Making Sparse Gaussian Elimination Scalable by Static Pivoting

Xiaoye S. Li * James W. Demmel |
NERSC, Lawrence Berkeley National Lab Computer Science Division
1 Cyclotron Rd, MS 50F University of California
Berkeley, CA 94720. Berkeley, CA 94720.
xiaoye@nersc.gov demmel@cs.berkeley.edu
http://www.nersc.gov/~xiaoye http://www.cs.berkeley.edu/~demmel

Appeared in the Proceedings of SC 98

Abstract

We propose several techniques as alternatives to partial pivoting to stabilize sparse Gaussian
elimination. From numerical experiments we demonstrate that for a wide range of problems
the new method is as stable as partial pivoting. The main advantage of the new method over
partial pivoting is that it permits a priori determination of data structures and communication
pattern for Gaussian elimination, which makes it more scalable on distributed memory machines.
Based on this a priori knowledge, we design highly parallel algorithms for both sparse Gaussian
elimination and triangular solve and we show that they are suitable for large-scale distributed
memory machines.

Keywords: sparse unsymmetric linear systems, static pivoting, iterative refinement, MPI, 2-D
matrix decomposition.

1 Introduction

In our earlier work [8, 9, 22], we developed new algorithms to solve unsymmetric sparse linear
systems using Gaussian elimination with partial pivoting (GEPP). The new algorithms are highly
efficient on workstations with deep memory hierarchies and shared memory parallel machines with
a modest number of processors. The portable implementations of these algorithms appear in
the software packages SuperLU (serial) and SuperLU_MT (multithreaded), which are publically
available on Netlib [10]. These are among the fastest available codes for this problem.

Our shared memory GEPP algorithm relies on the fine-grained memory access and synchro-
nization that shared memory provides to manage the data structures needed as fill-in is created
dynamically, to discover which columns depend on which other columns symbolically, and to use a
centralized task queue for scheduling and load balancing. The reason we have to perform all these
dynamically is that the computational graph does not unfold until runtime. (This is in contrast to
Cholesky, where any pivot order is numerically stable.) However, these techniques are too expensive

*This research used resources of the National Energy Research Scientific Computing Center, which is supported
by the Office of Energy Research of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

TThis research was supported in part by NSF grant ASC-9313958, DOE grant DE-FG03-94ER25219, UT Sub-
contract No. ORA4466 from ARPA Contract No. DAAL03-91-C0047, DOE grant DE-FG03-94ER 25206, NSF Infras-
tructure grants CDA-8722788 and CDA-9401156 and DOE grant DE-FC03-98ER25351.

(1) Row/column equilibration and row permutation: A < P, - D, - A- D,,
where D, and D, are diagonal matrices and P, is a row permutation
chosen to make the diagonal large compared to the off-diagonal

(2) Find a column permutation P, to preserve sparsity: A < P.- A- Pl

(3) Factorize A = L - U with control of diagonal magnitude

if (|as| < V2~ |[]|) then
set az; to /e || 4|

endif
(4) Solve A -z = b using the L and U factors, with the following iterative refinement
iterate:
r=b—A-x ... sparse matrix-vector multiply
Solve A-dx =r ... triangular solve
berr = max; m ... componentwise backward error
if (berr > e and berr < 3 - lastberr) then
r=z+dz
lastberr = berr
goto iterate
endif

Figure 1: The outline of the new GESP algorithm.

on distributed memory machines. Instead, for distributed memory machines, we propose to not
pivot dynamically, and so enable static data structure optimization, graph manipulation and load
balancing (as with Cholesky [20, 25]) and yet remain numerically stable. We will retain numerical
stability by a variety of techniques: pre-pivoting large elements to the diagonal, iterative refine-
ment, using extra precision when needed, and allowing low rank modifications with corrections at
the end. In Section 2 we show the promise of the proposed method from numeric experiments. We
call our algorithm GESP for Gaussian elimination with static pivoting. In Section 3, we present
an MPI implementation of the distributed algorithms for LU factorization and triangular solve.
Both algorithms use an elaborate 2-D (nonuniform) block-cyclic data distribution. Initial results
demonstrated good scalability and a factorization rate exceeding 8 Gflops on a 512 node Cray T3E.

2 New algorithm and stability

Traditionally, partial pivoting is used to control the element growth during Gaussian elimination,
making the algorithm numerically stable in practice’. However partial pivoting is not the only way
to control element growth; there are a variety of alternative techniques. In this section we present
these alternatives, and show by experiments that appropriate combinations of them can effectively
stabilize Gaussian elimination. Furthermore, these techniques are usually inexpensive compared to
the overall solution cost, especially for large problems.

2.1 The GESP algorithm

In Figure 1 we sketch our GESP algorithm that incorporates some of the techniques we considered.
To motivate step (1), recall that a diagonally dominant matriz is one where each diagonal entry a;;
is larger in magnitude than the sum of magnitudes of the off-diagonal entries in its row (3°;_; |ai;)

!Examples exist where even GEPP is unstable, but these are very rare [7, 19].

or column (3, [aj]). It is known that choosing the diagonal pivots ensures stability for such
matrices [7, 19]. So we expect that if each diagonal entry can somehow be made larger relative to
the off-diagonals in its row or column, then diagonal pivoting will be more stable. The purpose of
step (1) is to choose diagonal matrices D, and D, and permutation P, to make each a;; larger in
this sense.

We have experimented with a number of alternative heuristic algorithms for step (1) [13]. All
depend on the following graph representation of an n X n sparse matrix A: it is represented as an
undirected weighted bipartite graph with one vertex for each row, one vertex for each column, and
an edge with appropriate weight connecting row vertex ¢ to column vertex j for each nonzero entry
a;j. Finding a permutation P, that puts large entries on the diagonal can thus be transformed
into a weighted bipartite matching problem on this graph. The diagonal scale matrices D, and D,
can be chosen independently, to make each row and each column of D,.AD,. have largest entries
equal to 1 in magnitude (using the algorithm in LAPACK subroutine DGEEQU [3]). Then there
are algorithms in [13] that choose P, to maximize different properties of the diagonal of P,D,AD,,
such as the smallest magnitude of any diagonal entry, or the sum or product of magnitudes. But the
best algorithm in practice seems to be the one in [13] that picks P, D, and D, simultaneously so
that each diagonal entry of P.D,AD, is +1, each off-diagonal entry is bounded by 1 in magnitude,
and the product of the diagonal entries is maximized. We will report results for this algorithm
only. The worst case serial complexity of this algorithm is O(n - nnz(A) - logn), where nnz(A) is
the number of nonzeros in A. In practice it is much faster; actual timings appear later.

Step (2) is not new and is needed in both SuperLU and SuperLU_MT [10]. The column permu-
tation P. can be obtained from any fill-reducing heuristic. For now, we use the minimum degree
ordering algorithm [23] on the structure of A7 A. In the future, we will use the approximate mini-
mum degree column ordering algorithm by Davis et. al. [6] which is faster and requires less memory
since it does not explicitly form AT A. We can also use nested dissection on A + AT or AT A [17].
Note that we also apply P, to the rows of A to ensure that the large diagonal entries obtained from
Step (1) remain on the diagonal.

In step (3), we simply set any tiny pivots encountered during elimination to /¢ - || A||, where
¢ is machine precision. This is equivalent to a small (half precision) perturbation to the original
problem, and trades off some numerical stability for the ability to keep pivots from getting too
small.

In step (4), we perform a few steps of iterative refinement if the solution is not accurate enough,
which also corrects for the /¢ - |A|| perturbations in step (3). The termination criterion is based
on the componentwise backward error berr [7]. The condition berr < ¢ means that the computed
solution is the exact solution of a slightly different sparse linear system (A + 0A)x = b where each
nonzero entry a;; has been changed by at most one unit in its last place, and the zero entries are
left unchanged; thus one can say that the answer is as accurate as the data deserves. We terminate
the iteration when the backward error berr is smaller than machine epsilon, or when it does not
decrease by at least a factor of two compared with the previous iteration. The second test is to
avoid possible stagnation. (Figure 5 shows that berr is always small.)

2.2 Numerical results

In this subsection, we illustrate the numerical stability and runtime of our GESP algorithm on
53 unsymmetric matrices from a wide variety of applications. The application domains of the
matrices are given in Table 1. Most of them, except for two (ECL32, WU), can be obtained from
the Harwell-Boeing Collection [14] and the collection of Davis [5]. Matrix ECL32 was provided
by Jagesh Sanghavi from EECS Department of UC Berkeley. Matrix WU was provided by Yushu

Discipline Matrices

fluid flow, CFD af23560, bbmat, bramleyl, bramley2, ex11, fidapm11, garon2,
grahaml, Insp3937, Ins_3937, raefsky3, rmal0, venkat01, wu

fluid mechanics goodwin, rim

circuit simulation add32, gre_1107, jpwh_991, memplus, onetonel, onetone2, twotone

device simulation wang3, wang4, ecl32

chemical engineering extrl, hydrl, lhr01, radfrl, rdist1, rdist2, rdist3a, west2021

petroleum engineering orsirr_1, orsreg_1, sherman3, sherman4, sherman5

finite element PDE av4408, av11924

stifft ODE fs_ 5412

Olmstead flow model 0lm5000

aeroelasticity tols4000

reservoir modelling pores_2

crystal growth simulation | cry10000

power flow modelling gematll

dielectric waveguide dw8192 (eigenproblem)

astrophysics mcfe

plasma physics utmb5940

demography psmigr_1

economics mahindas, orani678

Table 1: Test matrices and their disciplines.

Wu from Earth Sciences Division of Lawrence Berkeley National Laboratory. Figure 2 plots the
dimension, nnz(A), and nnz(L + U), i.e. the number of nonzeros in the L and U factors (the
fill-in). The matrices are sorted in increasing order of the factorization time. The matrices of most
interest for parallelization are the ones that take the most time, i.e. the ones on the right of this
graph. From the figure it is clear that the matrices large in dimension and number of nonzeros
also require more time to factorize. The timing results reported in this subsection are obtained on
an SGI ONYX2 machine running IRIX 6.4. The system has 8 195 MHz MIPS R10000 processors
and 5120 Mbytes main memory. We only use a single processor, since we are mainly interested in
numerical accuracy. Parallel runtimes are reported in section 3.

Detailed performance results from this section in tabular format are available at
http://www.nersc.gov/~xiaoye/SC98/.

Among the 53 matrices, most would get wrong answers or fail completely (via division by a
zero pivot) without any pivoting or other precautions. 22 matrices contain zeros on the diagonal to
begin with which remain zero during elimination, and 5 more create zeros on the diagonal during
elimination. Therefore, not pivoting at all would fail completely on these 27 matrices. Most of the
other 26 matrices would get unacceptably large errors due to pivot growth. For our experiment,
the right-hand side vector is generated so that the true solution ¢, is a vector of all ones. IEEE
double precision is used as the working precision, with machine epsilon ~ 10716, Figure 3 shows the
number of iterations taken in the iterative refinement step. Most matrices terminate the iteration
with no more than 3 steps. 5 matrices require 1 step, 31 matrices require 2 steps, 9 matrices require
3 steps, and 8 matrices require more than 3 steps. For each matrix, we present two error metrics,
in Figure 4 and Figure 5, to assess the accuracy and stability of GESP. Figure 4 plots the error
from GESP versus the error from GEPP (as implemented in SuperLU) for each matrix: A red dot
on the green diagonal means the two errors were the same, a red dot below the diagonal means

8 GESP (Red), GEPP(Blue)

10

* 10 — :
0 = dimension ** [FIDAPM11 ONETONE1
+-=nonzeros-in A P o % gl o i
10"k - | #: ~nonzerosin L+U et 4 =
o ¥ » ORSREG_1
¥y K "GC"J 8t |
* + +
10° apti RSt | Bl 1
* + ++ C
EESSEREN S + =
xrk + + o 00 1
10° o t+ Topy 5 o ERN
; il * g o” © © 55 o o)
s . 0.~ Q o
o ey Bt o 9% ° 3]
10 gt Qg 1 = 4 © ° 1
0, 207 TG BT o 5
5 - ©
OOOOO ’ o 3f Q0 ®0 00 o
10°...90.9, 0.0 1 9
© g 2r ® - GRR SRR HEREXR ® ® ® X X B
pzd
102 L L 1 L L L L
107 1010 10t 10 10° 10" 10" 107
LU Factorization time in seconds Condition number
Figure 2: Characteristics of the matrices. Figure 3: Iterative refinement steps in GESP.

GESP is more accurate, and a red dot above means GEPP is more accurate. Figure 4 shows that
the error of GESP is at most a little larger, and can be smaller (21 out of 53), than the error
from GEPP. Figure 5 shows that the componentwise backward error [7] is also small, usually near
machine epsilon, and never larger than 10712,

Although the combination of the techniques in steps (1) and (3) in Figure 1 works well for
most matrices, we found a few matrices for which other combinations are better. For example, for
FIDAPM11, JPWH_991 and ORSIRR_1, the errors are large unless we omit P, from step (1). For
EX11 and RADRF1, we cannot replace tiny pivots by /¢ - ||A|| (in step (3)). Therefore, in the
software, we provide a flexible interface so the user is able to turn on or off any of these options.

We now evaluate the cost of each step in GESP Figure 1. This is done with respect to the serial
implementation, since we have only parallelized the numerical phases of the algorithm (steps (3)
and (4)), which are the most time-consuming. In particular, for large enough matrices, the LU
factorization in step (3) dominates all the other steps, so we will measure the times of each step
with respect to step (3).

Simple equilibration in step (1) (computing D, and D, using the algorithm in DGEEQU from
LAPACK) is usually negligible and is easy to parallelize. Both row and column permutation algo-
rithms in steps (1) and (2) (computing P, and P,) are not easy to parallelize (their parallelization
is future work). Fortunately, their memory requirement is just O(nnz(A)) [6, 13|, whereas the
memory requirement for L and U factors grows superlinearly in nnz(A), so in the meantime we
can run them on a single processor.

Figure 6 shows the fraction of time spent finding P, in step (1) using the algorithm in [13], as
a fraction of the factorization time. The time is significant for small problems, but drops to 1%
to 10% for large matrices requiring a long time to factor, the problems of most interest on parallel
machines.

The time to find a sparsity-preserving ordering P. in step (2) is very much matrix dependent. It
is usually cheaper than factorization, although there exist matrices for which the ordering is more
expensive. Nevertheless, in applications where we repeatedly solve a system of equations with the
same nonzero pattern but different values, the ordering algorithm needs to be run only once, and
its cost can be amortized over all the factorizations. We plan to replace this part of the algorithm

-11

10 >
10° | RIM
ORSIRR
%10_127 RIM-®
L
% 0]
-5 L E
% 0 g 107% ® ORSREG. 1
: 3
= 9]
o e s '910_14*
S0 ° ®
wio r .
' 2
® _15 °
810 b : ° ° 3
° ° ”. .o ° °® hd
bd oy 0 ﬁ... o °
10" § ‘ ‘ ‘ 1L ¢ 0""“-. . o ‘ : ORSIRR_1
107° 10" 100 10 10” 10° 10" 10'° 10
Error from partial pivoting with Refine Condition number
i . [|ztrue —2|loo : . C|Aa—b);
Figure 4: The error Tl Figure 5: The backward error max; TATT2[HbD; -
T T T
0
10" E
O@ % 0009
o0l io) +0% i |
< .
=] ﬂt +@§ a%} @)
[k Rk
pd : ’:j‘ %if : 3 5
%10_2? Kook , **5 %00 5+ 5
© i 5 ¥ %% ¥k FO
c *e ¥ * ¥ ¥ B
#
S *oook ¥ X
010" * O
- : P | i | o
: Q. - Permute large dlagona P e
_4 + —Trlangular solve
10 ¢ * E
. * - — Compute residual .
*
-5 . | . | .
10 -2 0 2 4
10 10 10 10

LU factorization (GENP) time in seconds

Figure 6: The times to factorize, solve, permute large diagonal, compute residual and estimate
error bound, on a 195 MHz MIPS R10000.

nnz(L+U —1I) | Flops

Order | nnz(A) | NumSym | StrSym (x10%) | (x10%)

AF23560 23560 | 460598 .0512 .9465 12.8 4.9
BBMAT 38744 | 1771722 .0224 .5398 49.1 4.3
ECL32 51993 | 380415 6572 .9325 73.5 1204
EX11 16614 | 1096948 29999 | 1.0000 14.1 8.4
FIDAPM11 22294 | 623554 5476 9965 23.0 17.9
RMA10 46835 | 2374001 2443 .9809 14.7 1.8
TWOTONE | 120750 | 1224224 1418 2738 22.6 8.7
WANG4 26068 | 177196 1868 | 1.0000 27.7 35.3

Table 2: Characteristics of the test matrices. NumSym is the fraction of nonzeros matched by
equal values in symmetric locations. StrSym is the fraction of nonzeros matched by nonzeros in
symmetric locations.

with something faster, as outlined in Section 2.1.

As can be seen in Figure 6, computing the residual (sparse matrix-vector multiplication r =
b— A - x) is cheaper than a triangular solve (A - dx = r), and both take a small fraction of the
factorization time. For large matrices the solve time is often less than 5% of the factorization time.
Both algorithms have been parallelized (see section 3 for parallel performance data).

||xtrue*x||oo
. ||wHOO

This is by far the most expensive step after factorization. (For small matrices, it can be more

expensive than factorization, since it requires multiple triangular solves.) Therefore, we will do this

only when the user asks for it.

Finally, our code has the ability to estimate a forward error bound for the true error

3 An implementation with MPI

In this section, we describe our design, implementation and the performance of the distributed
algorithms for two main steps of the GESP method, sparse LU factorization (step (3)) and sparse
triangular solve (used in step (4)). Our implementation uses MPI [26] to communicate data, and so
is highly portable. We have tested the code on a number of platforms, such as Cray T3E, IBM SP2,
and Berkeley NOW. Here, we only report the results from a 512 node Cray T3E-900 at NERSC. To
illustrate scalability of the algorithms, we restrict our attention to eight relatively large matrices
selected from our testbed in Table 1. They are representative of different application domains. The
characteristics of these matrices are given in Table 2.

3.1 Matrix distribution and distributed data structure

We distribute the matrix in a two-dimensional block-cyclic fashion. In this distribution, the P
processes (not restricted to be a power of 2) are arranged as a 2-D process grid of shape P, x P..
The matrix is decomposed into blocks of submatrices. Then, these blocks are cyclically mapped
onto the process grid, in both row and column dimensions. Although a 1-D decomposition is
more natural to sparse matrices and is much easier to implement, a 2-D layout strikes a good
balance among locality (by blocking), load balance (by cyclic mapping), and lower communication
volume (by 2-D mapping). 2-D layouts were used in scalable implementations of sparse Cholesky
factorization [20, 25].

We now describe how we partition a global matrix into blocks. Our partitioning is based on
the notion of unsymmetric supernode first introduced in [8]. Let L be the lower triangular matrix
in the LU factorization. A supernode is a range (r : s) of columns of L with the triangular block
just below the diagonal being full, and with the same row structure below this block. Because of
the identical row structure of a supernode, it can be stored in a dense format in memory. This
supernode partition is used as our block partition in both row and column dimensions. If there are
N supernodes in an n-by-n matrix, the matrix will be partitioned into N2 blocks of nonuniform
size. The size of each block is matrix dependent. It should be clear that all the diagonal blocks
are square and full (we store zeros from U in the upper triangle of the diagonal block), whereas
the off-diagonal blocks may be rectangular and may not be full. The matrix in Figure 7 illustrates
such a partitioning. By block-cyclic mapping we mean block (I,J) (0 < I,J < N — 1) is mapped
onto the process at coordinate (I mod P,, J mod P.) of the process grid. Using this mapping, a
block L(I,J) in the factorization is only needed by the row of processes that own blocks in row I.
Similarly, a block U(I,J) is only needed by the column of processes that own blocks in column J.

In this 2-D mapping, each block column of L resides on more than one process, namely, a
column of processes. For example in Figure 7, the k-th block column of L resides on the column
processes {0, 3}. Process 3 only owns two nonzero blocks, which are not contiguous in the global
matrix. The schema on the right of Figure 7 depicts the data structure to store the nonzero blocks
on a process. Besides the numerical values stored in a Fortran-style array nzval[] in column major
order, we need the information to interpret the location and row subscript of each nonzero. This is
stored in an integer array index[], which includes the information for the whole block column and
for each individual block in it. Note that many off-diagonal blocks are zero and hence not stored.
Neither do we store the zeros in a nonzero block. Both lower and upper triangles of the diagonal
block are stored in the L data structure. A process owns [N/P,| block columns of L, so it needs
[N/P.] pairs of index/nzval arrays.

For matrix U, we use a row oriented storage for the block rows owned by a process, although
for the numerical values within each block we still use column major order. Similarly to L, we also
use a pair of index/nzval arrays to store a block row of U. Due to asymmetry, each nonzero block
in U has the skyline structure as shown in Figure 7 (see [8] for details on the skyline structure).
Therefore, the organization of the index[] array is different from that for L, which we omit showing
in the figure.

Since we do no dynamic pivoting, the nonzero patterns of L and U can be determined during
symbolic factorization before numerical factorization begins. Therefore, the block partitioning and
the setup of the data structure can all be performed in the symbolic algorithm. This is much
cheaper to execute as opposed to partial pivoting where the size of the data structure cannot be
forecast and must be determined on the fly as factorization proceeds.

3.2 Sparse LU factorization

Figure 8 outlines the parallel sparse LU factorization algorithm. We use Matlab notation for integer
ranges and submatrices. There are three steps in the K-th iteration of the loop. In step (1), only
a column of processes participate in factoring the block column L(K : N, K). In step (2), only
a row of processes participate in the triangular solves to obtain the block row U(K,K + 1 : N).
The rank-b update by L(K +1: N,K) and U(K,K + 1 : N) in step (3) represents most of the
work and also exhibits more parallelism than the other two steps, where b is the block size of the
K-th block column/row. For ease of understanding, the algorithm presented here is simplified. The
actual implementation uses a pipelined organization so that processes PROCq(K + 1) will start
step (1) of iteration K + 1 as soon as the rank-b update (step (3)) of iteration K to block column

k Global Matrix Storage of block column of L

index nzval
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —
| | | | # of blocks
K | % 0 BL: 2 of blocks
,,,,, ‘g L ,%,,,” LDA in nzval
| |
39 -5 block #
77777 == #of full rows |/
5 0 i i 2 row subscripts
= | | il
R i2
,,,,,,,,, 508 4 15
| block # / S
2 | 0 2 #of full rows ,/I /’I /\:/\\
”””77””7”7‘ row subscripts !
5 3. il
‘ ‘ i2
0 2
. Process Mesh
5 VAR
|

Figure 7: The 2-D block-cyclic layout and the data structure to store a local block column of L.

Let mycol (myrow) be my process column (row) number in the process grid
Let PROC¢(K) (PROCR(K)) be the column (row) processes that own block column (row) K
for block K =1 to N do
(1) if (mycol = PROC¢(K))
Obtain the block column factor L(K : N, K)
Send L(K : N, K) to the processes in my row who need it
else
Receive L(K : N, K) from processes PROC¢(K) if I need it
endif
(2) if (myrow = PROCR(K))
Perform parallel triangular solves : U(K,K +1: N)=L(K,K) ! - A(K,K +1: N)
Send U(K, K +1: N) to processes in my column who need it
else
Receive U(K, K +1: N) from processes PROCR(K) if I need it
endif
(3) for /=K +1to N do
for =K +1to N do
if (myrow = PROCR(I) & mycol = PROCc(J) & L(I,K) #0 & U(K,J)#0)
A(I,J) = A(I,J) — L(I,K) - U(K, J)
endif
end for

Figure 8: Distributed sparse LU factorization algorithm.

K + 1 finishes, before completing the update to the trailing matrix A(K +1: N, K +2: N) owned
by PROCc(K + 1). The pipelining alleviates the lack of parallelism in both steps (1) and (2).
On 64 processors of Cray T3E, for instance, we observed speedups between 10% to 40% over the
non-pipelined implementation.

In each iteration, the major communication steps are send/receive L(K : N, K) across process
rows and send/receive U(K, K + 1 : N) down process columns. Our data structure (see Figure 7)
ensures that all the blocks of L(K : N, K) and U(K,K + 1 : N) on a process are contiguous in
memory, thereby eliminating the need for packing and unpacking in a send-receive operation or
sending many more smaller messages. In each send-receive pair, two messages are exchanged, one
for index[] and another for nzval[]. To further reduce the amount of communication, we employ
the notion of elimination dags (EDAGs) [18]. That is, we send the K-th column of L rowwise to
the process owning the J-th column of L only if there exists a path between (super)nodes K and
J in the elimination dags. This is done similarly for the columnwise communication of rows of U.
Therefore, each block in L may be sent to fewer than P, processes and each block in U may be sent
to fewer than P, processes. In other words, our communication takes into account the sparsity of
the factors as opposed to “send-to-all” approach in a dense factorization. For example, for AF23560
on 32 (4 x 8) processes, the total number of messages is reduced from 351052 to 302570, or 16%
fewer messages. The reduction is even more with more processes or sparser problems.

3.3 Sparse triangular solve

The sparse lower and upper triangular solves are also designed around the same distributed data
structure. The forward substitution proceeds from the bottom of the elimination tree to the root,
whereas the back substitution proceeds from the root to the bottom. Figure 9 outlines the algo-
rithm for sparse lower triangular solve. The algorithm is based on a sequential variant called “inner
product” formulation. In this formulation, before the K-th subvector x(K) is solved, the update
from the inner product of L(K,1: K — 1) and z(1 : K — 1) must be accumulated and subtracted
from b(K). The diagonal process, at the coordinate (K mod P., K mod P.) of the process grid,
is responsible for solving z(K). Two counters, frecv and fmod, are used to facilitate the asyn-
chronous execution of different operations. frecv[K]| counts the number of process updates to z(K)
to be received by the diagonal process owning x(K). This is needed because L(K,1: K —1) is dis-
tributed among the row processes PROCR(K), and due to sparsity, not all processes in PROCR(K)
contribute to the update. When frecv(K) becomes zero, all the necessary updates to z(K) are
complete and z(K) is solved. fmod(K) counts the number of block modifications to be summed
into the local inner product update (stored in lsum(K)) to x(K). When fmod(K) becomes zero,
the partial sum [sum(K) is sent to the diagonal process that owns z(K).

The execution of the program is message-driven. A process may receive two types of messages,
one is the partial sum lsum(K), another is the solution subvector z(K). Appropriate action is
taken according to the message type. The asynchronous communication enables large overlapping
between communication and computation. This is very important because the communication to
computation ratio is much higher in triangular solve than in factorization.

The algorithm for the upper triangular solve is similar to that illustrated in Figure 9. However,
because of the row oriented storage scheme used for matrix U, there is a slight complication in the
actual implementation. Namely, we have to build two vertical linked lists to enable rapid access of
the matrix entries in a block column of U.

10

Let mycol (myrow) be my process column (row) number in the process grid
Let PROCx(K) be the column processes that own block column K
x="b
lsum =0
for each block K that I own ... Compute leaf nodes
if (myrow = K mod P, & mycol = K mod P, & frecv[K]=0)
2(K)=L(K,K)™! 2(K)
Send z(K) to the column processes PROC¢(K)

endif

end for

while (I have more work) do ... Compute internal nodes
Receive a message)

if (message is lsum(K))
z(K) = z(K) + lsum(K);
frecv(K) = frecv(K) — 1
if (frecv(K)=0)
2(K)=L(K,K)™' - 2(K)
Send z(K) to the column processes PROC¢(K)
endif
else if (message is z(K))
for each I > K, L(I,K) # 0 that I own
lsum(I) =lsum(I) — L(I,K) - z(K)
fmod(I) = fmod(I) — 1
if (fmod(I)=0)
Send lsum(I) to the diagonal process who owns L(I,I)
endif
end for
endif
end while

Figure 9: Distributed lower triangular solve L -z = b.

11

Symbolic Numeric

P=4 16 32 64 128 256 512 Mflops
AF23560 1.69 || 3226 | 11.05| 7.33| 5.94 | 5.88 7.08 7.16 856
BBMAT 11.81 || 636.52 | 163.48 | 92.72 | 52.07 | 32.10 | 22.85 | 18.52 2493
ECL32 14.02 || 462.74 | 123.95 | 68.55 | 37.47 | 23.33 | 17.50 | 14.97 8352
EX11 1.77 || 2745 880 | 5.35| 3.81 | 3.19 3.47 3.39 2628
FIDAPM11 4.10 || 162.37 | 45.33 | 26.53 | 15.55 | 10.22 834 | 7.85 2291
RMA10 1.67 || 21.20 936 | 7.00| 6.86 | 6.49 7.58 7.47 511
TWOTONE 6.61 || 152.27 | 70.22 | 42.44 | 33.36 | 31.46 | 29.96 | 31.72 297
WANG4 4.28 || 104.73 | 29.71 | 16.45 | 10.19 | 7.13 7.11| 6.59 5542

Table 3: LU factorization time in seconds and Megaflop rate on the 512 node T3E-900.

3.4 Parallel performance

Recall that we partition the blocks based on supernodes, so the largest block size equals the number
of columns of the largest supernode. For large matrices, this can be a few thousand, especially
towards the end of matrix L. Such a large granularity would lead to very poor parallelism and load
balance. Therefore, when this occurs, we break the large supernode into smaller chunks, so that
each chunk does not exceed our preset threshold, the maximum block size. By experimenting, we
found that a maximum block size between 20 and 30 is good on the Cray T3E. We used 24 for all
the performance results reported in this section.

Table 3 shows the performance of the factorization on the Cray T3E-900. The symbolic analysis
(steps (1) and (2) in Figure 1) is not yet parallel, so we start with a copy of the entire matrix on each
processor, and run steps (1) and (2) independently on each processor. Thus the time is independent
of the number of processors. The first column of Table 3 reports the time spent in the symbolic
analysis. The memory requirement of the symbolic analysis is small, because we only store and
manipulate the supernodal graph of L and the skeleton graph of U, which are much smaller than the
graphs of L and U. The subsequent columns in the table show the factorization time with a varying
number of processors. For four large matrices (BBMAT, ECL32, FIDAPM11 and WANG4), the
factorization time continues decreasing up to 512 processors, demonstrating good scalability. The
last column reports the numeric factorization rate in Mflops. More than 8 Gflops is achieved for
matrix ECL32. This is the fastest published result we have seen for any implementation of parallel
sparse Gaussian elimination.

Table 3 starts with P = 4 processors because some of the examples could not run with fewer
processors. As a reference, we compare our distributed memory code to our shared memory Su-
perLU_MT code using small numbers of processors. For example, using 4 processor DEC Al-
phaServer 8400 (SMP) 2, the factorization times of SuperLU_MT for matrices AF23560 and EX11
are 19 and 23 seconds, respectively, comparable to the 4 processor T3E timings. This indicates
that our distributed data structure and message passing algorithm do not incur much overhead.

Table 4 shows the performance of the lower and upper triangular solves altogether. When the
number of processors continues increasing beyond 64, the solve time remains roughly the same.
Although triangular solves do not achieve high Megaflop rates, the time is usually much less than
that for factorization.

The efficiency of a parallel algorithm depends mainly on how the workload is distributed and
how much time is spent in communication. One way to measure load balance is as follows. Let

2Each processor is the same as one T3E processor, except there is a 4 MB tertiary cache.

12

P=4 8 16 32 64 || Mflops
AF23560 0.94 | 0.90 | 0.69 | 0.67 | 0.64 42
BBMAT 3.69 | 3.42 | 2.27 | 2.23 | 1.83 56
ECL32 295 | 2.60 | 1.66 | 1.57 | 1.17 128
EX11 0.50 | 0.46 | 0.32 | 0.31 | 0.26 112
FIDAPM11 1.39 | 1.26 | 0.83 | 0.83 | 0.68 70
RMA10 0.77 1 0.74 | 0.58 | 0.53 | 0.50 60
TWOTONE || 4.37 | 4.37 | 3.65 | 3.15 | 2.95 16
WANG4 1.09 | 0.99 | 0.67 | 0.63 | 0.50 112

Table 4: Triangular solves time in seconds and Megaflop rate on the T3E-900.

AF23560 | BBMAT | ECL32 | EX11 | FIDAPM11 | RMA10 | TWOTONE | WANG4
Biact .82 77 .94 .87 .70 .73 43 .92
B .84 .81 .92 .83 .81 .76 .66 .88
Comm
fact .82 .54 .54 07 .99 .92 .92 .62
sol 97 97 .96 97 97 .96 .96 97

Table 5: Load balance and communication on 64 processors Cray T3E.

fi denote the number of floating-point operations performed on process i. We compute the load
balance factor B = % In other words, B is the average workload divided by the maximum
workload. It is clear that 0 < B < 1, and higher B indicates better load balance. The parallel
runtime is at least the runtime of the slowest process, whose workload is highest. In Table 5 we
present the load balance factor B for both factorization and solve phases. As can be seen from the
table, the distribution of workload is good for most matrices, except for TWOTONE.

In the same table, we also show the fraction of the runtime spent in communication. The num-
bers were collected from the performance analysis tool called Apprentice on the T3E. The amount of
communication is quite excessive. Even for the matrices that scale well, such as BBMAT, ECL32,
FIDAPM11 and WANG4, more than 50% of the factorization time is spent in communication.
For the solve, which has much smaller amount of computation, communication takes more than
95% of the total time. We expect the percentage of communication will be even higher with more
processors, because the total amount of computation is more or less constant.

Although TWOTONE is a relatively large matrix, the factorization does not scale as well as
for the other large matrices. One reason is that the present submatrix to process mapping results
in very poor load distribution. Another reason is due to long time in communication. When we
look further into communication time using Apprentice, we found that processes are idle 60% of
the time waiting to receive the column block of L sent from a process column on the left (step (1)
in Figure 8), and are idle 23% of the time waiting to receive the row block of U sent from a process
row from above (step (2) in Figure 8). Clearly, the critical path of the algorithm is in step (1), which
must preserve certain precedence relation between iterations. Our pipelining method shortens the
critical path to some extent, but we expect the length of the critical path can be further reduced by
a more sophisticated DAG (task graph) scheduling. For the solve, we found that processes are idle
73% of the time waiting for a message to arrive (at line (*) in Figure 9). So on each process there
is not much work to do but a large amount of communication. These communication bottlenecks
also occur for the other matrices, but the problems are not so pronounced as TWOTONE.

13

Another problem with TWOTONE is that supernode size (or block size) is very small, only 2.4
columns on average. This results in poor uniprocessor performance and low Megaflop rate.

4 Concluding remarks and future work

We propose a number of techniques in place of partial pivoting to stabilize sparse Gaussian elim-
ination. Their effectiveness is demonstrated by numerical experiments. These techniques enable
static analysis of the nonzero structure of the factors and the communication pattern. As a result,
a more scalable implementation becomes feasible on large-scale distributed memory machines with
hundreds of processors. Our preliminary software is being used in a quantum chemistry application
at Lawrence Berkeley National Laboratory, where a complex unsymmetric system of order 200,000
has been solved within 2 minutes.

4.1 More techniques for numerical stability

Although the current GESP algorithm is successful for a large number of matrices, it fails to
solve one finite element matrix, AV41092, because the pivot growth is still too large with any
combination of the current techniques. We plan to investigate other complementary techniques to
further stabilize the algorithm. For example, we can use a judicious amount of extra precision to
store some matrix entries more accurately, and to perform internal computations more accurately.
This facility is available for free on Intel architectures, which performs all arithmetic most efficiently
in 80-bit registers, and at modest cost on other machines. The extra precision can be used in both
factorization and residual computation.

We can also mix static and partial pivoting by only pivoting within a diagonal block owned by
a single processor (or SMP within a cluster of SMPs). This can further enhance stability.

We can use a more aggressive pivot size control strategy in step (4) of the algorithm. That is,
instead of setting tiny pivots to /¢ - || A]|, we may set it to the largest magnitude of the current
column. This incurs a non-trivial amount of rank-1 perturbation to the original matrix. In the
end, we use Sherman-Morrison-Woodbury formula [7] to recover the inverse of the original matrix,
at the cost of a few more steps of inverse iteration.

It remains to be seen in what circumstances these ideas should be employed in practice. There
are also theoretical questions to be answered.

4.2 High performance issues

In order to make the solver entirely scalable, we need to parallelize the symbolic algorithm. In this
case, we will start with the matrix initially distributed in some manner. The symbolic algorithm
then determines the best layout for the numeric algorithms, and redistributes matrix if necessary.
This also requires us to provide a good interface so the user knows how to input the matrix in the
distributed manner.

For the LU factorization, we will investigate more general functions for matrix-to-process map-
ping and scheduling of computation and communication by exploiting more knowledge from the
EDAGs. This is expected to relax much of the synchrony in the current factorization algorithm,
and reduce communication. We also consider switching to a dense factorization, such as the one
implemented in ScaLAPACK [4], when the submatrix at the lower right corner becomes sufficiently
dense. The uniprocessor performance can also be improved by amalgamating small supernodes into
large ones.

14

To speed up the sparse triangular solve, we may apply some graph coloring heuristic to reduce
the number of parallel steps [21]. There are also alternative algorithms other than substitutions,
such as those based on partitioned inversion [1] or selective inversion [24]. However, these algorithms
usually require preprocessing or different matrix distributions than the one used in our factorization.
It is unclear whether the preprocessing and redistribution will offset the benefit offered by these
algorithms, and will probably depend on the number of right-hand sides.

5 Related work

Duff and Koster [13] applied the techniques of permuting large entries to the diagonal in both
direct and iterative methods. In their direct method using a multifrontal approach, the numeric
factorization first proceeds with diagonal pivots as previously chosen by the analysis on the struc-
ture of A+ AT, If a diagonal entry is not numerically stable, its elimination will be delayed, and a
larger frontal matrix will be passed to the later stage. They showed that using the initial permuta-
tion, the number of delayed pivots were greatly reduced in factorization. They experimented with
some iterative methods such as GMRES, BiCGSTAB and QMR using ILU preconditioners. The
convergence rate is substantially improved in many cases when the initial permutation is employed.

Amestoy, Duff and L’Excellent [2] implemented the above multifrontal approach for distributed
memory machines. The host performs the fill-reducing ordering, estimates each frontal matrix
structure, and statically maps the assembly tree, all based on the symmetric pattern of A + AT,
and then sends the information to the other processors. During numerical factorization, each frontal
matrix is factorized by a master processor and one or more slave processors. Due to possible delayed
pivots, the frontal matrix size may be different than predicted by the analysis phase. So the master
processor dynamically determines how many slave processors will be actually used for each frontal
matrix. They showed good performance on 32 processors IBM SP2.

MCSPARSE [16] is a parallel unsymmetric linear system solver. The key component in the
solver is the reordering step, which transforms the matrix into a bordered block upper triangular
form. Their reordering first uses an unsymmetric ordering to put relatively large entries on the
diagonal. The algorithm is a modified version of Duff [11, 12]. After this unsymmetric ordering,
they use several symmetric permutations, which preserve the diagonal, to order the matrix into the
desired form. With large diagonal entries, there is a better chance of obtaining a stable factorization
by pivoting only within the diagonal blocks. The number of pivots from the border is thus reduced.
Large and medium grain parallelism is then exploited to factor the diagonal blocks and eliminate
the bordered blocks. They implemented the parallel factorization algorithm on a 32 processor
Cedar, an experimental shared memory machine.

Fu, Jiao and Yang [15] designed a parallel LU factorization algorithm based on the following
static information. The sparsity pattern of the Householder QR factorization of A contains the
union of all sparsity patterns of the LU factors of A for all possible pivot selections. This has been
used to do both memory allocation and computation conservatively (on possibly zero entries), but it
can be arbitrarily conservative, particularly for matrices arising from circuit and device simulations.
For several matrices that do not incur much overestimation, they showed good factorization speed
on 128 processors Cray T3E.

It will be interesting to compare the performance of the different approaches.

15

6

Acknowledgement

We are grateful to Iain Duff for giving us access to the early version of the Harwell subroutine MC64,
which permutes large entries to the diagonal.

References

1]

Fernando L. Alvarado, Alex Pothen, and Robert Schreiber. Highly parallel sparse triangular
solution. In Alan George, John R. Gilbert, and Joseph W.H. Liu, editors, Graph theory and
sparse matriz computation, pages 159-190. Springer-Verlag, New York, 1993.

P. R. Amestoy, 1. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric
and unsymmetric solvers. Technical Report RAL-TR-~98-051, Rutherford Appleton Laboratory,
1998.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide, Release 2.0.
SIAM, Philadelphia, 1995. 324 pages.

L. S. Blackford, J. Choi, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide.
SIAM, Philadelphia, 1997. 325 pages.

Timothy A. Davis. University of Florida sparse matrix collection.
http://www.cise.ufl.edu/~davis/sparse.

Timothy A. Davis, John R. Gilbert, Esmond Ng, and Barry Peyton. Approximate minimum
degree ordering for unsymmetric matrices. Talk presented at XIII Householder Symposium on
Numerical Algebra, June 1996. Journal version in preparation.

James W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.

James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W.H.
Liu. A supernodal approach to sparse partial pivoting. Technical Report UCB//CSD-95-883,
Computer Science Division, U.C. Berkeley, 1995. To appear in SIAM J. Matriz Anal. Appl.

James W. Demmel, John R. Gilbert, and Xiaoye S. Li. An asynchronous parallel supernodal
algorithm for sparse gaussian elimination. Technical Report UCB//CSD-97-943, Computer
Science Division, U.C. Berkeley, 1997. To appear in SIAM J. Matriz Anal. Appl.

James W. Demmel, John R. Gilbert, and Xiaoye S. Li. SuperLU and SuperLU_MT, November
1997. http://www.netlib.org/scalapack/prototype/.

I. S. Duff. Algorithm 575. Permutations for a zero-free diagonal. ACM Trans. Mathematical
Software, 7:387-390, 1981.

I. S. Duff. On algorithms for obtaining a maximum transversal. ACM Trans. Mathematical
Software, 7:315-330, 1981.

Tain S. Duff and Jacko Koster. The design and use of algorithms for permuting large entries
to the diagonal of sparse matrices. Technical Report RAL-TR-~97-059, Rutherford Appleton
Laboratory, 1997.

16

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

L.S. Duff, R.G. Grimes, and J.G. Lewis. Users’ guide for the Harwell-Boeing sparse matrix col-
lection (release 1). Technical Report RAL-92-086, Rutherford Appleton Laboratory, December
1992.

C. Fu, X. Jiao, and T. Yang. Efficient sparse LU factorization with partial pivoting on dis-
tributed memory architectures. IEEE Trans. Parallel and Distributed Systems, 9(2):109-125,
1998.

K. A. Gallivan, B. A. Marsolf, and H. A. G. Wijshoff. Solving large nonsymmetric sparse
linear systems using MCSPARSE. Parallel Computing, 22:1291-1333, 1996.

J. George. Nested dissection of a regular finite element mesh. SIAM J. Numerical Analysis,
10:345-363, 1973.

John R. Gilbert and Joseph W.H. Liu. Elimination structures for unsymmetric sparse LU
factors. SIAM J. Matriz Anal. Appl., 14(2):334-352, April 1993.

G. Golub and C. Van Loan. Matriz Computations. Johns Hopkins University Press, Baltimore,
MD, Third edition, 1996.

A. Gupta and V. Kumar. Optimally scalable parallel sparse cholesky factorization. In The 7th
SIAM Conference on Parallel Processing for Scientific Computing, pages 442-447, 1995.

Mark T. Jones and Paul E. Plassmann. Scalable iterative solution of sparse linear systems.
Parallel Computing, (20):753-773, 1994.

Xiaoye S. Li. Sparse Gaussian elimination on high performance computers. Technical Re-
port UCB//CSD-96-919, Computer Science Division, U.C. Berkeley, September 1996. Ph.D
dissertation.

Joseph W.H. Liu. Modification of the minimum degree algorithm by multiple elimination.
ACM Trans. Math. Software, 11:141-153, 1985.

Padma Raghavan. Efficient parallel sparse triangular solution with selective inversion. Tech-
nical Report CS-95-314, Department of Computer Science, University of Tennessee, 1995.

E. E. Rothberg and A. Gupta. An efficient block-oriented approach to parallel sparse cholesky
factorization. In Supercomputing, pages 503-512, November 1993.

Message Passing Interface (MPI) forum. http://www.mpi-forum.org/.

17

