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Direct solvers for sparse matrices involve much more complicated algorithms than for dense matri-
ces. The main complication is due to the need for efficient handling the fill-in in the factors L and
U . A typical sparse solver consists of four distinct steps as opposed to two in the dense case:

1. An ordering step that reorders the rows and columns such that the factors suffer little fill, or
that the matrix has special structure such as block triangular form.

2. An analysis step or symbolic factorization that determines the nonzero structures of the
factors and create suitable data structures for the factors.

3. Numerical factorization that computes the L and U factors.

4. A solve step that performs forward and back substitution using the factors.

There is a vast variety of algorithms associated with each step. The review papers by Duff [16]
(see also [15, Chapter 6]) and Heath et al. [27] can serve as excellent reference of various algorithms.
Usually steps 1 and 2 involve only the graphs of the matrices, and hence only integer operations.
Steps 3 and 4 involve floating-point operations. Step 3 is usually the most time-consuming part,
whereas step 4 is about an order of magnitude faster. The algorithm used in step 1 is quite
independent of that used in step 3. But the algorithm in step 2 is often closely related to that of
step 3. In a solver for the simplest systems, i.e., symmetric and positive definite systems, the four
steps can be well separated. For the most general unsymmetric systems, the solver may combine
steps 2 and 3 (e.g. SuperLU) or even combine steps 1, 2 and 3 (e.g. UMFPACK) so that the
numerical values also play a role in determining the elimination order.

In the past 10 years, many new algorithms and software have emerged which exploit new
architectural features, such as memory hierarchy and parallelism. In Table 1, we compose a rather
comprehensive list of sparse direct solvers. It is most convenient to organize the software in three
categories: the software for serial machines, the software for SMPs, and the software for distributed
memory parallel machines.

Fair to say, there is no single algorithm or software that is best for all types of linear systems.
Some software is targeted for special matrices such as symmetric and positive definite, some is
targeted for the most general cases. This is reflected in column 3 of the table, “Scope”. Even for
the same scope, the software may decide to use a particular algorithm or implementation technique,
which is better for certain applications but not for others. In column 2, “Technique”, we give a high
level algorithmic description. For a review of the distinctions between left-looking, right-looking,
and multifrontal and their implications on performance, we refer the reader to the papers by Heath
et al. [27] and Rothberg [38]. Sometimes the best (or only) software is not in public domain, but
available commercially or in research prototypes. This is reflected this in column 4, “Contact”,
which could be the name of a company, or the name of the author of the research code.

In the context of shift-and-invert spectral transformation for eigensystem analysis, we need to
factorize A−σI, where A is fixed. Therefore, the nonzero structure of A−σI is fixed. Furthermore,
for the same shift σ, it is common to solve many systems with the same matrix and different right-
hand sides. (in which case the solve cost can be comparable to factorization cost.) It is reasonable
to spend a little more time in steps 1 and 2 but speed up steps 3 and 4. That is, one can try
different ordering schemes and estimate the costs of numerical factorization and solution based on
symbolic factorization, and use the best ordering. For instance, in computing the SVD, one has
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Code Technique Scope Contact

Serial platforms (possibly on GPU

CHOLMOD Left-looking SPD Davis [8]
GLU3.0 Left-looking Unsym (GPU) Peng [36]
KLU Left-looking Unsym Davis [11]
MA57 Multifrontal Sym HSL [19]
MA41 Multifrontal Sym-pat HSL [1]
MA42 Frontal Unsym HSL [20]
MA67 Multifrontal Sym HSL [17]
MA48 Right-looking Unsym HSL [18]
Oblio Left/right/Multifr. sym, Out-core Dobrian [14]
SPARSE Right-looking Unsym Kundert [32]
SPARSPAK Left-looking SPD, Unsym, QR George et al. [22]
SPOOLES Left-looking Sym, Sym-pat, QR Ashcraft [5]
SSIDS Multifrontal Sym (GPU) Hogg [28]
SuperLLT Left-looking SPD Ng [35]
SuperLU Left-looking Unsym Li [12]
UMFPACK Multifrontal Unsym Davis [9]

Shared memory parallel machines (possibly on GPU)

BCSLIB-EXT Multifrontal Sym, Unsym, QR Ashcraft et al. [6]
Cholesky Left-looking SPD Rothberg [31]
MF2 Multifrontal Sym, Sym-pat, Out-core (GPU) Lucas [34]
MA41 Multifrontal Sym-pat HSL [2]
MA49 Multifrontal QR HSL [4]
PanelLLT Left-looking SPD Ng [24]
PARASPAR Right-looking Unsym Zlatev [41]
PARDISO Left-Right looking Sym-pat Schenk [39]
SPOOLES Left-looking Sym, Sym-pat Ashcraft [5]
SuiteSparseQR Multifrontal Rank-revealing QR Davis [10]
SuperLU MT Left-looking Unsym Li [13]
TAUCS Left/Multifr. Sym, Unsym, Out-core Toledo [7]
WSMP Multifrontal SPD, Unsym Gupta [25]

Distributed memory parallel machines

Clique Multifrontal Sym (no pivoting) Poulson [37]
MF2 Multifrontal Sym, Sym-pat, Out-core, GPU Lucas [34]
DSCPACK Multifrontal SPD Raghavan [26]
MUMPS Multifrontal Sym, Sym-pat Amestoy [3]
PARDISO Left-Right looking Sym-pat, Unsym Schenk [39]
PaStiX Left-Right looking SPD, Sym, Sym-pat Ramet [29]
PSPASES Multifrontal SPD Gupta [23]
SPOOLES Left-looking Sym, Sym-pat, QR Ashcraft [5]
STRUMPACK Multifrontal Unsym, Sym-pat (GPU) Ghysels [40]
SuperLU DIST Right-looking Unsym (GPU) Li [33]
symPACK Left-Right looking SPD Jacquelin [30]
S+ Right-looking† Unsym Yang [21]
WSMP Multifrontal SPD, Unsym Gupta [25]

Table 1: Software to solve sparse linear systems using direct methods.
† Uses QR storage to statically accommodate any LU fill-in

Abbreviations used in the table:

SPD = symmetric and positive definite

Sym = symmetric and may be indefinite

Sym-pat = symmetric nonzero pattern but unsymmetric values

Unsym = unsymmetric

HSL = Harwell Subroutine Library: http://www.cse.clrc.ac.uk/Activity/HSL
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the choice between shift-and-invert on AA∗, A∗A, and

[
0 A
A∗ 0

]
, all of which can have rather

different factorization costs.
Some solvers have the ordering schemes built in, but others do not. It is also possible that

the built-in ordering schemes are not the best for the target applications. It is sometimes better to
substitute an external ordering scheme for the built-in one. Many solvers provide well-defined inter-
faces so that the user can make this substitution easily. One should read the solver documentation
to see how to do this, as well as to find out the recommended ordering methods.
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