured solution should already
obey these properties. Moreover, a solution symmetric in space has been found to be a useful aid
to detect code bugs. The manufactured solution must also vary with the number of groups and
time to fully exercise the SNAP solution algorithms. As in the case of no boundary conditions,
the manufactured solution features a zero initial condition. For simplicity, angular dependence in
the manufactured solution is not sought.

Considering these points, SNAP’s manufactured solution is

𝑓𝑓𝑛𝑛,𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑓𝑓𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑡𝑡𝑡𝑡 sin(𝑎𝑎𝑎𝑎) sin(𝑏𝑏𝑏𝑏) sin(𝑐𝑐𝑐𝑐), (31)

where

𝑎𝑎 =
𝜋𝜋
𝑙𝑙𝑙𝑙

, 𝑏𝑏 =
𝜋𝜋
𝑙𝑙𝑙𝑙

, 𝑐𝑐 =
𝜋𝜋
𝑙𝑙𝑙𝑙

. (32)

If ng=1, then 𝑔𝑔 = 1 in Eq. (31). Likewise, if the calculation is static, then 𝑡𝑡 = 1. For 1-D and 2-
D problems the sine terms are dropped to match the level of dimensionality.

When Eq. (31) is substituted into the 3-D analog of Eq. (1), the inhomogeneous source is
determined. After much simplification of the scattering source term, the source is found to be

𝑞𝑞𝑛𝑛,𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)

=
𝑔𝑔
𝑣𝑣𝑔𝑔

sin(𝑎𝑎𝑎𝑎) sin(𝑏𝑏𝑏𝑏) sin(𝑐𝑐𝑐𝑐) + 𝑡𝑡𝑡𝑡𝜇𝜇𝑛𝑛𝑎𝑎 cos(𝑎𝑎𝑎𝑎) sin(𝑏𝑏𝑏𝑏) sin(𝑐𝑐𝑐𝑐)

+ 𝑡𝑡𝑡𝑡𝜂𝜂𝑛𝑛𝑏𝑏 sin(𝑎𝑎𝑎𝑎) cos(𝑏𝑏𝑏𝑏) sin(𝑐𝑐𝑐𝑐) + 𝑡𝑡𝑡𝑡𝜉𝜉𝑛𝑛𝑐𝑐 sin(𝑎𝑎𝑎𝑎) sin(𝑏𝑏𝑏𝑏) cos(𝑐𝑐𝑐𝑐)
+ 𝜎𝜎𝑡𝑡,𝑔𝑔(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑡𝑡𝑡𝑡 sin(𝑎𝑎𝑎𝑎) sin(𝑏𝑏𝑏𝑏) sin(𝑐𝑐𝑐𝑐)

− � 𝜎𝜎𝑠𝑠,1,𝑔𝑔′→𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑡𝑡𝑔𝑔′ sin(𝑎𝑎𝑎𝑎) sin(𝑏𝑏𝑏𝑏) sin(𝑐𝑐𝑐𝑐)
𝑛𝑛𝑛𝑛

𝑔𝑔′=1

.

(33)

Due to the definition of the scattering expansions and the angular independence of the
manufactured solution, the fixed source from the scattering term contains only an isotropic
moment contribution. Note that the first term on the right hand side (RHS) of Eq. (33) is dropped
if the problem is time-independent. Time-dependent source terms are amplified with each new
time step. Therefore they are stored separately in SNAP for simplicity and summed with other
sources as needed. The third and fourth RHS terms of Eq. (29) are dropped if the spatial
dimensionality does not require them.

Equation (33) shows the analytic manufactured source. This source must be modified according
the same spatial and time discretizations used to determine the numerical equation solved
computationally, Eq. (8). Namely, this source will be applied at time centers, 𝑡𝑡ℎ, and spatially
integrated over the mesh cells. The linear relationship of the source to time makes the former
step straightforward. The spatial integration includes sine and cosine terms that are independent
each dimension, simplifying the volume triple integral into individual sine and cosine
integrations. For example, the x-dimension terms’ integrations are

1
∆𝑥𝑥𝑖𝑖

� sin(𝑎𝑎𝑎𝑎)𝑑𝑑𝑑𝑑
𝑥𝑥
𝑖𝑖+12

𝑥𝑥
𝑖𝑖−12

=
1

∆𝑥𝑥𝑖𝑖𝑎𝑎
�cos�𝑎𝑎𝑥𝑥

𝑖𝑖−12
� − cos �𝑎𝑎𝑥𝑥

𝑖𝑖+12
�� (34)

and

1
∆𝑥𝑥𝑖𝑖

� cos(𝑎𝑎𝑎𝑎)𝑑𝑑𝑑𝑑
𝑥𝑥
𝑖𝑖+12

𝑥𝑥
𝑖𝑖−12

=
1

∆𝑥𝑥𝑖𝑖𝑎𝑎
�sin�𝑎𝑎𝑥𝑥

𝑖𝑖+12
� − sin�𝑎𝑎𝑥𝑥

𝑖𝑖−12
��. (35)

Analogous relations are made for the y- and z-dimensions.

SNAP computes the manufactured solution and stores it as a reference. It computes the source
and uses it in the solution algorithm. At the end of a simulation, SNAP reports the difference
between the reference, manufactured solution and the computed one, allowing the user/developer
to see how code modifications may have affected the solution scheme.

8. References

[1] “LANL: CCS-3: Performance and Architecture: Software,” Available at
http://www.ccs3.lanl.gov/PAL/software.shtml,” Last accessed 11/30/2012 (2006).

[2] E. E. Lewis and W. F. Miller, Jr., Computational Methods of Neutron Transport,

American Nuclear Society, La Grange Park, IL, USA (1993).

[3] R. S. Baker et al., “Solution of the First-Order Form of the Multi-Dimensional Discrete
Ordinates Equations on a Two-level Heterogeneous Processing System,” Transactions of
the ANS, 105, 510 (2011).

[4] R.S. Baker and K.R. Koch, “An Sn Algorithm for the Massively Parallel CM-200

Computer,” Nuclear Science and Engineering, 128, 312 (1998).

9. Simple Procedure Flowchart (excluding timing calls, collective communications, MPI
subroutine calls, error messages, and execution termination)

snap_main (main file)

1. pinit (plib_module)
2. cmdarg (utils_module)
3. open_file (utils_module)
4. open_file (utils_module)
5. version_print (utils_module)
6. read_input (input_module)

a. input_echo (input_module)
b. input_check (input_module)

7. close_file (utils_module)
8. pinit_omp (plib_module)

a. plock_omp (plib_module)
9. pcomm_set (plib_module)
10. setup (setup_module)

a. setup_alloc (setup_module)
i. sn_allocate (sn_module)

ii. data_allocate (data_module)
b. setup_delta (setup_module)
c. setup_vel (setup_module)
d. setup_angle (setup_module)
e. setup_mat (setup_module)
f. setup_data (setup_module)
g. expcoeff (sn_module)
h. setup_src (setup_module)

i. mms_setup (mms_module)
ii. mms_allocate (mms_module)

iii. mms_cells (mms_module)
iv. mms_flux_1 (mms_module)

1. mms_trigint (mms_module)
v. mms_src_1 (mms_module)

1. mms_trigint (mms_module)
vi. mms_flux_1_2 (mms_module)

i. echo_setup (setup_module)
j. setup_scatp (setup_module)

i. open_file (utils_module)
ii. close_file (utils_module)

11. translv (subroutine)
a. geom_alloc (geom_module)
b. solvar_alloc (solvar_module)
c. control_alloc (control_module)
d. expxs_reg (expxs_module)
e. expxs_reg (expxs_module)
f. param_calc (geom_module)
g. expxs_reg (expxs_module)

h. outer (outer_module)
i. otr_src (outer_module)

1. assign_thrd_set (thrd_comm_module)
2. otr_src_calc (outer_module)

a. expxs_reg (expxs_module)
b. expxs_slgg (expxs_module)

3. destroy_task_set (thrd_comm_module)
ii. inner (inner_module)

1. inr_src (inner_module)
a. assign_thrd_set (thrd_comm_module)
b. inr_src_calc (inner_module)
c. destroy_task_set (thrd_comm_module)

2. sweep (sweep_module)
a. assign_thrd_set (thrd_comm_module)
b. waitinit (plib_module)
c. octsweep (octsweep_module)

i. no_op_lock_control (thrd_comm_module)
1. plock_omp (plib_module)
2. plock_omp (plib_module)

ii. no_op_lock_control (thrd_comm_module)
1. plock_omp (plib_module)
2. plock_omp (plib_module)

iii. dim1_sweep (dim1_sweep_module)
iv. dim3_sweep (dim3_sweep_module)

1. sweep_recv_bdry
(thrd_comm_module)

a. plock_omp (plib_module)
b. precv (plib_module)
c. precv (plib_module)
d. waitall (plib_module)
e. plock_omp (plib_module)

2. sweep_send_bdry
(thrd_comm_module)

a. plock_omp (plib_module)
b. isend (plib_module)
c. isend (plib_module)
d. plock_omp (plib_module)

v. mkba_sweep (mkba_sweep_module)
1. sweep_recv_bdry

(thrd_comm_module)
a. plock_omp (plib_module)
b. precv (plib_module)
c. precv (plib_module)
d. waitall (plib_module)
e. plock_omp (plib_module)

2. sweep_send_bdry
(thrd_comm_module)

a. plock_omp (plib_module)

b. isend (plib_module)
c. isend (plib_module)
d. plock_omp (plib_module)

d. destroy_task_set (thrd_comm_module)
3. inr_conv (inner_module)

iii. otr_conv (outer_module)
i. pop_calc (analyze_module)
j. pop_calc (analyze_module)

12. output (output_module)
a. output_send (output_module)

i. psend (plib_module)
b. output_recv (output_module)

i. precv (plib_module)
c. output_flux_file (output_module)

i. open_file (utils_module)
ii. output_send (output_module)

1. psend (plib_module)
iii. output_recv (output_module)

1. precv (plib_module)
iv. close_file (utils_module)

d. mms_verify_1 (mms_module)
13. time_summ (time_module)
14. dealloc_input (dealloc_module)

a. sn_deallocate (sn_module)
b. data_deallocate (data_module)
c. mms_deallocate (mms_module)

15. dealloc_solve (dealloc_module)
a. geom_dealloc (geom_module)
b. solvar_dealloc (solvar_module)
c. control_dealloc (control_module)

16. close_file (utils_module)
17. stop_run (utils_module)

a. plock_omp (plib_module)
b. pend (plib_module)
c. EXIT

	SNAP: SN (Discrete Ordinates) Application Proxy, Version 1.05
	User’s Manual
	1. Introduction
	2. Input
	2.1 Sample SNAP Input
	2.2 Command Line Instruction for Running SNAP

	3. Code Structure
	4. Modules with Data of Non-Local Scope
	5. Numerical Equation Solved
	5.1 Negative Flux Fixup

	6. Hardwired Data Descriptions
	6.1 Phase-space cell sizes
	6.2 Group speeds
	6.3 Angular quadrature
	6.4 Material Layout
	6.5 Material Data
	6.6 Source Layout

	7. Method of Manufactured Solutions Implementation
	8. References
	9. Simple Procedure Flowchart (excluding timing calls, collective communications, MPI subroutine calls, error messages, and execution termination)

