A Parallel Geometric Multifrontal Solver Using Hierarchically
Semiseparable Structure

SHEN WANG, Department of Mathematics, Purdue University

XIAOYE S. LI, Lawrence Berkeley National Laboratory
FRANCOIS-HENRY ROUET, Lawrence Berkeley National Laboratory
JIANLIN XIA, Department of Mathematics, Purdue University

MAARTEN V. DE HOOP, Department of Mathematics, Purdue University

We present a structured parallel geometry-based multifrontal sparse solver using hierarchically semisepa-
rable (HSS) representations and exploiting the inherent low-rank structures. Parallel strategies for nested
dissection ordering (taking low-rankness into account), symbolic factorization, and structured numerical fac-
torization are shown. In particular, we demonstrate how to manage two layers of tree parallelism to integrate
parallel HSS operations within the parallel multifrontal sparse factorization. Such a structured multifrontal
factorization algorithm can be shown to have asymptotically lower complexities in both operation counts
and memory than the conventional factorization algorithms for certain partial differential equations. We
present numerical results from the solution of the anisotropic Helmholtz equations for seismic imaging, and
demonstrate that our new solver was able to solve 3D problems up to 6003 mesh size, with 216M degrees of
freedom in the linear system. For this specific model problem, our solver is both faster and more memory
efficient than a geometry-based multifrontal solver (which is further faster than general-purpose algebraic
solvers such as MUMPS and SuperLU_DIST). For the 6003 mesh size, the structured factors from our solver
need about 5.9 times less memory.

Categories and Subject Descriptors: Mathematics of computing [Mathematical software]: Solvers
General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Sparse Gaussian elimination, multifrontal method, HSS matrices, par-
allel algorithm

ACM Reference Format:

Shen Wang, Xiaoye S. Li, Frangois-Henry Rouet, Jianlin Xia, and Maarten V. de Hoop, 2013. A Parallel
Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure. ACM Trans. Math. Softw.
, Article (May 2013), 21 pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

In many computational and engineering problems it is critical to solve large sparse linear
systems of equations. Direct methods are attractive due to their reliability and general-
ity, and are especially suitable for systems with different right-hand sides. However, it is
prohibitively expensive to use direct methods for large-scale 3D problems, due to their su-
perlinear complexity of memory requirement and operation count. A potential avenue to
develop fast and memory-efficient direct solvers is to exploit certain structures in the prob-

Authors’ addresses: S. Wang, J. Xia and M. V. de Hoop: Department of Mathematics, Purdue University,
West Lafayette, IN 47907, USA; X. S. Li and F.-H. Rouet: Lawrence Berkeley National Laboratory, Berkeley,
CA 94720, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.

© 2013 ACM 0098-3500/2013/05-ART $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

2 S. Wang et al.

lems. Different structures come from different natures of the underlying problems or different
discretization and computation techniques. In recent years, rank structured matrices have
been investigated extensively due to their potential in accelerating the solutions of various
partial differential equations and integral equations. Several useful rank structured matrix
representations have been developed, such as H-matrices [Hackbusch 1999] [Hackbusch and
Khoromskij 2000] [Hackbusch et al. 2002], H?-matrices [Bérm et al. 2003] [Bérm and Hack-
busch 2001] [Hackbusch et al. 2000], quasiseparable matrices [Bella et al. 2008] [Eidelman
and Gohberg 1999], semiseparable matrices [Chandrasekaran et al. 2005] [Vandebril et al.
2005], and multilevel low-rank structures [Li and Saad 2013].

In this paper, we develop a new class of parallel structured sparse factorization method
exploiting numerically low-rank structures using hierarchically semi-separable (HSS) matri-
ces [Chandrasekaran et al. 2006] [Xia et al. 2010]. The novelty of the HSS-structured solver
is to apply the parallel HSS techniques in [Wang et al. 2013] to the intermediate dense sub-
matrices that appear in the parallel sparse factorization methods. Specifically, we consider
the multifrontal factorization method [Duff and Reid 1983] in this paper. We investigate
several important aspects, such as parallel nested dissection that preserves the geometry and
benefits the low-rankness, the symbolic factorization, the integration of the HSS tree par-
allelism within the outer multifrontal tree parallelism, and how the rank properties behave
and benefit the complexities.

The resulting HSS-structured factorization can be used as a direct solver or precondi-
tioner depending on the application’s accuracy requirement and the characteristics of the
PDEs. The implementation that we present in the experimental section is restricted to the
solution of problems on regular grids. For some 3D model problems and broader classes
of PDEs, it was shown that the HSS-structured multifrontal method costs O(n*®logn)
flops [Xia 2013]. This complexity is much lower than the O(n?) cost of the traditional exact
multifrontal method. The theoretical memory count is O(nlogn). Numerical tests indicate
that our structured parallel solver is faster and needs less memory than a standard geomet-
ric multifrontal solver (which is further faster than general-purpose algebraic solvers such as
MUMPS and SuperLU_DIST). This new class of HSS-structured factorizations can be ap-
plied to much broader classes of discretized PDEs (including non-self-adjoint and indefinite
ones) aiming towards optimal complexity preconditioners.

The rest of the paper is organized as follows. In Section 2 we review the multifrontal
factorization algorithm and the HSS structure. Section 4 presents our new parallel HSS-
structured multifrontal algorithm in detail. Analysis of the rank properties and the com-
plexities are presented in Section 3. In Section 5, we demonstrate the parallel performance
of our geometric, sparse multifrontal solver. Section 6 is devoted to the conclusions.

2. REVIEW OF THE MULTIFRONTAL AND HSS-STRUCTURED MULTIFRONTAL
METHODS

In this section, we briefly review the multifrontal method, HSS representations, and HSS-
structured multifrontal methods.

2.1. Multifrontal method with nested dissection ordering

The central idea of the multifrontal method is to reorganize the factorization of a large sparse
matrix into the factorizations of many smaller dense matrices and partial updates to the
Schur complements [Duff and Reid 1983; Liu 1992]. We now briefly recall the main ideas. We
are to compute a factorization of a given matrix A, A = L U if the matrix is unsymmetric, or
A = L D L" if the matrix is symmetric. Without loss of generality, we assume that A is non-
reducible. For a matrix A with an unsymmetric pattern, we assume that the factorization
takes place with the nonzero structure of A + AT, where the summation is structural. In
this case, the multifrontal method relies on a structure called the elimination tree. A few

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure 3

equivalent definitions are possible (we recommend the survey by Liu [Liu 1990]), and we
use the following.

Definition 2.1. Assume A = LU, where A is a sparse, structurally symmetric, and N x N
matrix. Then, the elimination tree of A is a tree of N nodes, with the ith node corresponding
to the ith column of L and with the parent relations defined by:

parent(j) =min{i : ¢ > jand ¢;; # 0}, forj=1,...,N — 1.

In practice, nodes are amalgamated: nodes that represent columns and rows of the fac-
tors with similar structures are grouped together in a single node. In the end, each node
corresponds to a square dense matrix (referred to as a frontal matriz) with the following

2 x 2 block structure:
Fyy Fip
o _ 1
5 [Fm Fzz} (1)

Factoring the matrix consists in a bottom-up traversal of the tree, following a topological
order (a node is processed before its parent). Processing a node consists in:

— forming (or assembling) the frontal matrix: this is achieved by summing the rows and
columns of A corresponding to the variables in the (1, 1), (2,1) and (1,2) blocks, with the
temporary data (update matrices) that have been produced by the child nodes; that is,

k: child of j

— eliminating the fully-summed variables in the (1, 1) block Fi1: this is done through a partial
factorization of the frontal matrix which produces the corresponding rows and columns
of the factors stored in Fy1, F5; and Fjs. At this step, the so-called Schur complement
or contribution block is computed as U; = Fay — F21F1_11F12 and stored in a temporary
memory; it will be used to form the frontal matrix associated with the parent node.
Therefore, when a node is activated, it “consumes” the contribution blocks of its children.

In this process, the elimination step involves straightforward dense matrix operations, but
the assembling step involves index manipulation and indirect addressing while summing up
Uy,. For example, if two children’s update matrices U, = (CCL’ Z‘) ,i = 1,2 have subscript
K3 1

sets {1,2} and {1, 3}, respectively, then

a; b1 O as 0 by a1 +as by bs
Zuci=<c1d10>+<ooo>:< a d 0). (3)

i=1,2 0 00 ca 0 da Co 0 do

This summation operation is called extend-add, denoted by <|>, which aligns the subscript
sets of two matrices by padding zero entries, and then adds matrices. The relationship
between frontal matrices and update matrices can be revealed by F; = A; <}>U,, < U,, <>
e «$—> U, where nodes c1, ca, . .., ¢, are the children of j.

In the multifrontal factorization, the active memory (at a given step in the factorization)
consists of the frontal matrix being processed and a set of contribution blocks that are tem-
porarily stored and will be consumed at a later step. The multifrontal method lends itself
very naturally to parallelism since multiple processes can be employed to treat one, large
enough, frontal matrix or to process concurrently frontal matrices belonging to separate
subtrees. These two sources of parallelism are commonly referred to as node and tree paral-
lelism, respectively, and their correct exploitation is the key to achieving high performance
on parallel supercomputers.

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

4 S. Wang et al.

In the following section, we exploit additional rank structures in the frontal matrices to
achieve better cost and memory efficiency.

2.2. Low-rank property and HSS structures

We briefly summarize the key concepts of HSS structures following the definitions and
notation in [Xia 2012; Xia et al. 2010]. Let F be a general n x n real or complex matrix
and Z = {1,2,..., N} be the set of all row and column indices. Suppose T is a full binary
tree with 2k — 1 nodes labeled as ¢ = 1,2,...,2k — 1, such that the root node is 2k — 1 and
the number of leaf nodes is k. Let 7 also be a postordered tree. That is, for each non-leaf
node ¢ of T, its left child ¢; and right child ¢ satisfy ¢; < ¢o < i. Let t; C Z be an index
subset associated with each node i of 7. We use F|¢, x¢, to denote the submatrix of F' with
row index subset ¢; and column index subset ;.

HSS matrices are designed to take advantage of the low-rank property. In particular, when
the off-diagonal blocks of a matrix (with hierarchical partitioning) have small (numerical)
ranks, they are represented or approximated hierarchically by compact forms. These com-
pact forms at different hierarchical levels are also related through nested basis forms. This
can be seen from the definition of an HSS form:

Definition 2.2. We say that F' is in a postordered HSS form and 7 is the corresponding
HSS tree if the following conditions are satisfied:

—tey Ntey, =0, te, Ute, = t; for each non-leaf node i of T, where ¢ has child nodes ¢; and
Co and tgk,1 =17

— There exist matrices D;, U;, R;, B;, W;,V; (or HSS generators) associated with each node
1, such that, if i is a non-leaf node,

Doy =F,

C1 7 co

DiF'“”i(U B,VHE D
Cc2 Cc2

c2 ¥ cy
L= UC RC A ‘/C1WC1
v (UCZR;>’ e (VW>

where the superscript H means the Hermitian transpose.

D., U.,B VH)

The HSS generators define the HSS form of F'. The use of a postordered HSS tree enables
us to use a single subscript (corresponding to the label of a node of T) for each HSS
generator [Xia et al. 2010] instead of up to three subscripts as in [Chandrasekaran et al.
2006]. Figure 1 illustrates a block 8 x 8 HSS representation F. As a special example, its
leading block 4 x 4 part looks like:

D U, B,V UiR
< 1 1P1Vo > (1 1 B3(W4HV4H W5H‘/5H)

F| UQBQVlH D2 U2R2

tr Xty — H
UsRy Hy H 11/ H1H Dy UsB4Vy
<U5 35) B (W WHVH) (o

For each diagonal block D; = F'|;, x, associated with each node ¢ of T, we define F;” =

Fli, x(z\t,) to be the HSS block row, and FZ‘ = F|(z\t,)xt, to be the HSS block column. They
are both called HSS blocks. The maximum rank r (or numerical rank r for a given tolerance)
of all the HSS blocks is called the HSS rank of F. If r is small as compared with the matrix
size, we say that F' has a low-rank property.

Once the matrix is put into the HSS format, the transformed linear system can be ef-
ficiently solved with the ULV-type factorization and solution algorithms [Chandrasekaran

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure :5

! Br Vi
D;

U3R3
UeBeV/3 UeRe

Dg|
|Dg

D11

D14
(a) A block 8 x8 HSS matrix. (b) The corresponding HSS tree.

Fig. 1. Pictorial illustrations of a block 8 x 8 HSS form and the corresponding HSS tree 7.

et al. 2006; Xia et al. 2010]. The floating point operations associated with the HSS con-
struction, ULV factorization and solution are O(rN?), O(r?N) and O(rN), respectively.
All these are much smaller than the O(N3) operations required by the traditional dense
LU factorization algorithms for solving such linear systems. We described efficient parallel

algorithms for these HSS operations on dense matrices in a previous work [Wang et al.
2013].

2.3. HSS-structured multifrontal methods

Recall that with the nested dissection ordering, there is a one-to-one correspondence between
a separator and a frontal matrix F;. The frontal matrices are dense and their computations
contribute to the dominant terms in the costs for computing the factors and the storage
for the factors. Employing data-sparse compression for these frontal matrices can drasti-
cally lower the overall factorization cost and memory. (Section 3 contains the theoretical
justification.)

Thus, we follow the algorithms in [Xia 2013; Xia et al. 2009] to use HSS matrices to
approximate the frontal matrices F;. This generally involves the four steps shown in Algo-
rithm 1. Steps (b) and (c) can be performed conveniently via the HSS algorithms in [Xia
2013; Xia et al. 2010]. For step (d), ideally, we would like to have a fast procedure which
assembles the HSS forms of the contribution block directly into the HSS form of the parent
frontal matrix in step (a), as shown in Figure 2(a). Unfortunately, this involves complicated
HSS structured operations, because the matrix indices (hence the HSS trees) of the contri-
bution blocks are different between the siblings, and also different from the parent. Directly
performing HSS-based extend-add requires tree rotations, splitting and merging operations.
This was implemented in a 2D code [Xia et al. 2009], but it may not be easily generalized
to a general algebraic solver or a parallel one. Therefore, we resort to a simpler alternative
method in [Xia 2013], in which we keep the contribution block as a normal dense matrix and
the extend-add operation is done as in the classical (full-rank) multifrontal factorization.
This is depicted in Figure 2(b), and we call this algorithm partially structured. Compared
to a fully structured algorithm, the added cost is the decompression (HSS-to-dense) needed
to compute the contribution block and the recompression (dense-to-HSS) for the parent
frontal matrix.

The extend-add procedure with HSS and HSS tree manipulations (merge, rotation, etc.) is
very sophisticated. The parallel implementation is even more difficult. This current partially
structured version, sequential [Xia 2013] or parallel (this paper), makes the implementation
much more convenient. Moreover, we would like to emphasize that this simplified version
only incurs extra memory for the intermediate frontal/update matrices during the factor-
ization. Such memory is temporary. The final factors are still structured, just like when we
use structured extend-add in a fully HSS-structured algorithm. See Figure 2. The overall

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

:6 S. Wang et al.

ALGORITHM 1: The HSS-structured multifrontal algorithm.

(a) Construct an HSS approximation to Fj.

(b) Perform a partial ULV factorization for Fii.

(c) Compute the contribution block U; = Foy — Fo1 F1_11F12 via a low-rank update.
(d) Assemble U; into the parent frontal matrix. (a.k.a. extend-add)

ti /;
jigis: -
U, U
0 0
Fey Feo Fey Feo
1) (e - 1

Ue, Ue, U, Ue,
(a) Fully structured frontal factorization (b) Partially structured frontal factorization
and extend-add. that yields fully structured factors.

Fig. 2. Partially structured multifrontal method in [Xia 2013] that still yields fully structured factors, since
the frontal and update matrices are only used temporarily.

factorization complexity is roughly the same as that of the the fully structured version
(increased by just a factor of O(logn)) [Xia 2013]. In addition, the complicated structured
extend-add operation may not necessarily be faster than the dense one in practical par-
allel computations. In practice, this compromised design can lead to an efficient parallel
algorithm and implementation.

2.4. Other rank-structured multifrontal approaches

Other forms of low-rank structures have been embedded in multifrontal approaches. One of
them is the Hierarchically Off-Diagonal Low-Rank (HODLR) format [Aminfar et al. 2014].
In this approach, the partitioning of the matrix and the underlying tree is the same as what
we use in the HSS format. As in the HSS format, the off-diagonal blocks of the input matrix
are compressed, and, recursively, the diagonal blocks are partitioned and their off-diagonal
blocks are compressed, i.e.,

C1 7% co

U,B.,VE D,

H

Doy = F, and D, = F|ti><t1, _ < Dcl UclB 1% >
Cc2 V¥ cy

However, contrary to the HSS format, the HODLR format does not rely on a nested basis

property, i.e., it computes U; and V; from scratch at each node i, without using the following

relation:
U, R Ve, W,
U; = alle) oy = c1Vey
(U02R02) (Vsz WC2)
The HODLR approach has been embedded in a multifrontal solver for solving elliptic
PDES [Aminfar and Darve 2014]. However, at the time of writing, no parallel implementa-
tion is publicly available.

Another low-rank representation that has been implemented in a multifrontal solver is the
Block Low-Rank (BLR) format [Weisbecker 2013; Amestoy et al. 2015]. In this approach, a

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure 7

dense matrix is partitioned using a simple 2D blocking, and every block is compressed in-
dependently, as shown in Figure 3. The BLR format has been implemented in the MUMPS
multifrontal solve [Amestoy et al. 2015]. We have been communicating with the group
working on Block Low-Rank (BLR) techniques to compare their approach with ours. Ex-
periments carried out for the 3D Helmholtz problem described in this paper show that the
HSS-based approach exhibits a better asymptotic complexity but also has a larger prefactor
and a slightly lower flop-rate than BLR [Weisbecker 2013]. Therefore, it is advantageous to
use the HSS technique presented here for very large problems and larger machines, while
using BLR might pay off for small or medium-size grids. Extending this comparison to a
larger set of problems and applications is work in progress.

Dy B H D, B H Dy
usBaE[|P7 Via usBL[|°7 Via
D
> By (luo " B v & D
Uesavs = 7 UeRs UeBa/d = ’ 2
Ds Ds Ds
Dy Dy Dg
|D9 |Dg D9
D1 5 D1 D; 1
(%P D17 [%F
(a) HSS matrix. (b) HODLR matrix. (¢) BLR matrix.

Fig. 3. Pictorial illustrations of an HSS matrix, HODLR matrix, and BLR matrix.

3. RANK PROPERTIES AND OPERATION AND MEMORY COMPLEXITIES

The complexity of HSS-structured multifrontal algorithms relies on the off-diagonal numer-
ical ranks of the frontal matrices. The theoretical analysis of the off-diagonal rank bounds
is still limited. Two recent studies on the intermediate Schur complements in the factoriza-
tions of certain discretized PDEs are closely related to our method. In the first study [Chan-
drasekaran et al. 2010], it is shown that, for the finite-difference matrices discretized from
constant coefficient elliptic PDEs, the off-diagonal numerical ranks of the intermediate Schur
complements is bounded by a constant for 2D problems, but grows with the number of mesh
points along one side of the domain for 3D. In another study [Engquist and Ying 2011], En-
gquist and Ying study the Helmholtz equation with constant velocity field ¢(z) = 1. They
prove that the rank grows with logk for 2D, where k is the size of one side of the mesh.
They indicate that for 3D Helmholtz, the rank grows with k, although they do not provide
a rigorous proof. Additional results can be found in [Bebendorf and Hackbusch 2003].

Note that both the studies in [Chandrasekaran et al. 2010] and [Engquist and Ying
2011] use the lexicographical ordering of the mesh points (i.e., layer-by-layer, or sweeping
order). That is, the global matrix is block banded. Engquist and Ying note that both the
Sommerfeld boundary condition and the layer-by-layer order are essential for this low-rank
property. With a nested dissection ordering, the ranks may be higher [Engquist and Ying
2011; Martinsson 2011]. However, the ranks are generally not much higher, and may be of
the same orders for some situations.

In fact, assume the matrix after one level of nested dissection of a 2D regular mesh looks

like
A Aqs
A= Azp Aoz |, (5)
A3y Aszp Asz

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

:8 S. Wang et al.

where the layer-by-layer ordering is applied to both A;; and Ass. The Schur complement
of the two leading blocks is

S = Az — A31 A7 Ars — AzoAgy Aos. (6)

Since —Az3 A7 ' Ajz and —Asp A5, Aoy are the contributions to the Schur complement due
to the elimination of A;; and Ass, respectively, they satisfy the same off-diagonal rank
properties as in [Engquist and Ying 2011]. Thus, the off-diagonal numerical rank bound of
S is at most twice that with the layer-by-layer ordering for the entire A in [Chandrasekaran
et al. 2010] and [Engquist and Ying 2011]. Note that this holds regardless of the ordering
of A;; and Ass. Since our goal is to factorize the entire matrix for direct solutions, a
nested dissection ordering is better at preserving the sparsity and more suitable for parallel
computing.

When there are multiple levels in nested dissection, the above claim similarly holds for
some problems. For example, for elliptic problems with a Dirichlet boundary condition, the
procedure in (5)—(6) applies to any node with two children in the assembly tree. For our
numerical tests below, we fix the frequency in the Helmholtz equation, which makes the
rank behaviors similar to the elliptic case for large matrix sizes.

Therefore, with nested-dissection ordering, we make some trade-off between low-rankness
with better sparsity. In practice, we observed that, with our partially structured algorithm,
the ranks grow as O(k) in 3D (see Tables III), which corroborate Engquist’s theory very
well.

In [Xia 2013], Xia further considers certain rank patterns of the off-diagonal blocks on
top of the rank bounds. That is, when the numerical ranks of the off-diagonal blocks at
the hierarchical levels of the frontal matrices satisfy certain patterns, some more optimistic
complexity estimates can be obtained. See Table I. As can be seen, in all these cases, the
HSS-structured multifrontal factorization is provably faster and uses less memory than the
classical algorithm.

Table I. Theoretical off-diagonal rank bounds based on [Chandrasekaran et al. 2010; Engquist and Ying 2011]
and the complexities of the standard multifrontal method (MF) based on [Duff and Reid 1983; George 1973]
and the HSS-structured multifrontal method (HSSMF) based on [Xia 2013], where k is the mesh size in one
dimension, and n = k2 in 2D and n = k3 in 3D.

Problem r MF HSSMF
Factorization flops| Memory |Factorization flops| Memory
2D Elliptic | O(1) 3/2
1 1 log1
(kx k) [Helmholtz|OQogky] O |[Olnlegn)l Olnlogn) |O(nloglogn)
3D Elliptic O(k) 5 43 4/3
1
(k x k x k) |[Helmholtz| O(k) O(n%) O(n*/?) | O(n*/?logn) | O(nlogn)

Notice that all the above complexity analysis is based on the off-diagonal rank analysis
of the Schur complements which are assumed to be computed exactly. In practice, this is
usually not the case, since all the intermediate Schur complements are approximate. Thus,
the actual costs of the HSS-structured factorization may be higher than the results in Table
I. When appropriate accuracy is enforced in the HSS construction, we expect the off-diagonal
numerical ranks of the approximate Schur complements to be close to those of the exact
ones.

4. PARALLEL ALGORITHMS: NESTED DISSECTION, SYMBOLIC FACTORIZATION, AND
HSS-STRUCTURED MULTIFRONTAL METHOD

In this work, we target our parallel algorithms to the discretized PDEs from the regular 2D
and 3D mesh. This is mainly motivated from the need of a fast and memory-efficient solver
in one of the applications we are working with—seismic imaging problems involving the

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure 9

Helmholtz equations. Therefore, our parallelization strategies exploit the spatial geometry
and we will demonstrate that this geometry-tailored code is faster than general sparse
solvers. It is our work in progress to extend this to a general algebraic approach for arbitrary
sparse matrices. In the following subsections, we present our parallel algorithms for all the
phases of the solution process. We assume that the total number of processes is P, and is
a power of two for ease of exposition.

4.1. Parallel nested dissection and symbolic factorization for regular meshes

For any sparse factorization methods, the order of elimination affects the amount of fill
produced in the LU factors and the amount of parallelism exposed. For the regular 2D and
3D meshes considered in this paper, the best ordering method is nested dissection [George
1973], which recursively partitions the (sub)mesh via separators. A separator is a small
set of nodes whose removal divides the rest of the (sub)mesh into two disjoint pieces. At
the end of recursion, the final ordering is performed such that the lower level separator
nodes are ordered before the upper level ones, see Figure 4(a) for an illustration. The
recursive bisection procedure results in a complete binary (amalgamated) elimination tree,
a.k.a. separator tree, see Figure 4(b). The total number of levels in nested dissection is
I = O(logyn). Following this ordering, the LU factorization eliminates the mesh nodes
(unknowns) from the lower levels to the upper levels. Nodes may get connected during
elimination, see Figure 4(c).

s
@@__

—a- | —
L1 | —

(a) Partition/order with sep- (b) Separator tree. (¢) Node connections.
arators.

Fig. 4. Separators in nested dissection of a regular mesh, the corresponding separator tree, and the node
connections after the elimination of some lower level mesh points.

Algorithm 2 sketches our parallel nested dissection ordering for a cuboid of dimension
Ny X Ny x N,. The 2D case is similar.

In this algorithm, the sets of variables associated with the separators are ordered in a
postorder of the separator tree. But the algorithm does not specify the variables’ ordering
within a separator, see line [*¥]. For an exact sparse factorization, the internal separator
ordering has little effect on the fill-in, because the submatrix Fj; associated with the sep-
arator is dense. A common practice is to use a lexicographical order for the mesh points
within each 2D separator. However, when HSS is employed, the internal separator ordering
affects the amount of compression that can be done for F; and the rank distribution of
the HSS blocks. Therefore, we apply another nested dissection ordering strategy for the
variables within a separator. Figure 4.1 illustrate this for the 3D case, where a separator
is a submesh of 2D plane (left figure). We use a partitioning/ordering that respects the
geometry and retains locality of the variables within the HSS blocks. The simple example
in Figure 4.1 can be extended to a larger number of parts, using an edge-based nested dis-
section or a Morton ordering [Morton 1966]. In an algebraic context (i.e., for general sparse

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

:10 S. Wang et al.

ALGORITHM 2: Parallel nested dissection ordering for 3D mesh with P processes.

Let L <logn be the number of bisection levels. (Root is at level 0.)
Lpar =log P < L be the upper parallel levels.
FS(j) = list of fully-summed variables (Fi1 in Eqn. (1)) at node j of the tree.
CB(j) = list of variables in the contribution block (F»2 in Eqn. (1)) at node j of the tree.
w(j) = number of vertices to be ordered before node j.
order(x,y, z) = ¢ means the mesh point (z,y, z) is the ith variable to be eliminated.
(a) Tree generation:
(a.1) All P processes generate a binary tree globTree with Ly, levels and P leaves
(globTree is duplicated).
(a.2) Each process p is assigned one leaf and generates its local subtree locTree with
L — Lyqr levels. There are P different locTrees, corresponding to different subdomains,
and the root of each locTree is a leaf of the globTree.
(b) Compute weight w in postorder of both trees:
Each node j of globTree and locTree is associated with a cuboid [z1 : z2,y1 : Y2, 21 : 22]
of 6 coordinates, corresponding to frontal matrix Fj.
w(j+1) =w(j) + (x2 —x1+ (g2 —y1 + 1) (22 — 21 + 1).
(c) Nested dissection ordering:
(c.1) Redundant work: all P processes perform top-down Ly, levels of recursive bisection
down globTree:
Root node F'S(0) < [1: Nz, 1: Ny, 1:N.].
For each interior node j with cuboid [ml (T2, Y1 Y2, 21 :zQ], perform cut along Z, Y and X
axes in sequence (the following shows only Z-cut):
FS(left child of j) [z1 : z2,y1 : Y2, 21 : % —1j;
FS(right child of j) < [z1 : Z2,y1 : Y2, % +1: 2);
FS(j) < @1 : 32,91 : ya2, 21522]; (2D plane separator)
End For;
[*] 2D plane separator ordering: for each vertex (z,y, z) in the separator node j, assign:
1'< order(s,y, 2) < (w2 — 21+ D)(ya -y +1)(2a — 21+ 1;
order(z,y, z) = order(z,y, z) + w(j)
(c.2) Independent work: each process p independently performs recursive bisection for its
local subtree locTree (similar to c.1)

matrix), Amestoy et al. use graph partitioning tools to reorder a halo graph associated with
each separator [Amestoy et al. 2015].

leaf 1 //
leaf 2 : ///
CB
Separator Frontal matrix

Fig. 5. Correspondence between the ordering of the variables of a plane separator (left) and the variables
within the associated frontal matrix (right).

The purpose of the symbolic factorization is to identify the variables associated with
each frontal matrix F;. Since the variables of Fi; corresponding to the separator already
determined from nested dissection, the remaining task is to compute variables in the Fbo
block. The parallel symbolic algorithm proceeds in the same postorder of the separator tree.
Each process p first traverses its own locTree, then traverses globTree. For each node j of

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure 11

the tree, i.e., a separator, the process finds the “span” of j, i.e., the smallest cuboid which
contains j and whose faces touch neighboring separators or boundaries of the domain. There
are at most 6 neighboring separators that touches the span of j, and they are ancestors of
j in the elimination tree. The variables in the Fby block for j are the intersection of each
touching separator with the span of j. This is illustrated in Figure 6 where the span of the
separator we consider touches 4 other separators of the domain.

[

— P ///

—_—

Fig. 6. Span of a separator. We consider the smallest horizontal (dotted green) separator. The (grey) cuboid
is its span and touches 4 other separators that are its ancestors.

4.2, Parallel multifrontal method

After the nested dissection ordering, we can design the distributed data distribution and the
parallel algorithm fully exploiting the well-structured binary separator/elimination tree. For
the regular mesh geometry and the stencil defined on it, the two subparts resulting from
each bisection would have similar number of mesh points (equations and variables), and
hence the similar amount of computation associated with the elimination process. There-
fore, we can assign half of the processes to each subpart of the bisection, which is expected
to achieve nearly perfect load balance for the pure multifrontal method. However, for the
HSS-structured multifrontal method, this cannot easily accommodate the load imbalance
due to rank imbalance after HSS compression, which we comment more in Section 5. Fig-
ure 7(a) illustrates this matrix distribution scheme for the example with three levels of
bisections. As is shown, the processes are divided into groups, which are organized as a
binary tree structure with each tree node being associated with a group of processes. The
process numbers of each group are displayed in each tree node. ! There is a one-to-one
correspondence between a group of processes, a separator and the associated frontal matrix
Fj.
]Once we decide the above matrix distribution scheme, our parallel algorithm can be
stated as in Algorithm 3. Algorithm 3 maps readily onto the standard concepts of MPI,
BLACS [Dongarra and Whaley 1997] and ScaLAPACK [Blackford et al. 1997] that are used to
implement the algorithm, since the majority of the operations with the frontal and update

1In parallel computing, O-based convention is used in the naming of processes, processors, and processes,
etc.

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

112 S. Wang et al.

[o]1]4]5)

1 4
3 6
Fg Fo
;}i 2/3) [4]s
oo L.“*.
Fl F2 F4 FS Fs F9 F11 Flz F, F, F, F; Fy F, Fy
(a) Process tree with process labels at each node. (b) Process tree with 2D configurations.

Fig. 7. Illustration of the eight processes assigned to the frontal matrices F; to Fi5 along the separa-
tor/elimination tree in Figure 4.

ALGORITHM 3: Parallel multifrontal factorization with P processes.

Let L = log P be the number of bisection levels. Proceeds bottom-up by levels:
(a) At bottom level, L, with P nodes,
(a.1) In parallel, each process factorizes its local subtree sequentially;
(a.2) For i =0...P/2 — 1, a pair of processes {2¢,2i + 1} performs extend-add in Eqn. (3),
and distribute the parent frontal matrix to the pair {2¢,2i + 1}.
(b)For levels | = (L — 1) ...0 in separator tree,
(b.1) In parallel, a group of 27" processes factorizes a frontal matrix F; in Eqn. (1);
(b.2) In parallel (except at root), a group of 287!*! processes performs extend-add in Eqn. (3),
and redistribute the parent frontal matrix to this process group.

matrices at each node are dense matrix operations. The key is to use the MPI’s process
grouping capability. Each process group/communicator corresponds to one node of the
process tree, and the groups have the nested structure. In the example of Figure 7, we need
to form seven communication groups: {0,1}, {2,3}, {4,5}, {6,7}, {0:3}, {4:7} and {0:7}.

The governing distribution scheme in BLACS is a 2D block cyclic matrix layout, in which
the user specifies the block size of a submatrix and the shape of the 2D process grid. The
blocks of the matrices are then cyclically mapped to the process grid in both row and column
dimensions. Furthermore, the processes can be divided into groups (contexts) to work on
independent parts of the calculations. Figure 7(b) shows the mapping of the separator tree
nodes to 8 processes arranged as 2D grids. We always arrange the process grid as square
as possible, i.e., P ~ v/P x v/P. Since the context of any non-leaf node doubles each child’s
context, the former can be arranged to combine the two child contexts either side by side
or one on top of the other.

During the extend-add operation, we need to assemble the update matrices from two
children’s nodes to the parent node. Since the parent’s context is the union of the two child
contexts, the two update matrices should be redistributed before extend-add is performed.
We use the ScaLAPACK routine PxGEMR2D to carry out such a redistribution.

In Table II, we compare the performance of our geometric multifrontal code (denoted
MF) to the two widely used parallel sparse direct solvers MUMPS [Amestoy et al. 2006]
and SuperLU_DIST [Li and Demmel 2003]. The former uses the multifrontal method while
the latter uses a supernodal fan-out (right-looking) approach. For both solvers, we use a

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure :13

geometric-based nested dissection fill-reducing ordering and we disable MC64. This way,
all the solvers factor the same matrix. As shown in the table, the size of the LU factors
and the number of operations are very close for the three solvers; the slight variations are
due to different ways of amalgamating the elimination tree (i.e., setting the size of the
frontal matrices or the supernodes). In MUMPS, we disable delayed pivoting; pivoting is
done only within fronts, as in our MF code. These settings enable us to have a fair compar-
ison between the three codes. The problem that we use for benchmarking corresponds to a
100 x 100 x 100 3D grid. From the table, we observe that MF is faster than both MUMPS
and SuperLU_DIST. This is because this code is tailored for this particular problem, while
MUMPS and SuperLU_DIST are algebraic codes that can solve problems with very differ-
ent sparsity pattern and numerical properties. MF also shows better strong scaling than
MUMPS and similar scaling to SuperLU_DIST. These results demonstrate that our MF
code has good performance, and can serve as a nice framework to include HSS-structured
techniques, as well as a fair candidate to be compared with our HSS-structured version (so
as to demonstrate the benefit of including HSS structures). In the following, we assess the
performance of HSS-structured MF as compared with the non-structured MF code.

Table Il. Comparison of the parallel performance of the geometric multifrontal code to MUMPS and Su-
perLU_DIST for a 100 x 100 x 100 grid with different number of MPI processes. “Peak Mem” is the maximum
local memory highmark among all the processes.

procs | Solver Factor size | Flop count | Peak Mem. | Analysis | Facto. | Solve
(GB) (x10"%) (GB) (s) (s) (s)

MUMPS 16.9 54.0 0.96 2.9 69.9 0.5

32 SuperLU_DIST 16.5 53.3 1.00 5.4 57.4 0.3
MF 16.6 53.1 1.00 0.2 53.5 0.4
MUMPS 16.9 54.0 0.52 3.1 40.5 0.4

64 SuperLU_DIST 16.5 53.3 0.67 5.8 35.0 0.3
MF 16.6 53.1 0.50 0.2 31.6 0.2
MUMPS 16.9 58.1 0.36 3.2 28.7 0.4

128 SuperLU_DIST 16.5 53.3 0.50 6.3 19.4 0.2
MF 16.6 53.1 0.26 0.2 18.9 0.2
MUMPS 16.9 58.1 0.23 3.4 23.2 0.6

256 SuperLU_DIST 16.5 53.3 0.41 6.2 14.0 0.2
MF 16.6 53.1 0.13 0.1 10.7 0.1

4.3. Parallel HSS algorithms

Parallelizing the HSS algorithms is a challenging task in its own right. In previous work,
we have developed efficient parallel algorithms for HSS matrix operations, including con-
struction, ULV factorization and solution; see [Wang et al. 2013] for details. Recall that the
HSS computations can also be modeled by a binary tree — HSS tree (see Figure 1(b)). Our
parallel HSS algorithms were designed around this tree structure. In particular, we used
the same node-to-process mapping principle as is used for the multifrontal separator tree
in Figure 7(b). For a dense structured submatrix of size 250,000 from a 3D problem, our
parallel HSS solver is over 2x faster than the LU factorization in ScaLAPACK. The factor
of the compressed matrix is 70x smaller than that of the standard, full-rank LU factoriza-
tion. The asymptotic communication complexity (volume and number of messages) is also
reduced [Wang et al. 2013].

4.4. Parallel HSS-structured multifrontal method

Now, employing the HSS technique to each separator amounts to applying the parallel HSS
algorithms to the frontal matrix that is residing in the process context associated with
that separator. Thus, we can organize the parallel algorithm following an outer-inner tree

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

14 S. Wang et al.

structure. The outer tree is the multifrontal elimination tree, for which each tree node is
embedded with an inner tree, the HSS tree. Figure 8 illustrates such a nested tree structure
and the parallel HSS-structured multifrontal method. At several lower levels of the outer
tree, the frontal matrices are small and not much compression can be done, therefore, a
switching level [Xia et al. 2009] in the outer tree is used such that dense frontal matrix
operations are employed below the switching level whereas HSS techniques are applied
above this level.

The implementation of the outer-inner tree computations can make use of the MPI sub-
communicator or the BLACS context mechanism. In the following discussion, we will use
the example in Figure 9 to illustrate the parallel operations. For example, in Figure 9(a),
the four processes {12,13,14,15} form a process group/context for parallel factorization of
their assigned separator node. Using this group of four processes, we apply the parallel HSS
construction, ULV factorization and solution algorithms, given as input the logical view of
the process numbers {0,1,2,3}. The matrix structure of the corresponding separator node is
illustrated in Figure 9(b). There is no need for any algorithm changes internal to the parallel
HSS algorithm. Similarly, at the parent node, eight processes {8,...,15} are employed for
the parallel HSS calculations, with the logical view of the process numbers {0, ..., 7}.

8 % Processes

Parallel
processes

Parallel
level

Switching //,’ {

level *** 6**4’ ——SI} q8 — —
o / \ \ /\&\ AN A\
multifrontal 'Y I i . -

O 5 ©a a2 16 17 @

(a) 16 processes forming various groups/contexts. (b) An HSS-structured frontal
matrix F; mapped to process
context {12,13,14,15}.

Fig. 9. TIllustration of the parallel HSS-embedded partial factorization and Schur update of a frontal matrix.

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure :15

The outer tree multifrontal parallelism is the same as depicted in Algorithm 3. With
HSS embedding, a major new design of the parallel algorithm is the computation of the
contribution block ¢ for the inner HSS tree (Algorithm 1, step (c)) and its interaction with
the outer tree parallelism. Recall that in our partially structured multifrontal method, we
apply the HSS compression technique only to the blocks with fully summed variables in the
frontal matrix, i.e., Fi1, F12 and Fyy, see Figure 9(b). After HSS compression, the frontal
matrix is approximated as:

Fj = { i UlBlVQT})

UsBoViE Fay (™)

where H is an HSS representation for Fiy, and Uy, By, Vo, Uy, By and Vi are the HSS
generators at the root of the HSS tree associated with H. Next, we perform parallel ULV
factorization to H, yielding a reduced matrix for the HSS form of F;:
Dk UlBlva
e T ®
Uz BaVy Fo
where, the Dy, U; and V; are all of order r, the HSS rank. Here, we employ our parallel
HSS construction and partial ULV factorization algorithms developed in [Wang et al. 2013],
using four processes in this example, which accomplishes steps (a) and (b) in Algorithm 1.
The next step is decompression to form the dense update matrix ¢{; in parallel (Algo-
rithm 1, step (c)): U; = Fao — (U2BoViP)H =Y (U1 B1Vy'). As was shown in [Xia 2013], this
can be computed cheaply by a low-rank update as follows:

U; = Fay — (U, B VUYL 0 B V) (9)

with the help of a (small) LU factorization of Dy, = LUy. In our implementation, we use
ScaLAPACK and PBLAS routines to perform parallel LU factorization, parallel triangular solve

(ie., L,;lﬁl) and parallel matrix-matrix multiplication.

The last step is to assemble the contribution block U; into the parent frontal matrix as
part of extend-add. This is the same as what is needed in the pure parallel multifrontal
algorithm described in Section 4.2, that is, we can use BLACS routine PxGEMR2D to first
redistribute U; from four processes {12,13,14,15} onto eight processes {8,...,15}, before
the addition operation.

Our code includes pivoting within the dense frontal matrices. No pivoting is needed to
factorize the HSS frontal matrices due to the ULV factorization procedure which computes a
sequence of orthogonal local factorizations. The current code does not use delayed pivoting
across the children/parent fronts. In our applications, factorizations without delayed pivot-
ing preserve the practical background of the problems and are enough to observe stability
in practice [Wang et al. 2010; Wang et al. 2011; Wang et al. 2012]. In our future parallel
algebraic structured solver for more general sparse matrices, we plan to include static piv-
oting as in SuperLU_DIST [Li and Demmel 2003] or randomized pivoting as in [Xin et al.
2013].

5. RESULTS

In this section, we present the performance results of our parallel geometric HSS-structured
multifrontal solver when it is used to solve the Helmholtz equation of the following form:

(—A - UZ;Q) u(z,w) = s(z,w), (10)

where A is the Laplacian, w is the angular frequency, v(x) is the seismic velocity field, and
u(x,w) is called the time-harmonic wavefield solution to the forcing term s(z,w). Helmholtz

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

16 S. Wang et al.

equations arise frequently in real applications such as seismic imaging, where the simplest
case of the acoustic wave equation is of the form (10). Here, we focus on the 3D geome-
try and a 27-point discretization of the Helmholtz operator on 3D regular domains. This
discretization often leads to very large sparse matrices A which are highly indefinite and
ill-conditioned. We use a fixed frequency f = 10Hz (w = 27 f), a sampling rate of about 15
points per wavelength, wavelength L = 150 meters, step size h = 10 meters, and the PML
(Perfectly Matched Layer) boundary condition. In order to study the scaling of the parallel
algorithm, we increase the the number of discretization point k in each dimension, so that
the domain size in each dimension is k x h meters.

It has been observed that, in the direct factorization of A, the dense intermediate matrices
may be compressible [Engquist and Ying 2011; Wang et al. 2010]. In this application,
the discretized matrix has complex values, but we need to work only in single precision
arithmetic as it is what is used most of the time in the full wave inversion.

We carry out the experiments on the Cray XC30 (edison.nersc.gov) at the National
Energy Research Scientific Computing Center (NERSC). Each node has two sockets, each
of which is populated with a 12-core Intel “Ivy Bridge” processor at 2.4GHz. There are 24
cores per node. Each node has 64GB memory. The peak performance of each core is 19.2
Gflops/core.

We report the detailed parallel performance results in Table ITI. We also show in Figure 10
how the size of the factors and the number of operations of the HSS-structured factorization
grow as a function of the problem size. The grid sizes range from 100 x 100 x 100 to
600 x 600 x 600 (i.e, n = 216 millions). The number of cores ranges from 16 to 16,384. For
each problem, we compare the runs of the same code using a regular multifrontal mode (by
setting the switching level to 0) and the HSS-structured mode (where the switching level
is chosen according to the rules in [Xia 2013]). In each case, we perform one factorization
and one solution step with a single right-hand side, followed by at most 5 steps of iterative
refinement to the solution. The convergence criterion is that the componentwise backward

error max; % [Oettli and Prager 1964] is less than or equal to 5 x 10~7. In case the

error does not go down to the desired accuracy, we keep the best residual.
We report and compare the following performance metrics:

— Time: the runtime and the flop rate of the factorization, the solution, and the iterative
refinement phases. For the HSS-structured factorization, we also report the time spent in
the rank-revealing Q R, which is expected to be a dominant operation.

— Memory: the total size of the factors and the total peak of memory including the factors
and the active memory. The latter is the dominant part of the memory footprint of the
solver.

— Communication characteristics: the volume, the number of messages, and the time spent in
communication. These are collected using the IPM performance profiling tool [Fuerlinger
et al. 2010]. We did not collect data for the biggest problem as the log files become too
large for very long runs with many cores.

— Accuracy: we measure the normwise relative residual ”Aﬁﬂb” and the componentwise

—b

Az—b); . .
backward error max; m before and after iterative refinement.

One can notice that, except for the smallest 3D problem, the HSS-structured factorization
is always faster than the regular, uncompressed multifrontal factorization. The new code
is up to 2x faster than the pure multifrontal code (e.g., with the mesh size 300%). The
structured factor size is always smaller than that of the multifrontal code and is up to about
almost 6x smaller (e.g. the mesh size 600%). The flop rates of the HSS-structured code are
lower because the HSS kernels operate on the smaller blocks, while the multifrontal kernels
mostly perform large BLAS-3 operations. The size of the factors is significantly reduced but

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure :17

Table IIl. Experimental results on 3D regular domains. We compare a regular (full-rank) multifrontal solution
process (“MF” rows in the table) with our HSS-structured solver (“HSSMF"). Communication statistics are
collected with IPM except for the last problem (too large).

k (mesh: k x k x k;n = k3) 100 200 300 400 600
Number of processors P 64 256 1,024 4,096 16,384
Levels of Nested Dissection 15 18 20 21 23
Switching level 5 8 10 11 14
Factorization (s) 53.2 842.0 2436.9 4217.6 6564.3

Gflops/s 998.7 4138.0 16454.8 53587.2| 393694.1

Solution (s) 0.1 0.6 1.0 1.6 6.7

Gflops/s 17.8 300.6 1556.9 4977.7 25541.1

Iterative refinement (s) 0.2 0.6 1.1 2.5 44.8

Steps 1 1 1 1 2

Factors size (GB) 16.6 280.0 1450.1 4636.1 23788.9

MF Total peak (GB) 262.0 434.7 2234.9 7119.5 36373.4
Communication volume (GB) 68.0 2149.3 22790.5| 135888.0 -
Number of messages (millions) 4.1 71.9 576.2 2883.5 -
Communication time(s) 5.1 42.1 136.0 518.8 -

After 1Az 5] 1.0x 107436 x 1074[1.2 x 1072 1.7 x 1073 2.8 x 10~2

o]l

solution max; m 2.9 x 1073 (2.1 x 1073 |3.5 x 10~3| 1.5 x 10~3| 6.5 x 103
After ot 83x1076/1.2x 1075 |15 x 1075 | 1.8 x 1075 |2.2 x 105

refinement | max; % 1.5x 1077 |1.5x 1077|3.6 x 1077 | 1.8 x 10~7 1.6 x 10~7

Compression and factorization (s) 56.9 598.6 1214.2 2477.1 5136.8

Gflops/s 467.2 1408.5 5116.9| 11084.0| 43399.2

Min RRQR time(s) 21.7 227.0 469.1 742.8 1603.3

Max RRQR time(s) 32.6 415.8 860.3 1375.7 3430.7

Solution (s) 0.2 0.7 2.8 10.9 63.2

Gflops/s 58.0 178.0 166.4 115.7 68.3

Iterative refinement(s) 1.4 13.2 13.2 68.6 350.0

Steps 5 5 5 5 5

HSSMF Factors size (GB) 10.8 115.8 433.4 1189.0 4053.5

Total peak (GB) 250.3 366.7 1738.4 5352.5| 25287.2

Communication volume (GB) 81.8 1794.9 14129.2 71261.2 -

Number of messages (millions) 13.2 160.6 1175.0 6147.7 -

Communication time(s) 7.8 49.1 157.8 583.8 -

Largest rank found in compression 518 1036 1822 2502 5214
Az—b _ — _ — _

After solution H”\TQEL\- 1.5x 10 j 3.0 x 10 ? 6.3 x 10 j 6.5 x 10 ? 1.6 x 10 1
max; ey || 84 X 1071 8.9 1071 19.2x 1071 8.3 x 107! | 8.9 x 10~

After refinement HA“?’_'SL‘. 83x1076[1.2x 1075 |1.5 x 105 1.8 x 1075 [2.2 x 10~?
maxX; AT || 38 X 107° 8.5 x 107° (6.0 x 107* 1.3 x 1073 | 1.3 x 1073

the gains on the maximum peak of memory are not as large because the current code is
not fully structured yet: we do not apply the HSS compression on the contribution blocks,
as mentioned in Section 2.3. Studying and implementing a parallel fully-structured solver
is work in progress.

We observe that the flop rates are disappointing for the largest problem, with both the
multifrontal and the HSS-structured modes. We are currently investigating this issue with
Cray. On an older system (Cray XEG) the HSS-structured code using 16,384 processes we
achieved 23.2 TFlops/s, instead of 6.7 TFlops/s here.

The communication volume is also reduced when the HSS kernels are used, almost 2x
reduction in the case of 4003. The number of messages is larger for the HSS-structured
factorization; this is because the HSS kernels perform many redistributions of the inter-

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

:18 S. Wang et al.

4
10 O Measured 9 [® Theory (FR): n2 O i
® Theory (HSS): nlog n Q 10 Tentative fit: n”
_ ’g 8 & Measured s o 103
M3 IR 10° f::@::Theory (HSS):n"logn E
<) 10 Q e o °
S L4 10 e
= S
g 10 ¢ 1S 108 L %
S g
25
O 10°
10" - @] *
3 3 3 3 3 104 I 3 I 3 I 3 I 3 I 3
100 200 300° 400 600 100 200 300° 400 600
n n
(a) Factor size. (b) Operation count.

Fig. 10. Size of the ULV factors and operation count of the HSS-structured factorization for 3D problems.

mediate HSS blocks during the compression phase. It is important to bear in mind that
although there are more messages, these messages are not on the critical path in the paral-
lel execution, meaning that most of them are transferred simultaneously by different pairs of
processes. Therefore, the actual communication time is comparable between the two solvers,
and the time-to-solution is still much reduced for the new solver.

In terms of accuracy, the HSS-structured code is as good as the pure multifrontal code
in the normwise relative residual measure. With iterative refinement, the componentwise
backward error is further reduced. One can notice that the pure multifrontal factorization
does not yield residuals close to the machine precision without iterative refinement. This
may be because we do not perform any scaling (equilibration) of the system before the
factorization. Also, our code does not use delayed pivots across the children/parent fronts.
But again, only modest accuracy is desired for this class of problems and delayed pivoting
is generally not necessary.

According to Figure 10, the size of the factors and the number of operations of the
HSS-structured factorization are rank-dependent, as discussed in the previous section. In
practice, the rank patterns may not exactly follow the prediction due to the approximation
of the frontal and update matrices. We observed from our partially-structured code that
the maximum rank found in compression is proportional to the mesh size k, see the cor-
responding row in Tables III. From this rank pattern, the factor size follows the predicted
complexity o(nlogn). The number of operations seems to follow a O(n°/?) behavior; this
is larger than the O(n*/3logn) asymptotic behavior of a fully-structured factorization but
smaller that the O(n?) complexity of a classical non-structured factorization.

We carefully analyzed the performance of the HSS-structured factorization, and found
that the rank-reveling QR time exhibits serious load imbalance, which dominates the HSS
construction time. For example, we observed up to 3x imbalance of RRQR time for some
problems. This is due to the imbalance in the ranks identified during the HSS compression
of a frontal matrix. We illustrate this in Figure 11, where we show the ranks of the top
two levels of the HSS tree corresponding to the root node (topmost separator) of the 2003
problem. There are four processes working at each leaf node. The minimum rank is 413
and the maximum is 607. Table IV shows the HSS construction time and the RRQR time
imbalance. Our future work is to explore the other separator ordering methods and data
distribution schemes to mitigate the load imbalance problem.

In Table V, we report experimental results obtained when solving different variants of the
Helmholtz equation: Laplacian (Helmholtz equation with zero frequency) and Optical Diffu-

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure :19

Fig. 11. Ranks after RRQR compression of the root node of the 200 x 200 x 200 problem.

Table IV. Parallel HSS construction time in seconds for the topmost separator of the 2003
problem.

HSS time | HSS rank | Min time in RRQR | Max time in RRQR
edge-based ND 32.3 646 11.0 30.7

sion (Helmholtz equation with imaginary frequency). One can observe that these equations
have different compressibility properties. The Laplace equation and the Optical Diffusion
problem yield lower HSS rank, smaller factors and fewer operations. For these two problems,
our HSS-based factorization yields a larger speedup over the non-structured factorization
than what we obtain for the general Helmholtz problem.

Table V. Solution of three variants of the Helmholtz equation, using a 300 x
300 x 300 grid and 1,024 MPI tasks.

Laplace | Optical Diffusion Helmholtz
w=0 w=10-7-7% | w=10-27
MF Operations 4.0-1016
Factor size (GB) 1,450.1
Max rank 1317 1310 1822
HSS | Operations 5.3-1015 4.9.101% 7.0-101°
Factor size (GB) 431.1 423.5 433.4
Speedup HSS vs MF 2.3 2.4 2.0

6. CONCLUSIONS

We presented a parallel structured, geometry-based multifrontal sparse solver using HSS
representations for low-rank approximation. The novelty of our method is to use two layers
of tree parallelism to exploit the HSS structure in each dense frontal matrix, and to em-
ploy the HSS factorization and solve algorithms in place of the normal LU factorization for
the front. We developed a hierarchically parallel algorithm to weave together both parallel
multifrontal elimination (outer-tree parallelism) and parallel HSS factorization (inner-tree
parallelism). Parallel nested dissection and symbolic factorization are also studied to pre-
serve the geometry and to benefit the later low-rank compression. We tested our new parallel
HSS-structured multifrontal code using up to 16,384 cores, and demonstrated great advan-
tages over the standard parallel multifrontal method. The advantage is especially significant
in terms of the memory for large 3D problems.

This is the first parallel algorithm design and implementation that incorporates the HSS
structure in the sparse multifrontal solver, with the actual performance results on a real
parallel machine.

ACKNOWLEDGMENTS

We thank the members of the Geo-Mathematical Imaging Group (GMIG) at Purdue University, BGP,
ConocoPhillips, ExxonMobil, PGS, Statoil and Total, for the partial financial support. Partial support
for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) program

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

:20 S. Wang et al.

funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research (and
Basic Energy Sciences/Biological and Environmental Research/High Energy Physics/Fusion Energy Sci-
ences/Nuclear Physics). The research of Jianlin Xia was supported in part by an NSF CAREER Award
DMS-1255416 and NSF grants DMS-1115572 and CHE-0957024. This research used resources of the Na-
tional Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

Patrick Amestoy, Cleve Ashcraft, Olivier Boiteau, Alfredo Buttari, Jean-Yves L’Excellent, and Clément
Weisbecker. 2015. Improving Multifrontal Methods by Means of Block Low-Rank Representations.
SIAM J. Scientific Computing 37, 3 (2015). http://dx.doi.org/10.1137/120903476

P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. 2006. Hybrid scheduling for the parallel
solution of linear systems. Parallel Comput. 32, 2 (2006), 136-156.

Amirhossein Aminfar, Sivaram Ambikasaran, and Eric Darve. 2014. A Fast Block Low-Rank Dense Solver
with Applications to Finite-Element Matrices. CoRR abs/1403.5337 (2014).

Amirhossein Aminfar and Eric Darve. 2014. A Fast Sparse Solver for Finite-Element Matrices. CoRR
abs/1410.2697 (2014). http://arxiv.org/abs/1410.2697

M. Bebendorf and W. Hackbusch. 2003. Existence of H-matrix approximants to the inverse FE-matrix of
elliptic operators with L coefficients. Numer. Math. 95 (2003), 1-28.

T. Bella, Y. Eidelman, I. Gohberg, and V. Olshevsky. 2008. Computations with quasiseparable polynomials
and matrices. Theoret. Comput. Sci. 409 (2008), 158-179.

L. S. Blackford, J. Choi, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Pe-
titet, K. Stanley, D. Walker, and R. C. Whaley. 1997. ScaLAPACK Users’ Guide. SIAM, Philadelphia.
325 pages. http://www.netlib.org/scalapack.

S. Bérm, L. Grasedyck, and W. Hackbusch. 2003. Introduction to hierarchical matrices with applications.
Eng. Anal. Bound. Elem 27 (2003), 405-422.

S. Bérm and W. Hackbusch. 2001. Data-sparse approximation by adaptive H2?-matrices. Technical report,
Leipzig, Germany: Max Planck Institute for Mathematics 86 (2001).

S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and D. White. 2005. Some
fast algorithms for sequentially semiseparable representations. SIAM J. Matriz Anal. Appl. 27 (2005),
341-364.

S. Chandrasekaran, P. Dewilde, M. Gu, and N. Somasunderam. 2010. On the numerical rank of the off-
diagonal blocks of Schur complements of discretized elliptic PDEs. SIAM J. Matriz Anal. Appl. 31
(2010), 2261-2290.

S. Chandrasekaran, M. Gu, and T. Pals. 2006. A fast ULV decomposition solver for hierarchically semisep-
arable representations. STAM J. Matriz Anal. Appl. 28 (2006), 603—-622.

J. Dongarra and R. C. Whaley. 1997. A User’s Guide to the BLACS v1.1. LAPACK Working Note #94.
http://www.netlib.org/blacs.

I. S. Duff and J. K. Reid. 1983. The multifrontal solution of indefinite sparse symmetric linear equations.
ACM Trans. Math. Software 9 (1983), 302-325.

Y. Eidelman and I. Gohberg. 1999. On a new class of structured matrices. Integr. Equat. Operat. Theor.
34 (1999), 293-324.

B. Engquist and L. Ying. 2011. Sweeping preconditioner for the Helmholtz equation: hierarchical matrix
representation. Commun. Pure Appl. Math. 64 (2011), 697-735.

Karl Fuerlinger, Nicholas J Wright, and David Skinner. 2010. Effective performance measurement at petas-
cale using IPM. In Parallel and Distributed Systems (ICPADS), 2010 IEEE 16th International Con-
ference on. IEEE, 373-380.

J. A. George. 1973. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10 (1973),
345-363.

W. Hackbusch. 1999. A sparse matrix arithmetic based on H-matrices. Part I: introduction to H-matrices.
Computing 62 (1999), 89-108.

W. Hackbusch, L. Grasedyck, and S. Bérm. 2002. An introduction to hierarchical matrices. Math. Bohem.
127 (2002), 229-241.

W. Hackbusch, B. Khoromskij, and S. A. Sauter. 2000. On H2-matrices. Lectures on applied mathematics
(Munich, 1999), Springer, Berlin (2000), 9-29.

W. Hackbusch and B. N. Khoromskij. 2000. A sparse H-matrix arithmetic. Part-II: Application to multi-
dimensional problems. Computing 64 (2000), 21-47.

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure 21

R. Li and Y. Saad. 2013. Divide and conquer low-rank preconditioners for symmetric matrices. STAM J.
Scientific Computing 35, 4 (2013), A2069-A2095.

X. S. Li and J. W. Demmel. 2003. SuperLU_DIST: A Scalable Distributed-Memory Sparse Direct Solver for
Unsymmetric Linear Systems. ACM Trans. Math. Software 29, 2 (June 2003), 110-140.

J. W. H. Liu. 1990. The role of elimination trees in sparse factorization. SIAM J. Matriz Anal. Appl. 18
(1990), 134-172.

J. W. H. Liu. 1992. The multifrontal method for sparse matrix solution: Theory and practice. SIAM Rev.
34 (1992), 82-109.

P. G. Martinsson. 2011. A Fast Direct Solver for a Class of Elliptic Partial Differential Equations. J.
Scientific Computing 38, 3 (2011), 316-330.

G. M. Morton. 1966. A computer Oriented Geodetic Data Base; and a New Technique in File Sequencing.
Technical Report, Ottawa, Canada: IBM Ltd (1966).

W. Oettli and W. Prager. 1964. Compatibility of approximate solution of linear equations with given error
bounds for coefficients and right hand sides. Num. Math. 6 (1964), 405-409.

R. Vandebril, M. Van Barel, G. Golub, and N. Mastronardi. 2005. A bibliography on semiseparable matrices.
Calcolo 42 (2005), 249-270.

S. Wang, M. V. De Hoop, and J. Xia. 2010. Seismic inverse scattering via Helmholtz operator factorization
and optimization. J. Computat. Phys. 229 (2010), 8445-8462.

S. Wang, M. V. de Hoop, and J. Xia. 2011. On 3D modeling of seismic wave propagation via a structured
massively parallel multifrontal direct Helmholtz solver. Geophys. Prospect. 59 (2011), 857-873.

S. Wang, M. V. de Hoop, J. Xia, and X. S. Li. 2012. Massively parallel structured multifrontal solver for
time-harmonic elastic waves in 3D anisotropic media. Geophys. J. Int. 91 (2012), 346-366.

S. Wang, X.S. Li, J. Xia, Y. Situ, and M.V. de Hoop. 2013. Efficient Scalable Algorithms for Solving Linear
Systems with Hierarchically Semiseparable Structures. SIAM J. Scientific Computing 35, 6 (2013),
C519-Cb44.

C. Weisbecker. 2013. Improving multifrontal methods by means of algebraic block low-rank representations.
Ph.D. Dissertation. Institut National Polytechnique de Toulouse.

J. Xia. 2012. On the complexity of some hierarchical structured matrix algorithms. SIAM J. Matriz Anal.
Appl. 33 (2012), 388-410.

J. Xia. 2013. Efficient structured multifrontal factorization for general large sparse matrices. SIAM J. Sci.
Comput. 35, 2 (2013), A832-A860.

J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. 2009. Superfast multifrontal method for large structured
linear systems of equations. SIAM J. Matriz Anal. Appl. 31 (2009), 1382-1411.

J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. 2010. Fast algorithms for hierarchically semiseparable
matrices. Numer. Linear Algebra Appl. 2010 (2010), 953-976.

Z. Xin, J. Xia, M. V. de Hoop, S. Cauley, and V. Balakrishnan. 2013. A structured multifrontal method for
nonsymmetric sparse matrices and its applications. Purdue GMIG Report (April 2013).

ACM Transactions on Mathematical Software, Vol. , No. , Article , Publication date: May 2013.

