
An Implementation and Evaluation of the AMLS

Method for Sparse Eigenvalue Problems

WEIGUO GAO

XIAOYE S. LI

CHAO YANG

ZHAOJUN BAI

We describe an efficient implementation and present a performance study of an Algebraic Multi-
Level Sub-structuring (AMLS) method for sparse eigenvalue problems. We assess the time and
memory requirements associated with the key steps of the algorithm, and compare it with the
shift-and-invert Lanczos algorithm. Our eigenvalue problems come from two very different ap-
plication areas: the accelerator cavity design and the normal mode vibrational analysis of the
polyethylene particles. We show that the AMLS method, when implemented carefully, outper-

forms the traditional method in broad application areas, when large number of eigenvalues are
sought, with relatively low accuracy.

Categories and Subject Descriptors: G.1.3 [Mathematics of Computing]: Numerical Linear
Algebra—Eigenvalue and eigenvectors (direct and iterative methods)

General Terms: Algorithms;Performance

Additional Key Words and Phrases: sparse eigenvalue problems, multi-level sub-structuring, per-
formance evaluation

1. INTRODUCTION

The automated multi-level sub-structuring (AMLS) method [Bennighof 1993; Ka-
plan 2001; Bennighof and Lehoucq 2004] is a multi-level extension of a simple sub-
structuring method called component mode synthesis (CMS) [Hurty 1960; Craig
and Bampton 1968] originally developed in the 1960s for solving eigenvalue prob-
lems arising from structural engineering analysis. The method has recently been

This work was supported by the Director, Office of Advanced Scientific Computing Research, Divi-
sion of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy
under contract number DE-AC03-76SF00098. The work of the first author was partly supported
by the Special Funds for Major State Basic Research Projects (2005CB321700) and the National
Science Foundation of China under grant number 10571031. Weiguo Gao, wggao@fudan.edu.cn,
School of Mathematical Sciences, Fudan University, Shanghai 200433, China. Most of the work
was performed while this author was visiting Lawrence Berkeley National Laboratory. Xiaoye

S. Li, xsli@lbl.gov, Computational Research Division, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720. Chao Yang, cyang@lbl.gov, Computational Research Division, Lawrence
Berkeley National Laboratory, Berkeley, CA 94720. Zhaojun Bai, bai@cs.ucdavis.edu, Depart-
ment of Computer Science, University of California, Davis, CA 95616.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 0098-3500/2007/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007, Pages 1–27.

2 · W. Gao et al.

shown to be efficient for performing vibration and acoustic analysis of large scale
finite element models of automobile bodies [Kaplan 2001] on a workstation. In
particular, it was shown in [Kropp and Heiserer 2003] that AMLS is several times
faster than the shift-invert Lanczos (SIL) algorithm commonly used in structural
engineering.

The efficiency exhibited by AMLS can be attributed to two main factors: 1) The
method, which can be characterized as a projection method, does not explicitly
construct or maintain an orthornormal basis of the subspace into which the original
eigenvalue problem is projected. This feature makes AMLS extremely appealing
when the number of desired eigenvalues is large. 2) The method does not perform a
sequence of triangular substitutions required in SIL. Thus, it is suitable for an out-
of-core implementation that requires a limited amount of input and output (I/O)
traffic.

It is important to recognize that AMLS usually produces approximate solutions
that are less accurate than those computed by SIL. Although the lack of accuracy
can be tolerated in some applications such as frequency response analysis, it may
be a cause for concern in others. There are a number of ways to improve the
accuracy of the AMLS algorithm [Bekas and Saad 2005]. However, these schemes
are not immediately applicable to the multi-level case, and they tend to increase
the runtime of the computation significantly. Therefore, when we measure the
performance of AMLS and compare it with other techniques, we should keep the
accuracy issue in perspective.

As we will see in Section 2, the basic AMLS algorithm is conceptually easy
to describe. However, an efficient implementation of the algorithm would require
matrix transformations to be carefully organized to minimize the number of floating
point operations and the amount of memory usage. A number of decisions have to
be made at different stages of the algorithm to balance the cost and accuracy of the
computation. These decisions will obviously affect the outcome and performance
of the calculation.

In this paper, we examine a number of practical issues arising from the imple-
mentation of the AMLS algorithm. We will evaluate the performance of AMLS
through two examples that are not related to structural analysis. Our performance
evaluation is based on runtime, memory usage, and accuracy. To the best of our
knowledge, this type of empirical analysis of the AMLS method has not been per-
formed outside of structural analysis applications.

We show that AMLS is more efficient than the traditional shift-and-invert Lanc-
zos method when a large number of eigenvalues are wanted and when the desired
accuracy is limited to a few digits. Instead of performing the matrix transforma-
tions required in AMLS out-of-core, we developed an in-core implementation that
requires significantly less memory than a straightforward implementation. The key
idea behind such an implementation is to recompute some of the intermediate ma-
trix blocks instead of storing them (either in memory or on a disk). We will show
that such an implementation of AMLS results in up to 50% of memory saving while
incurring less than 15% increase in runtime.

Our paper is organized as follows. In Section 2, we give a brief overview on
the algorithmic ingredients of the AMLS method. We also discuss the accuracy of

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

AMLS Method for Sparse Eigenvalue Problems · 3

the algorithm and examine how the selection of sub-structure eigenvectors (modes)
affects the quality of the approximate eigenpairs. The implication of mode selec-
tion on the implementation will also be discussed. In Section 3, we examine the
implementation details. In particular, we illustrate how the matrix operations in
AMLS can be organized to reduce both floating point operations and memory us-
age. Our discussion makes use of a graph-theoretical tool called seperator tree that
allows one to easily track the data flow and task dependency in the sub-structuring
computation. We also present a memory saving technique that requires some in-
termediate results to be recomputed instead of stored. In Section 4, we evaluate
the performance of AMLS on two problems arising from two different application
domains. Concluding remarks are in Section 5.

2. THE AMLS METHOD

Before we get into the nitty gritty details of the implementation issues, it is instruc-
tive to review the basic idea behind the AMLS algorithm for solving the following
algebraic eigenvalue problem

Kx = λMx, (1)

where K is symmetric and M is symmetric positive definite, and both are sparse
and of dimension n-by-n. They may or may not have the same sparsity pattern.
Our description of the method does not make use of any information regarding
the geometry or the physical structure on which the original problem is defined.
Therefore, it is purely algebraic.

2.1 A single-level algorithm

Let the rows and columns of K and M be permuted so that these matrices can be
partitioned as

K =




n1 n2 n3

n1 K11 K13

n2 K22 K23

n3 KT
13 KT

23 K33


 and M =




n1 n2 n3

n1 M11 M13

n2 M22 M23

n3 MT
13 MT

23 M33


, (2)

where the labels n1, n2 and n3 indicate the dimensions of the submatrix blocks, and
n1 +n2 +n3 = n. This permutation can be obtained by applying a matrix ordering
and partitioning algorithm such as the nested dissection algorithm [George 1973]
to the structure of the matrix |K| + |M | (ignoring numerical cancellation).

The pencils (K11, M11) and (K22, M22) now define two algebraic sub-structures
that are connected by the third block rows and columns of K and M which is
referred to as the interface block. We assume that n3 is much smaller than n1 and
n2.

In a single-level algebraic sub-structuring algorithm, we proceed by performing
a block factorization

K = LDLT , (3)

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

4 · W. Gao et al.

where

L =




In1

In2

KT
13K

−1
11 KT

23K
−1
22 In3


 and D =




K11

K22

K̂33


 .

The last diagonal block of D, often known as the Schur complement, is defined by

K̂33 = K33 − KT
13K

−1
11 K13 − KT

23K
−1
22 K23.

The inverse of the lower triangular factor L defines a congruence transformation
that, when applied to the matrix pencil (K, M), yields a new matrix pencil (K̂, M̂):

K̂ = L−1KL−T = D and M̂ = L−1ML−T =




M11 M̂13

M22 M̂23

M̂T
13 M̂T

23 M̂33


 . (4)

The off-diagonal blocks of M̂ satisfy

M̂i3 = Mi3 − MiiK
−1
ii Ki3, for i = 1, 2.

The last diagonal block of M̂ satisfies

M̂33 = M33 −

2∑

i=1

(KT
i3K

−1
ii Mi3 + MT

i3K
−1
ii Ki3 − KT

i3K
−1
ii MiiK

−1
ii Ki3).

The pencil (K̂, M̂) is often known as the Craig-Bampton form [Craig and Bampton

1968] in structural engineering. Note that the eigenvalues of (K̂, M̂) are identi-
cal to those of (K, M), and the corresponding eigenvectors x̂ are related to the
eigenvectors of the original problem (1) through x̂ = LT x.

The sub-structuring algorithm constructs a subspace in the form of

S =




k1 k2 k3

n1 S1

n2 S2

n3 S3


 (5)

where S1, S2 and S3 consist of k1, k2 and k3 selected eigenvectors of (K11, M11),

(K22, M22) and (K̂33, M̂33) respectively. The eigenvectors associated with (K11, M11)
and (K22, M22) will be referred to as the sub-structure modes, and those associated

with (K̂33, M̂33) will be referred to as the coupling modes. The approximations to

the desired eigenpairs of the pencil (K̂, M̂) are obtained by projecting the pencil

(K̂, M̂) onto the subspace spanned by S, i.e., we seek θ and q ∈ R
k1+k2+k3 such

that

(ST K̂S)q = θ(ST M̂S)q. (6)

It follows from the standard Rayleigh-Ritz theory [Parlett 1998, page 236] that θ is
the best approximation to an eigenvalue of (K, M) from span{S}, and the vector
formed by z = L−T Sq gives an approximation to the corresponding eigenvector.

We make the following remarks. 1) The algorithm is most efficient when ki can
be chosen to be much smaller than ni. In this case, Si can be computed by a

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

AMLS Method for Sparse Eigenvalue Problems · 5

shift-and-invert Lanczos procedure. The cost of this computation is generally small
compared to the rest of the computation, especially when this algorithm is extended
to a multi-level scheme. 2) In some applications, n3 can be much smaller than both
n1 and n2. In this case, one can retain all the coupling modes by simply setting
k3 = n3 and replacing S3 with In3

.
Decisions must be made on how to select eigenvectors from each sub-structure.

The selection should be made in such a way that the dimension of the subspace
spanned by columns of S is small while a sufficient amount of spectral information
of (K, M) is retained. The process of choosing appropriate eigenvectors from each
sub-structure is referred to as mode selection [Yang et al. 2005]. A few strategies
have been proposed in [Elssel and Voss 2004] on how to select eigenvectors from
each sub-structure. However, all of these stategies, which are heuritics derived from
the the accuracy analysis of the sub-structuring algorithm, tend to be somewhat
conservative, i.e. they tend to select more eigenvectors than is necessary. More
research is required to develop better strategies to optimize the performance of the
sub-structuring algorithm.

2.2 A multi-level extension

The single-level algebraic sub-structuring algorithm can be extended to a multi-
level algorithm in a natural way. The matrix reordering and partitioning scheme
used to create the block structure (2) can be applied recursively to (K11, M11) and
(K22, M22) respectively to produce a multi-level division of (K, M) into smaller
submatrices. We will use a two-level example below to illustrate the major steps of
the multi-level algorithm.

K =




K11

K22 sym.

K31 K32 K33

K44

K55

K64 K65 K66

K71 K72 K73 K74 K75 K76 K77


 , M =




M11

M22 sym.

M31 M32 M33

M44

M55

M64 M65 M66

M71 M72 M73 M74 M75 M76 M77




(7)
Because of symmetry, we store only the non-zero matrix elements in the lower

triangular portions of K and M . This multi-level nested structure can be obtained
by a graph partitioning software package such as Metis [Karypis and Kumar 1998]
which algebraically identifies the separators recursively. In addition to providing an
ordering scheme, Metis also returns a separator tree, a hierarchical graph in which
each node is mapped to a set of columns (or rows) in K and M . In a separator
tree such as the one shown in Figure 1(a), the top level node (the rectangular box
labeled with 15) corresponds to the first-level separator that partitions K and M
into two sub-structures. In Figure 1(b), this separator is shown as shaded rows
and columns that intersect at the lower right corner of the matrix marked by 15.
Each sub-structure can be further partitioned into two smaller sub-structures. The
separators associated with these sub-partitions (marked by 7 and 14 in Figure 1(a)
and Figure 1(b)) are connected to the first level separator in Figure 1(a) so that
the hierarchical structure of the partition can be identified easily. A sub-structure
that is not further partitioned is represented by a leaf node that appears at the
bottom of the separator tree. In addition to characterizing the nested structure of

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

6 · W. Gao et al.

a matrix partition, the separator tree can also be used to succinctly describe the
computational tasks and their dependencies in the AMLS algorithm as we will see
below.

5

7

1 2

3

4

6

8 9

10 13

14

15

11 12

(a)

��
��
��
��

��
��
��
��

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
���������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

���
���
���
���

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
����������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��������������
��������������
��������������
��������������

��������������
��������������
��������������
����������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
��������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
���������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��������������
��������������
��������������
��������������

��������������
��������������
��������������
����������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�������������������������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

1

2

3

4

5

6
7

8

9

10

11

12

13
14

15

(b)

Fig. 1. The separator tree (a) and the reordered matrix (b) for a three-level dissection.

Once the matrix pencil (K, M) has been partitioned and reordered in the form
of (7), we can perform Gaussian elimination on K to obtain K = LDLT , where D
is block diagonal as follows

D = L−1KL−T = diag(K11, K22, K̂33, K44, K55, K̂66, K̂77)
def
= K̂ . (8)

In this elimination process, only the diagonal blocks corresponding to the separators
(i.e., K33, K66, and K77) are modified. The diagonal blocks corresponding to the
leaves are not altered. Applying the same congruence transform to M yields

M̂ =




M11

M22 sym.

cM31
cM32

cM33

M44

M55

cM64
cM65

cM66

cM71
cM72

cM73
cM74

cM75
cM76

cM77




(9)

Note that M̂ and M have the same block structure. Again, the diagonal blocks
associated with the separator tree leaves are not altered, but all other blocks (in-
cluding all the off-diagonal blocks) are modified. Moreover, the off-diagonal blocks

of M̂ typically contain more non-zeros than the corresponding blocks in M .
The congruence tranformation applied to (K, M) is followed by several indepen-

dent sub-structure calculations in which selected eigenpairs of the smaller pencils
(Kii, Mii) are computed for i = 1, 2, . . . , N , where N is the number of leaf nodes in
the separator tree. Let Si be the matrix that contains ki computed eigenvectors of
(Kii, Mii) (or (K̂ii, M̂ii)) as its columns. These eigenvectors are assembled to form
an n-by-p matrix

S = diag(S1, S2, . . . , SN) , (10)

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

AMLS Method for Sparse Eigenvalue Problems · 7

where p =
∑N

i=1 ki. Approximate eigenpairs of (K, M) can then be obtained by
applying the Rayleigh-Ritz procedure within the subspace span{S}. To summarize,
we list the major steps of the AMLS algorithm in Algorithm 1.

Algorithm 1. Algebraic Multi-level Sub-structuring (AMLS)

Input: A matrix pencil (K, M), where K is symmetric and nonsingular
and M is symmetric positive definite

Output: θj ∈ R1 and zj ∈ Rn, (j = 1, 2, ..., k) such that Kzj ≈ θjMzj

(1) Partition and reorder K and M to be in the form of (7)
(2) Perform block factorization K = LDLT

(3) Apply the congruence transformation defined by L−1 to (K, M) to

obtain (K̂, M̂) defined by (8) and (9)
(4) Compute a subset of the eigenpairs of interest for the subproblems

(Kii, Mii) (and (K̂ii, M̂ii)). Then, form the matrix S in (10)

(5) Project the matrix pencil (K̂, M̂) onto the subspace span{S}

(6) Compute k desired eigenpairs (θj , qj) from (ST K̂S)q = θ(ST M̂S)q,
and set zj = L−T Sqj for j = 1, 2, ..., k

(7) Apply the inverse of the permutation used in Step (1) to zj to
restore the original order of the solution.

2.3 Accuracy

The accuracy of the approximate eigenpairs would depend on how S1, S2 and
S3 are constructed in (5). Intuitively, if one increases the dimension of the sub-
space span{S} by computing more sub-structure eigenvectors (modes) and includ-
ing them in Si, the accuracy of the approximation can be improved. However,
the analysis performed in [Yang et al. 2005] indicates that the amount of accuracy
improvement may be negligible as a result of simply including more sub-structure
modes in Si while the cost of solving the projected eigenvalue problem

(ST K̂S)q = θ(ST M̂S)q, (11)

can become significantly higher.
Thus, before we begin to discuss the implementation of AMLS, it is worthwhile to

take a closer look at the relationship between mode selection and the accuracy of the
approximate eigenpairs returned by AMLS. The following dissusion is a summary
of the analysis presented in [Yang et al. 2005].

To simplify the discussion, we will look at a single-level partitioning, and work
with the matrix pencil (K̂, M̂), where K̂ and M̂ are defined in (4). As noted earlier,

(K̂, M̂) and (K, M) have the same set of eigenvalues. If x̂ is an eigenvector of

(K̂, M̂), then x = L−T x̂ is an eigenvector of (K, M), where L is the transformation
defined in (3).

Let (µ
(i)
j , v

(i)
j) be the j-th eigenpair of the i-th subproblem (i = 1, 2), and

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

8 · W. Gao et al.

(µ
(3)
j , v

(3)
j) be the j-th eigenpair of the coupling subproblem, i.e.,

Kiiv
(i)
j = µ

(i)
j Miiv

(i)
j , for i = 1, 2

K̂iiv
(3)
j = µ

(3)
j M̂iiv

(3)
j ,

where (v
(i)
j)T Miiv

(i)
k = δj,k, (v

(3)
j)T M̂iiv

(3)
k = δj,k, and

δj,k =

{
1 if j = k
0 otherwise

Let µ
(i)
j be ordered such that

µ
(i)
1 ≤ µ

(i)
2 ≤ · · · ≤ µ(i)

ni
, (12)

then we can express x̂ as

x̂ =




V1

V2

V3







y1

y2

y3


 , (13)

where Vi = (v
(i)
1 v

(i)
2 ... v

(i)
ni

), i = 1, 2, 3, and y = (yT
1 , yT

2 , yT
3)T 6= 0.

It is easy to verify that y satisfies the following canonical generalized eigenvalue
problem




Λ1

Λ2

Λ3







y1

y2

y3


 = λ




In1
G13

In2
G23

GT
13 GT

23 In3







y1

y2

y3


 , (14)

where Λi = diag(µ
(i)
1 , µ

(i)
2 , . . . , µ

(i)
ni

) for i = 1, 2, 3, and Gi3 = V T
i M̂i3V3 for i = 1, 2.

This pencil is clearly congruent to the pencils (K̂, M̂) and (K, M). Thus it shares
the same set of eigenvalues with that of (K, M). If x̂ can be well approximated by a
linear combination of the columns of S, then the vector yi (i = 1, 2, 3) must contain
only a few entries with large magnitude. All the other components of yi are likely
to be small and negligible. Multiplying (14) from the left by diag(Λ1, Λ2, Λ3)

−1

yields

yi = λ(Λi − λIni
)−1Gi3y3, i = 1, 2 (15)

y3 = λ(Λ3 − λIn3
)−1(GT

13y1 + GT
23y2) (16)

It follows that the j-th component of yi is given by

|eT
j yi| = ρλ(µ

(i)
j)g

(i)
j , (17)

where,

ρλ(ω) = |λ/(ω − λ)|, (18)

g
(i)
j = |eT

j Gi3y3| for i = 1, 2, and g
(3)
j = |eT

j (GT
13y1 + GT

23y2)|.

When g
(i)
j can be bounded from above and below by a moderate constant, the

magnitude of |eT
j yi| is essentially determined by ρλ(µ

(i)
j) which is called a ρ-factor

in [Yang et al. 2005]. It is easy to see that ρλ(µ
(i)
j) is large when µ

(i)
j is close to

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

AMLS Method for Sparse Eigenvalue Problems · 9

λ, and it is small when µ
(i)
j is away from λ. For the smallest eigenvalue λ1 of

(K, M), it is easy to show that ρλ1
(µ

(i)
j) is monotonically decreasing with respect

to j. Thus, if λ1 is the desired eigenvalue, one should naturally choose the matrix
Si in (5) to contain only the leading ki columns of Vi, for some ki ≪ ni. When
more than one eigenpairs are needed, the selection criterion becomes slightly more
complicated. It will involve examining the ρ-factors associated with the smallest
and largest eigenvalues of interest.

It is shown in [Yang et al. 2005] that a modest upper bound for g
(i)
j can be easily

derived from the orthonormality constraint on the eigenvector of (14). However,

it appears to be difficult to derive a lower bound on g
(i)
j . The numerical examples

presented in [Yang et al. 2005] indicate that g
(i)
j can be tiny for some j when ρ

(i)
j

is relatively large. In this case, one can potentially leave the eigenvector associated
with j-th eigenvalue of the i-th sub-structure out of Si without sacrificing the
accuracy of the approximate eigenpair. This would reduce the cost associated with
solving the projected problem (11) in the AMLS algorithm. However, since we

cannot compute the magnitude of g
(i)
j in advance, such a mode selection strategy

is not practical. We are currently investigating a number of ways to estimate

the magnitude of g
(i)
j , these estimates may be used to improve the existing mode

selection strategy which is based merely on a ρ-factor threshold.
In addition to the truncation error, the accuracy of the AMLS algorithm may

be affected by the potential instability introduced by the lack of a global pivoting
scheme in the construction of the eliminator L when the matrix K is indefinite.
Our implementation of the AMLS algorithm allows local pivoting to be performed
on each diagonal block of K (by calling either SuperLU or LAPACK symmetric
indefinite factorization routines). However, there is no guarantee that all elements
of L are bounded. On the other hand, the use of a global pivoting scheme is
difficult because it tends to destroy the desirable sub-structure partition. More
research is needed to balance the issue of numerical stability and the efficiency of
sub-structuring in this case.

When K is indefinite, it may be tempting to interchange the roles of K and M and
use M to construct the eliminator, which guarantees numerical stability. However,
this scheme is not appropriate when the eigenvalues of interest are clustered at the
low end of the spectrum. The main reason is that the ρ-factors associated with
the desired eigenvalues (which, in this case, are the largest eigenvalues of (M, K))
would decrease rapidly due to the relatively large separation between these large
eigenvalues. Thus, it would be difficult for the AMLS algorithm to obtain good
approximation to more than a few eigenpairs.

3. IMPLEMENTING AMLS

We should emphasize that the major steps outlined in Algorithm 1 constitute only
a conceptual description of the AMLS procedure. To develop an efficient implemen-
tation, one must carefully organize these steps in a way that would lead to minimal
use of memory and floating-point operations (flops).

The complexity of the implementation is magnified by the fact that the con-
gruence transformation L−1ML−T involves more matrix operations than a block

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

10 · W. Gao et al.

Gaussian elimination. The update of M must be carried out by multiplying M with
block elementary eliminators of K (and their transposes) from both the left and
the right. Hence, the computation of L−1ML−T cannot be organized as a strictly
left-looking or right-looking procedure; it has both right- and left-looking dataflow
pattern.

If we were to compute M̂ = L−1ML−T explicitly as suggested by Step (3) of

Algorithm 1, the memory usage of the algorithm would become excessive because M̂
is likely to contain a significant number of non-zero fills in each off-diagonal matrix
block. However, since computing the desired eigenvalues and the corresponding
eigenvectors does not require the presence of M̂ explicitly, a more efficient scheme
is to project M into the subspace spanned by columns of L−T S incrementally as
L and S are being computed. In other words, we can interleave the computations
of block elimination (Steps (2) and (3)), the computations of the sub-structure
eigenvectors (Step (4)), and the formation of the projected matrices (Step (5)).
The pseudo-code in Figure 2 illustrates how specific matrix operations performed
in Steps (2)-(5) of Algorithm 1 are interleaved. The sequence in which these matrix
operations are performed can also be conveniently described in terms of the traversal
of the separator tree shown in Figure 1.

3.1 Interleave congruence transformation and projection calculation

For a node i in a separator tree, we use Ancestors(i) to denote the set of nodes
on the path from i’s parent to the root of the tree. For instance, Ancestors(10) =
{14, 15} in Figure 1. Similarly, we use Descendants(i) to denote the set of nodes
that belong to the subtree rooted at i (excluding i).

We distinguish the operations performed at leaf nodes from those performed at
upper level tree nodes. At a leaf node i, one performs a Cholesky factorization of
the diagonal block Kii in order to construct the i-th block column of L. Let mi

be the dimension of Kii. It follows from the standard theory on block Gaussian
elimination that computing the i-th block column of L defines an elementary block
eliminator

Lei
= LEiE

T
i ,

where Ei = (0, ..., Ii, ..., 0)T is an n×mi matrix. Note that L = Πnb

i=1Lei
, where nb

is the number of block columns in L. We say that the i-th leaf node is eliminated
when we mulitply K from the left and right by L−1

ei
and L−T

ei
respectively.

Applying Lei
to K and M amounts to modifying block rows and columns associ-

ated with the tree nodes that belong to Ancestors(i). These nodes are shaded in
Figure 3(a), for example, when the leaf node being eliminated is the first block col-
umn of K and M . The corresponding matrix blocks being updated in K and M are
shaded in Figure 3(b). It is important to note that the update of K is “one-sided”
(Line 9 of the pseudo-code in Figure 2). That is, because multiplying K from the
left by L−1

ei
zeros out matrix entries below the i-th diagonal block of the product,

post-multiplying L−1
ei

K with L−1
ei

does not modify the trailing matrix block to the
lower right of i-th diagonal block of L−1

ei
K. However, as we can see from Line 10 of

the pseudo-code in Figure 2, the update of M requires multiplications from both
sides because L−1

ei
M does not zero out matrix entries below the i-th diagonal block.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

AMLS Method for Sparse Eigenvalue Problems · 11

1. For i = 1 : N % N is the number of block columns (or nodes)

2. If i is a leaf node

3. Factor(Kii)
4. [Di, Zi] = Eigs(Kii, Mii)
5. For j ∈ Ancestors(i)

6. T1 = KjiK
−1
ii % temporary work space

7. T2 = Mji − T1Mii % temporary work space

8. For k ∈ {j} ∪Ancestors(j) % (k, i), (i, j)→ (k, j), right-looking

9. Kkj ← Kkj −KkiT
T
1

10. Mkj ←Mkj −MkiT
T
1 −KkiK

−1
ii T T

2

11. EndFor

12. Mji = T2Zi % partial projection from the right

13. EndFor

14. Kii = Di, Mii = I

15. ElseIf i is separator node

16. Factor(bKii)

17. [Di, Zi] = Eig(bKii, cMii) % Schur complement

18. For j ∈ Ancestors(i)

19. Lji = Kji
bK
−1
ii % stored explicitly

20. For k ∈ Descendants(i) % (j, i), (i, k)→ (j, k), left-looking

21. Mjk =Mjk − LjiMik

22. EndFor

23. T2 = Mji − LjiMii % temporary work space

24. For k ∈ {j} ∪Ancestors(j) % (k, i), (i, j)→ (k, j), right-looking

25. Kkj ← Kkj −KkiL
T
ji

26. Mkj ←Mkj −MkiL
T
ji − LkiT

T
2

27. EndFor

28. Mji = T2Zi % partial projection from the right

29. EndFor

30. For k ∈ Descendants(i)
31. Mik = ZT

i Mik % projection from the left

32. EndFor

33. Kii = Di, Mii = I

34. EndIf

35. EndFor

Fig. 2. Pseudo-code for Steps (2)-(5) of Algorithm 1.

Also computed at the leaf node i is a partial eigen-decomposition of the pencil
(Kii, Mii). This calculation is typically done by using a shift-and-invert Lanczos
(SIL) procedure. The computed eigenvector matrix Zi is used immediately to
partially construct the i-th block column of the projected matrix ST L−1ML−T S
in Eq. (6). This partial construction is achieved by replacing Mji with Mji =
(Mji − KjiK

−1
ii)Zi, for j ∈ Ancestors(i) (Line 12 of the pseudo-code in Figure 2,

illustrated in Figure 4). Since Zi consists of a small subset of the eigenvectors of
(Kii, Mii), Mji has far fewer columns than Mji. As a result, the calculation of
Mji can be completed with a much lower computational complexity.

At a higher level tree node i, a similar set of operations are performed. What is
different at such a node is that the Cholesky factorization of K̂ii and the partial
eigen-decomposition of (K̂ii, M̂ii) (in Lines 16-17 of the pseudo-code in Figure 2)
are performed on the diagonal blocks (of K and M) that have been modified by its

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

12 · W. Gao et al.

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

1 2 4 5 8 9 11 12

3 6 10 13

7 14

15

����
����
����
����

����
����
����
����

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

 1

 2

 3

 4

 5

 6
 7

 8

 9

10

11

12

13
14

15

− being updated

− sparse LU and eigen factorization

Fig. 3. Elimination of leaf node i = 1 and the associated updates to matrix K and M . See lines
8-11 in the code.

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

1 2 4 5 8 9 11 12

3 6 10 13

7 14

15

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

 1

 2

 3

 4

 5

 6
 7

 8

 9

10

11

12

13
14

15

− diagonal being completed

− being projected from the right

Fig. 4. Projection from the right for leaf node i = 1.

descendents. These operations cannot be initiated until the contributions from all
its descendent nodes have been included.

In addition, the elementary eleminator constructed at such a node is not only
applied to block columns of M that are associated with the ancestors of i, but also
to Mjk, where j ∈ Ancestors(i) and k ∈ Desendant(i). This additional step
makes the implementation of the AMLS neither a right-looking nor a left-looking
algorithm. In Figure 5(a), the dependency of the leaf nodes 1 and 2 on the seperator
node 3 is clearly indicated by the direction of the arrows. Figure 5(b) shows that
applying the elemintary eliminator constructed at the seperator node 3 to Mjk

amounts to subtracting from Mjk a multiple of M3k for j ∈ Ancestors(3) =
{7, 15} and k ∈ Desendant(3) = {1, 2}. It is important to recall that Mjk

typically has far fewer columns than Mjk, thus working with Mjk is less costly
than working with Mjk directly.

Since K̂ii and M̂ii are typically dense, and these matrices are much smaller in
dimension compared to the diagonal blocks associated with the leaf nodes, the
partial eigen-decomposition of (K̂ii, M̂ii) can usually be computed by an LAPACK
routine for dense symmetric eigenvalue problems. All eigenvalues and eigenvectors
of (K̂ii, M̂ii) are computed, but only a selected number of desired eigenvectors are
retained and stored in Zi. The matrix Zi is used to partially construct the i-th block

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

AMLS Method for Sparse Eigenvalue Problems · 13

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

1 2 4 5 8 9 11 12

3 6 10 13

7 14

15

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

 1

 2
 3

 4

 5

 6
 7

 8

 9

10

11

12

13
14

15

− dense LU and eigen factorization

− being updated

Fig. 5. For seperator node i = 3, more congruence updating is needed for the right-projected
blocks in the descendent nodes. See lines 20-22 in the code.

column of the projected matrix ST L−1ML−T S. This partial projection produces
Mji for j ∈ Ancestors(i). Moreover, we can now multiply ZT

i from the left with
Mik for k ∈ Descendant(i) to complete the computation of the i-th block row of
ST L−1ML−T S (shaded blocks in Figure 6 for i = 3). In fact, upon the completion
of the matrix operations performed at the seperator node i, the leading i block rows
and colums of ST L−1ML−T S become available.

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��
��

��
��
��
��
��

 1

 2

 3

 4

 5

 6
 7

 8

 9

10

11

12

13
14

15

− being completed

Fig. 6. Left-side projection for separator node i = 3. See lines 30-32 in the code.

3.2 A semi-implicit representation of L

When the congruence transformation, the sub-structure mode extraction and the
projection calculation (steps (3)-(5) in Figure 1) are interleaved in the way that has

been described above, there is no need to store M̂ = L−1ML−T . When the i-th
separator node is being eleminated, the pseudo-code listed in Figure 2 maintains
Mji for i ∈ Descendant(i). These matrix blocks typically have far fewer columns
than Mji. Thus the cost for storing them is significantly lower than that for storing

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

14 · W. Gao et al.

the corresponding blocks in M̂ . Applying Lei
to M will introduce some non-zero

fills in Mkj for k, j ∈ Ancestors(i). However, as we move from the leaf nodes
of the separator tree up to the root, the number of these trailing blocks become
smaller and smaller. They eventually all vanish as the computation of ST M̂S is
completed. Therefore, by interleaving Steps (2), (3) and (4) of Algorithm 1, we can

reduce the amount of memory required in the calculation of ST M̂S.
However, what we have not addressed in Section 3.1 is how L is stored. Due

to the non-zero fill introduced during the block Cholesky factorization of K, the
number of non-zeros in L can potentially be much larger than those in K. Hence
it is important to develop a technique for reducing memory usage required for L.

In the AMLS implementation presented in [Kaplan 2001], each block column of L
is stored to a disk immediately after it has been used to update K and M . Such an
out-of-core implementation reduces the memory requirement of AMLS significantly
while incurring a modest amount I/O cost.

In this paper, we present an alternative approach that is equally effective. Note
that L has the same block structure as K (see (7)), with Lji = KjiK

−1
ii for a

leaf node i, and Lji = K̂jiK̂
−1
ii for a separator node i. These matrices tend to

be denser, thus would require additional storage space to hold the nonzero fill-ins.
The basic idea of our approach is to compute and store only the matrix blocks
Lji where i is a separator node. All other nonzero matrix blocks in L are not
explicitly computed or stored. Whenever Lji is needed, for some leaf node i, in the
intermediate matrix-matrix multiplication of the form B = LjiC, we apply KjiK

−1
ii

to C directly through a sequence of sparse triangular solves and matrix-matrix
multiplications instead of forming Lji = KjiK

−1
ii first. Such a scheme essentially

amounts to recomputing KjiK
−1
ii whenever it is needed. Because a fully explicit

representation of L is avoided in our approach, we call this scheme a semi-implicit
representation of L.

We underlined in Line 10 of the pseudocode in Figure 2 where the recomputation
occurs. It is readily seen that the inner k-loop would require three matrix-matrix
multiplications if L is computed and stored explicitly. In our semi-implicit scheme,
the inner k-loop requires a triangular solve in addition to three matrix-matrix mul-
tiplications. If we assume the cost of a triangular solve is about the same as a
matrix-matrix multiplication, the semi-implicit scheme would incur roughly 33%
runtime overhead within the k-loop associated with a leaf. However, because con-
structing the projected pencil (ST K̂S, ST M̂S) involves more than just these matrix
multiplications, the actual overall runtime increase measured in practice is less than
15%, as we will see in Section 4.2.

To give an intuitive idea of how much space might be saved, let us consider a
matrix partition that consists of ℓ levels, recomputing the off-diagonal blocks of L
instead of storing them explicitly allows us to reduce the total number of stored
off-diagonal blocks from c(ℓ) to to c(ℓ − 1), where

c(ω) =

ω∑

j=1

2jj. (19)

If we assume that each off-diagonal block of L is dense and all off-diagonal blocks

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

AMLS Method for Sparse Eigenvalue Problems · 15

are of the same size, the percentage of memory saved for L is roughly

c(l) − c(l − 1)

c(l)
=

2l l
∑l

j=1 2jj
≥

2l l

l
∑l

j=1 2j
=

2l

2(2l − 1)
≈ 50%.

But, since computing ST L−1ML−T S without using the semi-implicit scheme
would require storing not only L but also selected matrix blocks of L−1ML−T ,
the actual percentage of memory saved is lower than the estimate given here. In
Section 4.2, we report the actual memory savings for two specific problems.

3.3 Computing Ritz pairs

Since an efficient implmentation of the AMLS algorithm requires one to interleave
Steps (2) - (5) outlined in Algorithm 1, we will combine these steps into a single
phase of the AMLS implementation. We will later refer to this phase as phase 1 of
the AMLS computation. The rest of the AMLS calculation, which involves solving
the projected eigenvalue problem (11) and assembling the Ritz vectors z = L−T Sq,
will be lumped into phase 2 of the implementation.

The projected pencil (ST K̂S, ST M̂S) is generally sparse. In fact, K̃ ≡ ST K̂S

is diagonal, and M̃ ≡ ST M̂S typically has the same block nonzero structure as
that of M . Furthermore, the diagonal blocks of M̃ are all diagonals. Thus, it is
appropriate to use a SIL procedure to compute the desired eigenpairs of (K̃, M̃) in
this case. However, when the dimension of the projected problem is relatively small
(nproj ≤ 5000), and when the number of eigenpairs required is a large fraction of
nproj, we observe that it is often more efficient to use a dense eigensolver to compute

all eigenpairs of (K̃, M̃).
When nproj becomes very large, SIL can be computationally costly too. To re-

duce the cost of the Ritz value calculation, Kaplan proposed an alternative, special
subspace iteration (SSI) scheme [Kaplan 2001]. Kaplan’s scheme first reduces the

projected pencil to an even smaller pencil by removing rows and columns of (K̃, M̃)

associated with the “undesirable” diagonal entries in K̃. Eigenpairs of this reduced
pencil (K̃B, M̃B) are computed by the SIL algorithm. The nk Ritz vectors obtained
from SIL are used as the starting basis for a block inverse iteration, where nk is
larger than the number of eigenvalues wanted. Denote this starting subspace by
Y (0). The jth iteration of the SSI scheme comprises the following steps. First,
one step of inverse iteration of the form X(j) = K̃−1

B M̃BY (j−1) produces another
subspace X(j) of size nk. Second, each vector from X(j) is paired with the corre-
sponding Ritz vector in Y (j−1) to form a two-dimensional subspace, from which the
best approximation to the lowest eigenpair is computed. Third, the nk Ritz vec-
tors obtained from the two-dimensional projected problems form a new subspace to
project the pencil (K̃B, M̃B), and the nk approximate eigenvectors computed from
this projection spans the subspace Y (j) for the next iterate. The cost of the Kaplan
scheme is proportional to the number of block inverse iterations performed. Per-
forming more inverse iterations improves the accuracy of the approximate eigenpairs
but increases the runtime. We will compare the cost and accuracy of the Kaplan’s
scheme with those of SIL in the next section.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

16 · W. Gao et al.

4. PERFORMANCE EVALUATION

Since the AMLS algorithm involves only algebraic operations, its implementation
does not depend on application specific knowledge. However, the performance of the
algorithm may vary from one problem to another due to differences in the sparsity
structure and spectral properties of the problems. Up until now, the performance
of the algorithm has only been evaluated and analyzed for problems that arise from
structural engineering [Kaplan 2001; Kropp and Heiserer 2003]. It has been shown
that the performance of AMLS compares favorably with the Lanczos algorithm and
the algorithm can reduce the frequency repsonse calculation time by several orders
of magnitude on workstations [Kaplan 2001].

In this section, we examine the general performance of AMLS by applying it to
eigenvalue problems arising from two other types of applications.

In the first problem, the stiffness and mass matrices are obtained from a finite el-
ement discretization of a six-cell damped detuned accelerator structure (DDS) [Ko
et al. 2003]. The eigenvalues of interest are related to the cavity resonance frequen-
cies of the accelerator and the corresponding eigenvectors are used to model the
electromagnetic accelerating field.

The second problem we include here arises from the normal mode vibrational
analysis of the polyethylene (PE) particles [Yang et al. 2001]. In this application,
we are interested in the low frequency vibrational modes of the PE molecule, which
can be solved by computing the eigenvalues and eigenvectors associated with the
Hessian of a potential function that describes the interaction between different
atoms. The dimension of the Hessian matrix is three times the number of atoms in
the molecule.

Table I summarizes the dimension and sparsity of the test cases. Figure 7 shows
the geometric model of the six-cell accelerator cavity structure and the sparsity
pattern of the matrix |K| + |M | after K and M are permuted by Metis. Figure 8
shows the molecular structure of the PE3K particle and the sparsity pattern of the
Hessian matrix after it is permuted by Metis.

Problem Dimension nnz(|K|+ |M |) Discipline

DDS6 coarse 5584 95138 accelerator, 6 cells, coarse grid
DDS6 fine 65730 1455772 accelerator, 6 cells, fine grid
PE3K 9000 3279690 vibrational analysis, 3000 atoms
PE12K 36000 7128473 vibrational analysis, 12000 atoms

Table I. Characteristics of the test problems.

As we will see in the following, the performance of AMLS, which can be measured
by runtime, memory requirement and the accuracy of the computed eigenvalues,
depends on a number of choices one has to make at runtime. These choices include,
for example, the number of partitioning levels (nlevels), the number of eigenpairs
(nmodes) one must compute and choose from each sub-structure, and the method
one uses to compute the eigenpairs of the final projected problem.

Although it remains difficult to identify the optimal choices for some of the run
time parameters a priori, the following performance evaluation demonstrates the
effect of these parameters on the performance of AMLS and the trade-offs between

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

AMLS Method for Sparse Eigenvalue Problems · 17

0 1000 2000 3000 4000 5000

0

1000

2000

3000

4000

5000

nz = 95138

Fig. 7. The accelerator cavity of DDS6 coarse and the sparsity pattern of |K|+ |M | after it is
permuted by Metis.

Fig. 8. The molecular structure of PE3K and the sparsity pattern of the Hessian after it is
permuted by Metis.

different choices. In addition, the empirical results presented below provide some
general guidelines on how to change these paramters in order to achieve better
performance.

All computational experiments reported below are carried out on a single IBM
Power3 processor with a clock speed of 375Mhz and 2 MB of level-2 cache. The ex-
ternal software packages used are: Metis [Karypis and Kumar 1998], ARPACK [Lehoucq
et al. 1998], SuperLDLT [Ng and Peyton 1993] and SuperLU [Demmel et al. 1999].
We compiled all the codes using IBM’s xlc (C) or xlf (Fortran) compilers with -O3

optimization flag. We use nev to denote the number of wanted eigenvalues, nlevels

to denote the number of partitioning levels, and nmodes to denote the number of
modes chosen from each sub-structure. The accuracy tolerance for each subproblem
is denoted by τsub, and the accuracy tolerance for the projected problem is denoted
by τproj . In all the experiments, we set τsub = 10−10 and τproj = 10−5.

4.1 Variation of runtime with respect to the partitioning levels

In the first set of experiments, we try to assess the variation in the overall runtime
of AMLS with respect to the number of partitioning levels (nlevels). In general, as

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

18 · W. Gao et al.

one increases the number of levels in algebraic partitioning, the number of spectral
components that can be chosen from each sub-structure is reduced. The exact
number of spectral components that should be chosen from each sub-structure
is problem dependent, and the selection rule should be based on the theory and
heuristics established in [Yang et al. 2005]. However, to focus on the effect of
partitioning depth, we set aside the accuracy issue here and keep the total number
of modes selected from all sub-structures roughly the same for all partitioning
schemes. That is, if we double the number of sub-structures by dividing each sub-
structuring into two smaller sub-structures, we then reduce nmodes associated with
each sub-structure by a half.

Table II shows the timing statistics for the DDS6 fine problem. Since the sepa-
rators in this problem are small, all the coupling modes are retained in the subspace
(10). In addition to the total time, we examined the timing breakdown of the two
major phases of the implementation defined in Section 3.3. Recall that in the first
phase of the implementation, Steps (2)-(5) of Algorithm 1 are interleaved. In the
second phase, we compute the Ritz approximation to the desired eigenpairs. The
cost of the first phase depends on nlevels and the number of modes selected from
the sub-structures (nmodes). The cost of the second phase depends on the total
number of eigenpairs of (K, M) to be computed (nev) in addition to nlevels and
nmodes.

The total amount of time required to compute the smallest 100 eigenpairs of this
problem is listed in Column 5 of the table for different choices of nlevels. We observe
that the best timing is obtained when nlevels = 3. As a comparison, computing
these eigenpairs by a shift-and-invert Lanczos (SIL) method (using ARPACK and
SuperLLT packages [Ng and Peyton 1993] with Metis reordering) would take 407
seconds. Thus when nev = 100, AMLS with nlevels = 3 is competitive with SIL in
speed. In Columns 3 and 4 of the table, we show how the runtime is split between
the first and the second phases of the AMLS calculation. We observe that the
phase 1 calculation becomes less time consuming as we increase nlevels. However,
increasing nlevels leads to a rapid increase in the runtime spent in the second phase
of the AMLS calculation. Such an increase is caused by the increased dimension of
the projected problem, which is in turn caused by an exponential increase of the
number of separators with respect to nlevels. We observe that the time spent in
the second phase of the AMLS calculation actually exceeds that spent in the first
phase for the DDS6 fine problem when nlevels > 3.

nlevels nmodes phase 1 phase 2 total
(sec) (sec) (sec)

2 100 458 33 491

3 50 288 77 365

4 25 220 235 455

5 12 194 292 486

6 6 152 352 504

Table II. Runtime with different nlevels. Problem DDS6 fine, nev = 100.

The timing statistics for the PE3K problem shows a similar pattern to that

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

AMLS Method for Sparse Eigenvalue Problems · 19

reported in Table II. In this problem, we compute 500 smallest eigenpairs. The
separators produced by the METIS nested dissection reordering have relatively
large dimensions. We chose roughly nsep/5 coupling modes from each separator,
where nsep is the size of the separator. As we can see in Table III, the CPU time
spent in phase 1 of AMLS also decreases as nlevels increases. The increase in phase
2 time is less dramatic than that of the DDS6 fine problem, because the size of the
final projected problem increases slowly for PE3K. The best overall performance is
obtained when nlevels = 6. In this case, AMLS is almost twice as fast as SIL which
used 956 seconds to compute all desired eigenpairs.

nlevels nmodes phase 1 phase 2 total

(sec) (sec) (sec)

2 100 462 55 521

3 50 439 81 523

4 25 404 98 505

5 12 391 105 499

6 6 381 98 483

Table III. Runtime with different nlevels. Problem PE3K, nev = 500.

4.2 Variation of memory usage with respect to the number of sub-structures

We now assess the variation in AMLS memory usage with respect to nlevels. Here,
our experimental setup is the same as that in Section 4.1. Table IV shows the
memory usuage statistics for the DDS6 fine problem. Column 3 gives the total
memory usage for different choices of nlevels when a semi-implicit representation of
L is activated. The actual amount of savings gained from this semi-implicit scheme
is listed in column 4. In Column 5, we list the estimated percentage of savings

based on the formula c(l)−c(l−1)
c(l) given in Section 3.2, where c(ℓ) is defined in Eqn.

(19).
As we explained in Section 3, a semi-implicit representation of L would incur a

slight increase in runtime because the off-diagonal blocks of L that are not stored
must be recomputed when they are needed. The extra cost associated with re-
computing is reported in Column 6. We see that the actual recomputing overhead
reported in Table IV is lower than the rough estimation made in Section 3 (about
33%). This is because our estimation does not account for the time spent in the
other part of the algorithm. We observe that up to 50% of the memory usage can
be reduced in AMLS for the DDS6 fine problem with only 10-15% extra runtime.
This reduction is very attractive when memory is at a premium.

As a comparison, the memory usage measured in SIL is 308 Megabytes(MB).
Thus, our implementation of AMLS appears to be more efficient in both runtime
and memory usage than SIL when nlevels is set to 3.

For the PE3K problem, the percentage of memory saved using the semi-implicit
representation of L is not as impressive as that reported for the DDS6 fine prob-
lem. The reason we observed a smaller amount of saving is that this problem has
relatively large separators. Since the off-diagonal blocks of L associated with each
separator are kept in memory, the amount of memory that can be saved is limited.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

20 · W. Gao et al.

nlevels nmodes total-mem mem-saved mem-saving recompute
(MB) (MB) estimate time (sec)

2 100 319 199 (38.4%) 75.0% 9.2 (1.5%)

3 50 263 263 (50.0%) 66.7% 51.5 (11.0%)

4 25 325 248 (43.3%) 62.5% 60.7 (13.3%)

5 12 392 228 (36.8%) 60.0% 64.0 (13.2%)

6 6 480 192 (28.6%) 58.3% 55.3 (10.9%)

Table IV. Memory usage with different nlevels. Problem DDS6 fine, nev = 100.

However, even in this case, we observe from Table V that up to 28% memory is
saved. The optimal memory usage (265MB) is achieved when nlevels = 6. This
compares favorably with the use of 283MB memory in the SIL calculation.

nlevels nmodes total-mem mem-saved mem-saving recompute
(MB) (MB) estimate time (sec)

2 100 289 113 (28.1%) 75.0% 73.9 (14.2%)

3 50 271 96 (26.2%) 66.7% 82.6 (15.8%)

4 25 268 66 (19.8%) 62.5% 57.4 (11.4%)

5 12 270 42 (13.5%) 60.0% 35.9 (7.2%)

6 6 265 34 (11.4%) 58.3% 29.6 (6.1%)

Table V. Memory usage with different nlevels. Problem PE3K, nev = 500.

4.3 Solving the projected problem

Table II shows that solving the projected eigenvalue problem (6) can become
more expensive than the computation required to construct the projected pencil
(ST K̂S, ST M̂S) when the number of partitions is relatively large. Even if we reduce
the number of spectral components selected from each sub-structure (by as much
as a half) as we did for DDS6 fine in Table II, the dimension of the projected prob-
lem, nproj , is still likely to increase as the number of partitions increases. Such an
increase in dimension is caused by the increased number of interface blocks (seper-
ators) produced by the multi-level matrix partitioning. Thus, to reduce the total
computational cost of AMLS, one must choose an effcient algorithm to compute
the desired eigenpairs of the projected pencil.

Table VI shows the changes in nproj and the CPU time required to compute

the smallest nev = 500 eigenpairs of (K̃, M̃) obtained by applying AMLS to the
DDS6 fine problem with different choices of nlevels. We list the CPU time required
by both the SIL and the LAPACK divide-and-conquer eigenvalue calculation rou-
tine DSYEVD. For this example, nmodes is set to 100 when nlevels = 2, and is reduced
by a half when nlevels is increased by one. All spectral modes of the interface blocks
are selected. Thus, the increase in nproj reflects the increased number of sepera-
tors produced by nested dissection. We observe that when nproj < 5000, DSYEVD
is significantly faster than SIL, and SIL is only slightly faster when nproj reaches
6547.

We also experimented with Kaplan’s special subspace iteration (SSI) scheme
discussed in Section 3.3 using the DDS6 coarse problem with nlevels = 1. The

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

AMLS Method for Sparse Eigenvalue Problems · 21

nlevels nmodes nproj SIL (sec) DSYEVD (sec)

2 100 1289 557 33

3 50 1878 744 77

4 25 2976 986 235

5 12 4432 1206 651

6 6 6547 2036 2064

Table VI. Solving the final projected eigenvalue problem for DDS6 fine. nev = 500.

dimensions of the two sub-structures produced by this one-level partition are 2761
and 2791 respectively. The size of seperator in this case is 32. We set nmodes to
796 and 802 on each sub-structure respectively. All coupling modes are included
in S. In Figure 9, we plot the relative accuracy of the 50 Ritz values computed
by both SIL and SSI. We experimented with performing different numbers of block
inverse iterations in SSI, and will denote an SSI run with k block inverse iterations
by SSI(k). Figure 9 shows that it takes at least three inverse iterations in SSI
to produce Ritz values that are as accurate as those produced by SIL. The CPU
time required to perform three block inverse iterations in SSI is comparable to that
required to carry out SIL on (K̃, M̃). Therefore, we do not see a clear advantage
of using Kaplan’s scheme over using SIL for this problem.

0 5 10 15 20 25 30 35 40 45 50
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eigenvalue index

(θ
j−

λ j)/
λ j

SIL
SSI(3)
SSI(2)
SSI(1)

Fig. 9. Accuracy of Kaplan’s subspace inverse iteration scheme (SSI) for the projected eigenvalue
problem. Problem DDS6 coarse, nev = 50.

4.4 Variation of runtime with respect to nev

Since the computational complexity of AMLS is slightly higher than that associ-
ated with a block LDLT factorization of K, one should not expect a significant
performance gain from AMLS over SIL when the number of eigenvalues to be com-
puted (nev) is small (say less than 100). In fact, Table II shows that in the case of
DDS6 fine, the performance of AMLS is slightly worse than SIL when nev = 100
and nlevels = 2, 4, 5 and 6.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

22 · W. Gao et al.

However, as nev increases, AMLS becomes more attractive as we can see from
Figure 10 where we plotted both the AMLS and SIL runtime as a function of nev.
If we assume that a sufficient number of spectral modes have already been selected
from each sub-structure so that the projected pencil

(K̃, M̃) ≡ (ST L−1KL−T S, ST L−1ML−T S)

contains accurate approximations to a large number of eigenpairs of (K, M), an in-

crease in nev simply means that we need to compute more Ritz pairs from (K̃, M̃).
In this case, the incremental cost of AMLS associated with computing more approx-
imate eigenpairs can be completely accounted for by the additional computation
required to solve the projected eigenvalue problem. When the dimension of (K̃, M̃)
is much smaller than n, such an incremental cost is relatively small compared to
the cost of constructing (K̃, M̃).

In contrast, the incremental cost of SIL can be much higher than the cost of
computing the initial block LDLT factorization. If a single LDLT factorization
is used in SIL, the convergence of eigenvalues far away from the target shift can
be very slow, leading to a significant increase in the size of the Lanczos basis re-
quired to capture all the desired spectral components of (K, M) or an increase in
the number of restarts [Lehoucq et al. 1998] required to filter out the unwanted
spectral components from the Krylov subspace constructed by SIL. In either case,
the number of sparse triangular substitutions would increase substantially and the
cost of maintaining the orthonormality of the Lanczos basis would become higher
also. The use of multiple target shifts in SIL has the benefit of accelerating the
convergence of the desired eigenpairs, and thus reduces the overall number of tri-
angular substititions. However, because the LDLT factorization of K − σM must
be recomputed for each target shift σ, the cost of SIL typically increases linearly
with respect to the number of shifts used. In Figure 10, the estimated runtime of
SIL is based on the assumption that a single shift is used to compute at most 100
eigenpairs of (K, M), i.e., when nev = 500, five SIL runs with five different target
shifts are used to compute all desired eigenvalues. It is easy to see from this figure
that AMLS is clearly a more favorable choice than SIL for the DDS6 fine problem
when nev > 200.

4.5 Accuracy

The accuracy of AMLS clearly depends on the number of spectral modes (nmodes)
selected from each sub-structure. For a fixed sub-structure partition, increasing
nmodes increases the dimension of the subspace S ≡ span{S} onto which (K, M) is
projected. Such an increase naturally results in improved accuracy in the Rayleigh-
Ritz approximations to the desired eigenpairs. However, the amount of improve-
ment varies from one problem to another. In Figure 11 we show the accuracy of
the smallest 100 eigenvalues of DDS6 fine computed using the AMLS algorithm.
The Y-axis is the relative error of each eigenvalue compared with that computed
using SIL. Figure 11(a) shows that, by increasing nmodes on all sub-structures of a
5-level partition uniformly from 12 to 100, one improves the accuracy of the leading
100 Ritz values by roughly one digit. Such a modest improvement for this problem
can be explained by the slow decay of the ρ-factor (see Eqn. (18)) as a function
of eigenvalues of each sub-structure. Since the ρ-factor provides an estimation of

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

AMLS Method for Sparse Eigenvalue Problems · 23

100 200 300 400 500
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

nev

S
ec

on
ds

SIL
AMLS
AMLS−Ritz

Fig. 10. Runtime of AMLS and SIL with increasing nev. Problem DDS6 fine, nlevels = 4,
nmodes = 25. “AMLS-Ritz” is the phase to solve the final projected problem given by (6).

how significant the corresponding sub-structure mode is to the approximate eigen-
vector [Yang et al. 2005], a slowly decreasing ρ-factor implies that a small change
in nmodes results in limited change of accuracy in the approximate eigenvector.

A mode selection scheme based on an appropriate ρ-factor cutoff would guarantee
sufficient accuracy of the Rayleigh-Ritz approximation produced by AMLS [Elssel
and Voss 2004; Yang et al. 2005]. However, it has been observed that such a selection
scheme often retains more modes from each sub-structure than is necessary. It is
shown in [Yang et al. 2005] that the contribution of each mode to the approximate
eigenvector should be measured by the magnitude of the corresponding element
in the yi vector defined in (14). There are cases in which elements of yi are tiny
(indicating these modes can be discarded) while the corresponding ρ-factors are
relatively large. Unfortunately, yi cannot be computed in advance. Thus, further
research is needed to develop additional heuristics for estimating the magnitude of
each element of yi more accurately.

The issue of mode selection versus accuracy becomes more complex when one
takes into account the different choices of sub-structure partitions. As nlevels in-
creases, each sub-structure contains fewer modes to choose from, thus one would
naturally decrease nmodes on each sub-structure. Ideally, one would like to decrease
nmodes such that the dimension of S (which is the sum of all nmodes associated dif-
ferent sub-structures and the interface blocks) remains roughly the same. However,
Figure 11(b) shows that such a strategy typically leads to a loss of accuracy in the
Ritz values extracted from S. Thus, one may be forced to choose a relatively large
nmodes on each sub-structure, which would increase the dimension of S. Although
increasing the number of sub-structures typically reduces the cost of constructing
ST L−1ML−T S, an increase in the dimension of S makes solving the projected
problem more costly. Further research is required to identify the optimal balance.

In Figure 12 we plot the relative residuals for the smallest 100 eigenpairs of
DDS6 fine computed using the AMLS algorithm. The Y-axis is ‖Kzj−θMzj‖2/|θj|.
As can be seen, the residuals are relatively small, with two to three digits accuracy,
which usually indicates that the algorithm delivers small backward errors.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

24 · W. Gao et al.

0 10 20 30 40 50 60 70 80 90 100
10

−4

10
−3

10
−2

10
−1

Eigenvalue index

R
el

at
iv

e
er

ro
r

Level:5 Nmodes:12
Level:5 Nmodes:30
Level:5 Nmodes:60
Level:5 Nmodes:100

(a) Fixed level, increasing nmodes

0 10 20 30 40 50 60 70 80 90 100
10

−4

10
−3

10
−2

10
−1

Eigenvalue index

R
el

at
iv

e
er

ro
r

Level:6 Nmodes:6
Level:5 Nmodes:12
Level:4 Nmodes:25
Level:3 Nmodes:50
Level:2 Nmodes:100

(b) Increasing levels

Fig. 11. Eigenvalue accuracy for DDS6 fine, compared with the SIL method.

0 10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

Eigenvalue index

R
el

at
iv

e
re

si
du

al

Level=5 Nmodes=12
Level=5 Nmodes=30
Level=5 Nmodes=60
Level=5 Nmodes=100

(a) Fixed level, increasing nmodes

0 10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

Eigenvalue index

R
el

at
iv

e
re

si
du

al

Level=5 Nmodes=12
Level=4 Nmodes=25
Level=3 Nmodes=50
Level=2 Nmodes=100

(b) Increasing levels

Fig. 12. Relative residuals for DDS6 fine.

For many 3D problems, a multi-level partitioning of |K|+ |M | produces relatively
large-sized seperators. For these problems, retaining all the spectral components
of each seperator in the subspace represented by (5) or (10), as proposed in the
CMS method, would result in a large projected pencil. Even when the size of
each seperator is modest, the exponential increase of the number of seperators with
respect to nlevels can make solving the projected problem (6) a computationally
intensive task. Thus, in many cases, it is desirable to reduce the number of spectral
modes chosen from each seperator so that the dimension of the projected pencil
can be reduced.

In [Kaplan 2001], the number of modes selected from each seperator is determined
by a cutoff frequency set slightly larger than the highest frequency of interest for
the frequency response. For applications that do not arise from frequency reponse
analysis, such a cutoff typically does not exist. Even when such a cutoff frequency
exists, the error analysis presented in Section 2.3 indicates that using a given cutoff
frequency may not lead to an optimal mode selection strategy.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

AMLS Method for Sparse Eigenvalue Problems · 25

We now illustrate that performing partial mode selection can have a significant
impact on the performance of AMLS on the PE3K and PE12K problems. Both of
these matrices contain separators of large dimensions. We set nmodes to 100 for each
sub-structure. With a three-level partitioning, the cumulative size of the seperator
in PE3K is roughly one-fourth of dimension of the original problem. For PE12K,
the size of the top level seperator is already 4937. Table VII shows the reduction
in dimension of the projected pencil (K̃, M̃) when roughly 20% of the modes are
selected from each seperator for both PE3K and PE12K. Such a reduction translates
into a reduction of the AMLS runtime by at least a half for both PE3K and PE12K

as shown in Table VIII. Table VIII also shows that with partial selection, AMLS
runtime compares favorably with that of SIL.

Problem nlevels partial full

PE3K 3 1484 5658

PE12K 4 5350 20348

Table VII. Dimension of the projected problem with and without partial selection.

Problem nev nlevels partial full SIL

PE3K 500 3 581 1776 1061

PE12K 1000 4 15511 > 36000 18000

Table VIII. Effect of partial mode selection on the AMLS runtime (in seconds).

In another experiment, the number of modes selected from each seperator is
determined by examining the magnitude of the ρλ1

factor associated with the top-
level seperator. Figure 13 shows that such a selection heuristic allows us to maintain
at least two digits of accuracy in the approximation to the smallest eigenvalue of
both PE3K and PE12K.

0 100 200 300 400 500
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eigenvalue

R
el

at
iv

e
E

rr
or

Level − 3, Nmode − 100

Full
Partial(20%)

(a) Relative error of the approximation to the
smallest 500 eigenvalues of PE3K

0 200 400 600 800 1000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eigenvalue

R
el

at
iv

e
E

rr
or

Level − 4, Nmode − 100, Nsep − 20%

(b) Relative error of the approximation to the
smallest 1000 eigenvalues of PE12K

Fig. 13. Relative error

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

26 · W. Gao et al.

5. CONCLUDING REMARKS

An efficient implementation of the AMLS algorithm requires matrix operations
performed in the congruence transformation of (K, M), the sub-structure eigenpair
calculation, and the projection of (K, M) to be organized in a way that would lead
to a minimal floating point operation count and memory usage.

Although the implementation of AMLS bears many similarities to the implemen-
tation of a block Cholesky factorization, it differs from block Cholesky in terms of
the data flow pattern. In particular, the implementation of AMLS cannot be orga-
nized as a strictly left-looking or right-looking procedure. Nonetherless, the major
operations in our implementation of AMLS can be conveniently described in terms
of the traversal of a separator tree derived from the initial algebraic partitioning of
(K, M).

We developed a technique for reducing memory usage in the AMLS calculation.
In this technique, only the off-diagonal blocks of L associated with the separator
nodes are stored in memory. All other off-diagonal blocks are recomputed whenever
they are needed. We demonstrated that such a semi-implicit representation of L
can result in up to 50% savings in memory usage while incuring less than 15%
increase in runtime.

We evaluated our implementation of AMLS on two different applications outside
the area of structural analysis. We observed that AMLS is much faster than SIL
when a large number of eigenvalues with a few digits of accuracy are of interest.
We also observed that both the runtime and memory requirements of AMLS vary
with respect to the number of partitioning levels (nlevels). In particular, the first
phase of the AMLS computation, which involves interleaving the congruence trans-
formation of (K, M) with the sub-structure calculation and the projection (K, M)
into the subspace assembled from the sub-structure eigenvectors, becomes less time
consuming as nlevels increases. However, increasing nlevels tends to increase the
dimension of the projection subspace, hence leads to a more costly second phase
calculation. More research is needed to identify an optimal choice of nlevels.

A sub-structure mode selection scheme has a large effect on both the accuracy and
cost of AMLS computation. We illustrated that the accuracy of the Ritz values may
not improve if one simply increases nmodes on either a sub-structure or a separator.
However, such an increase in nmodes can lead to a significant increase in AMLS
runtime. We asserted that it is more important to select the “important” modes
that are associated with the large entries in the eigenvectors (y) of a canonical
eigenvalue problem. Although we did not give a recipe for choosing these modes in
this paper, our analysis indicates how we might be able to identify these modes by
estimating the entries of y.

Acknowledgments

We thank Parry Husbands, Lie-Quan Lee, and Esmond Ng for fruitful discussions.
We thank the anonymous reviewers for their careful reading and providing the
suggestions to improve the paper.

REFERENCES

Bekas, K. and Saad, Y. 2005. Computation of smallest eigenvalues using spectral Schur com-
plements. SIAM Journal on Scientific Computing 27, 2, 458–481.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

AMLS Method for Sparse Eigenvalue Problems · 27

Bennighof, J. K. November, 1993. Adaptive multi-level substructuring method for acoustic ra-

diation and scattering from complex structures. In Computational methods for Fluid/Structure
Interaction, A. J. Kalinowski, Ed. Vol. 178. AMSE, New York, 25–38.

Bennighof, J. K. and Lehoucq, R. B. 2004. An automated multilevel substructuring method for
eigenspace computation in linear elastodynamics. SIAM Journal on Scientific Computing 25,
2084–2106.

Craig, R. R. and Bampton, M. C. C. 1968. Coupling of substructures for dynamic analysis.
AIAA Journal 6, 1313–1319.

Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., and Liu, J. W. H. 1999. A
supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and Appli-
cations 20, 3, 720–755.

Elssel, K. and Voss, H. 2004. An a priori bound for automated multi-level substructuring.
Tech. Rep. 81, Arbeitsbereich Mathematik, TU Hamburg-Harburg, Germany.

George, A. 1973. Nested dissection of a regular finite element mesh. SIAM Journal on Numerical
Analysis 10, 345–363.

Hurty, W. C. 1960. Vibrations of structure systems by component-mode synthesis. Journal of
the Engineering Mechanics Dvision, ASCE 86, 51–69.

Kaplan, M. F. 2001. Implementation of automated multilevel substructuring for frequency re-
sponse analysis of structures. Ph.D. thesis, University of Texas at Austin, Austin, TX.

Karypis, G. and Kumar, V. 1998. MeTiS – A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices –
Version 4.0. University of Minnesota.

Ko, K., Folwell, N., Ge, L., Guetz, A., Ivanov, V., Lee, L., Li, Z., Malik, I., Mi, W., Ng,

C., and Wolf, M. 2003. Electromagnetic systems simulation - from simulation to fabrication.
SciDAC report, Stanford Linear Accelerator Center, Menlo Park, CA.

Kropp, A. and Heiserer, D. 2003. Efficient broadband vibro-accoutic analysis of passenger
car bodies using an FE-based component mode synthesis approach. J. Computational Acous-
tics 11, 2, 139–157.

Lehoucq, R. B., Sorensen, D. C., and Yang, C. 1998. ARPACK Users’ Guide: Solution of
Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadel-
phia.

Ng, E. G. and Peyton, B. W. 1993. Block sparse Cholesky algorithms on advanced uniprocessor
computers. SIAM Journal on Scientific Computing 14, 5 (September), 1034–1056.

Parlett, B. N. 1998. The Symmetric Eigenvalue Problem. SIAM, Philadelphia.

Yang, C., Gao, W., Bai, Z., Li, X., Lee, L., Husbands, P., and Ng, E. 2005. An algebraic
sub-structuring method for large-scale eigenvalue calculation. SIAM Journal on Scientific

Computing 27, 3, 873–892.

Yang, C., Peyton, B. W., Noid, D. W., Sumpter, B. G., and Tuzun, R. E. 2001. Large-scale
normal coordinate analysis for molecular structures. SIAM Journal on Scientific Comput-
ing 23, 2, 563–582.

xxxx

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2007.

