24#ifndef __SUPERLU_SCOMPLEX
25#define __SUPERLU_SCOMPLEX
28#ifndef SCOMPLEX_INCLUDE
29#define SCOMPLEX_INCLUDE
33#if defined(SUPERLU_TYPEDEF_COMPLEX) || DOXYGEN
42#define c_add(c, a, b) { (c)->r = (a)->r + (b)->r; \
43 (c)->i = (a)->i + (b)->i; }
46#define c_sub(c, a, b) { (c)->r = (a)->r - (b)->r; \
47 (c)->i = (a)->i - (b)->i; }
50#define cs_mult(c, a, b) { (c)->r = (a)->r * (b); \
51 (c)->i = (a)->i * (b); }
54#define cc_mult(c, a, b) { \
56 cr = (a)->r * (b)->r - (a)->i * (b)->i; \
57 ci = (a)->i * (b)->r + (a)->r * (b)->i; \
62#define cc_conj(a, b) { \
68#define c_eq(a, b) ( (a)->r == (b)->r && (a)->i == (b)->i )
singlecomplex c_sgn(singlecomplex *)
SIGN functions for complex number. Returns z/abs(z)
Definition: scomplex.c:120
double c_abs(singlecomplex *)
Returns sqrt(z.r^2 + z.i^2)
Definition: scomplex.c:62
void c_exp(singlecomplex *, singlecomplex *)
Return the exponentiation.
Definition: scomplex.c:96
void r_cnjg(singlecomplex *, singlecomplex *)
Return the complex conjugate.
Definition: scomplex.c:106
void c_div(singlecomplex *, singlecomplex *, singlecomplex *)
Complex Division c = a/b.
Definition: scomplex.c:32
double r_imag(singlecomplex *)
Return the imaginary part.
Definition: scomplex.c:113
double c_abs1(singlecomplex *)
Approximates the abs. Returns abs(z.r) + abs(z.i)
Definition: scomplex.c:84
singlecomplex c_sqrt(singlecomplex *)
Square-root of a complex number.
Definition: scomplex.c:135
Definition: slu_scomplex.h:31
float i
Definition: slu_scomplex.h:31